
Computing and Informatics, Vol. 37, 2018, 1184–1208, doi: 10.4149/cai 2018 5 1184

A STOCHASTIC ADJUSTMENT STRATEGY
FOR COORDINATION PROCESS
IN DISTRIBUTED NETWORKS

Pingting Hao, Liang Hu
Jingyan Jiang, Xilong Che

College of Computer Science and Technology
Jilin University
Changchun, 130000, P.R. China
e-mail: {haopt15, jiangjy14}@mails.jlu.edu.cn,

{hul, chexilong}@jlu.edu.cn

Abstract. Cloud computing has become a popular basis that integrated into
amount of large platforms to support applications (e.g., multimedia, vehicle traffic,
and IoT). It is critical to focus on coordinating the part of these applications that
execute in the cloud to provide reliable, scalable and available services. Neverthe-
less, the problem of optimally coordinating the applications is rarely addressed. In
this paper, we develop a stochastic model to analyze the fundamental characteris-
tics that occur in ZooKeeper during the coordination process. The model primarily
addresses two aspects: demands of followers and the load of a leader. Then, we
derive the optimal strategy for provision with deployment of coordinated servers to
achieve load balancing based on various factors (e.g. server capacity and network
load), so that the overall network performance is optimized. We evaluate our algo-
rithm under realistic settings and reveal the trend of factors such as CPU, memory
utilization and network bandwidth with the increasing number of requests. We pro-
pose the algorithm that considers how many servers should be deployed and when.
Our results demonstrate that the strategy guarantees the performance by making
suitable deployment adjustment.

Keywords: ZooKeeper, deployment, load balancing, queuing theory

Mathematics Subject Classification 2010: 49-K30, 60-G07



A Stochastic Adjustment Strategy for Coordination Process in Distributed Networks 1185

1 INTRODUCTION

The popularity envisioned for the fifth generation (5G) mobile network has trans-
formed cloud services into the basic infrastructure for large-scale distribution sys-
tems. To date, not only traditional applications, but also numerous other architec-
tures (e.g. SDN [1] and CDN [2]) have been integrated into the cloud. This rapid
growth has posed significant challenges to the cloud, e.g. how to provide distributed
synchronized services while maintaining configuration information to support more
scalable, available and reliable services for users.

To address these challenges, ZooKeeper [3] which includes built-in, large-scale,
coordinated mechanisms has been widely adopted in the cloud. The shared hierar-
chal namespace and data model are used for coordinating the transactions. Gener-
ally, ZooKeeper runs on several closely located servers, namely, a ZooKeeper cluster.
Different roles are assigned to the servers in order to communicate with each other,
to provide the functions of fault-tolerance and to deal with the information about
the transactions according to the Paxos algorithm. Thus, ZooKeeper could provide
a set of guarantees (e.g. sequential consistency, reliability and atomicity). ZooKeeper
is typically deployed and operated by third-party architectures (e.g. HBase [4] and
Storm [5]), and it is also widely used in the applications [6, 7, 8]. Such mechanisms
have contributed to ZooKeeper’s increasing popularity, particularly because of its
distributed capabilities. Thus, achieving an optimal performance and better uti-
lization of ZooKeeper is important also for these applications. In some cases from
the companies (e.g. Baidu, Alibaba), the poor performance would not be solved
only by expanding the size of cluster according to the SLA, and the results are
caused by improper operations, such as the way of storage, the assignment of roles
and the deployment of ZooKeeper. Thus, we pick the problem for deployment of
ZooKeeper, which is one of the improper mistakes, to analyze it and find the solu-
tion.

Okorafor and Patrick [9] proposed the model based on the Hadoop/MapReduce
and ZooKeeper, and utilized the ZooKeeper to coordinate the transactions instead
of traditional MPI (message passing interface). Although it analyzed the number of
servers for ZooKeeper, the primary goal was designed for the availability to achieve
better performance (e.g. the repair rates for software and hardware, the initial failure
rate, and the number of available servers). Specific to the characteristic and analysis
of the ZooKeeper itself, it has no more deep research on this field. Pham et al. [13]
evaluated ZooKeeper’s performance under different situations (e.g. resilient name
service, dynamic system configuration, and recovery databases). Complementary
to [13], we combine the servers’ states with ZooKeeper’s performance. Furthermore,
we provide an in-depth study of ZooKeeper, specific to its deployment.

In this paper, we propose the deployment for ZooKeeper according to the coordi-
nating process. In view of the analytical results, the plan comprehensively considers
the trade-off between the leader and followers with the load balancing, so that to
guarantee the performance of the system. We can summarize our contributions as
follows:



1186 P. Hao, L. Hu, J. Jiang, X. Che

1. We give a brief description of the ZooKeeper workflow and develop a stochastic
model to describe the coordination process using two modes: a simple mode and
a general mode. Meanwhile, our stochastic model considers two conflicting roles
to determine the server deployment by introducing load balancing as the metric,
which provides a general baseline for understanding ZooKeeper deployment.

2. We observe the dynamic server states and their performance with dealing with
requests, and derive a strategy for provisioning the optimal number of servers
and determining when to adjust the deployment by considering the server states
and the request distribution in the system.

3. Through a numerical analysis, we observe the performance variations: the band-
width becomes more sensitive as the number of requests increases, and the CPU
load also varies significantly. At a threshold, the throughput influence holds
steady for both the leader and followers. When the service utility achieves op-
timality from a global viewpoint, we change the deployment to guarantee the
quality of service.

The rest of this paper is organized as follows. In Section 2 we present related
work. In Section 3, we describe the workflow of ZooKeeper which combines with our
challenge, and provide the definition of our model. In Section 4, we concentrate on
building the model for the coordination process and solving the problems mentioned
in Section 3, and the results of experiments are discussed in Section 5. Finally, we
conclude the paper in Section 6.

2 RELATED WORK

Recently, in the emerging coordinated services field, ZooKeeper’s management con-
sistency exhibits promising potential that can significantly improve system efficiency.
Cai et al. [6] proposed a decentralized vehicle routing service system and used
ZooKeeper to establish the coordination system between subtask processors. Goel
and Majumdar [7] presented mutual exclusion property in ZooKeeper to guarantee
payment processing. Skeirik et al. [8] focused on security services and group key
management in the cloud and used ZooKeeper’s logic model to bolster anti-spam
and anti-virus activities. In [10], the importance of the organization and manage-
ment for the service is addressed. However, the ZooKeeper is mainly used in the
cloud distributed systems to support the valuable search related services.

Researchers have expended considerable effort to improve the ZooKeeper’s per-
formance. Kalantari and Schiper [11] developed a prototype to reduce the synchro-
nization time between ZooKeeper servers. Junqueira et al. [12] designed a crash-
recovery atomic broadcast algorithm to guarantee state coordination. In 5G ar-
chitecture, both homogenous and heterogenous units have been integrated into the
infrastructure. While the applications are likely to possess full support for devel-
oping intelligent platforms, it is challenging to utilize ZooKeeper to guarantee the
services. However, performance analysis of ZooKeeper are rarely seen in the litera-
ture.



A Stochastic Adjustment Strategy for Coordination Process in Distributed Networks 1187

In this section, we discuss deployment, which is closely related to our work.
Deployment has been a key architectural component for many years, and the litera-
ture includes many studies on deployment. The deployment objective is to identify
the most appropriate number of servers, replicas and locations to achieve various
optimal solutions, such as minimizing the delay [14, 15, 21, 22], bandwidth [16],
energy consumed [17, 18, 19, 24], and so on. Moreover, LP relaxation techniques
are widely used as a practical method to approximate the optimal solution [18].
Heuristic algorithms [16, 20] are often employed in these studies.

Our work concentrates on adjusting server deployment to guarantee the qual-
ity of service at both low cost and energy consumption. Due to the properties
(e.g. intensive cluster, small sizes of items) of ZooKeeper, our approach is novel
for ZooKeeper, and is more critical than the problems of location and size as the
scale of components in the architecture increases. We introduce load balancing into
our model. As a distributed service system, load balancing is a non-negligible fac-
tor in achieving system optimal performance [23]. Kim [24] improved a novel load
balancing scheme that balances the energy consumption of the sensor nodes and
the maximum network lifetime by applying sub-network management in wireless
sensor networks. Bui et al. [25] presented approaches to improve networking perfor-
mance by rebalancing the load on the physical links of a supercomputer. Thus, our
model combines ZooKeeper with the system seamlessly, and providing insights for
addressing ZooKeeper deployment.

3 SCENARIOS AND PROBLEM STATEMENT

3.1 ZooKeeper and Various Scenarios

The architecture for a generic example, the coordination process, is shown in Fig-
ure 1. Each server in the ZooKeeper cluster is configured with the service. The sys-
tem involves three roles: leader, follower and observer. Due to the semi-distributed
manner of ZooKeeper, the coordination service needs a role for the collection, com-
puting and issuing decisions, that is the responsibility of leader. The number of
leader is limited to one. The other two roles follower and observer mainly connect
with the user, and receive the requests from one part of the area. The follower is
responsible for satisfying the needs of users within the range, as the observer. The
number of them is not limited.

The whole servers of follower and observer could cover the range of needs, and
the number of them is not the same with leader that is limited to one. The part
of the requests passed on to the leader, the other part would be dealt with by
the follower and observer. The observer functions similarly like the followers. The
difference between observers and followers is that the observers provide only reading
services, but do not vote. Therefore, in this paper, because of their popularity and
universality, we primarily discuss the first two roles.

Figure 1 shows the coordination process through the six steps. The client makes
a request (step 1) to a follower. Then, the follower takes different actions depending



1188 P. Hao, L. Hu, J. Jiang, X. Che

Figure 1. The coordination process (six steps) between a leader and its followers using
the TCP/IP protocol

on the request type. The requests can be categorized as read or write. When the
request type is read, the follower serves the request itself by performing step 6.
When the type of the request is write, it is forwarded to the leader (step 2). The
packet categories resulting from the write request consist of PING, REQUEST, ACK
and REVALIDATE packets. The results will be returned by the followers from the
leader (step 5). When the leader receives the request, it proposes a vote among
its active followers (step 3). After the vote is returned by each follower (step 4),
the leader calculates the result and notifies all the followers (step 5). The packet
types implemented by each follower including PROPOSAL, COMMIT, UPDATE
and REVALIDATE, and the request procedure obeys the coordination process. The
protocol Zab, derived from the Paxos algorithms, is the basis of the coordination
process that makes the system reliable, consistent and available. For example, if
the leader crashes, the remaining followers elect a new leader based on the Zab
protocol. In addition, when the leader performs update operations, it propagates
the incremental state changes to its followers so that the consistency is guaranteed.
Note that there is an odd number of servers (2n+1, n = 1, 2, 3, . . .), and the number
of active servers is never less than n+ 1, which avoids evenly splitting votes.



A Stochastic Adjustment Strategy for Coordination Process in Distributed Networks 1189

3.2 Problem Definition and Notation

In this section, we describe the coordination model and formulate the optimization
problem in ZooKeeper. Table 1 summarizes the notations used in this paper.

First, the client connects to one server to create a client/server session. Then, the
client can submit requests to the server. Next, the server receives the client’s requests
and judges the type of requests. Based on the request type, it determines whether
the request must be transferred to the leader. Search and read operations are not
forwarded, while setData, create and delete requests among others are forwarded to
the leader. For the latter, the leader organizes voting among its active followers and
returns the results to all followers as a commit operation. Clients receive their results
from the followers. Thus, the challenge is rising from this procedure. The amount
of requests are received by the follower, and the more requests need the followers
with more capacity to deal with such as increasing the number of followers, so that
the burden of followers could be afforded and guarantee the speed of dealing with
the requests. However, the effect of the leader is opposite from the followers due to
the semi-distributed manner of ZooKeeper. The more requests and actions would
result in the more burden of the leader, and the performance would be influenced
by the leader. If the leader is also responsible for the work of the followers, it would
be worse for the performance. Generally, the leader is not set to receive the users’
requests as default. Thus, the scaling point of the cluster could be considered from
the two angles that is dealing with the requests by the followers and the leader.

The network topology is represented as a graph G = (V,E). V contains n nodes
connected by the edges from set E. Based on the definition of a Poisson process,
we assume that the arrival rate of clients λ follows a Poisson distribution, which
has been discussed in many papers. For the departure rate of the clients µ, the
instances can be separated into two different situations. The first case is simple,
and client requests are served at rate ν under ideal conditions. In the second case,
we consider a realistic scenario in which failure is introduced. We denote the failure
rate of the leader as fsL and the failures caused by clients is denoted as γ, where γ
is a part of µ. At the physical level, many incidents can cause the system to become
unavailable, such as power outages, wire disconnections, routing inaccuracies, link
errors, and so on. Except for special and infrequent situations, we focus on the link
error rate fl.

Next, we set the network parameters. M defines the total number of servers,
including the leader and the followers, while m denotes the number of followers.
Considering the limited real-world conditions, we assume that client bandwidth is
all the same, and the upper bound of the bandwidth is c1. The followers have
a maximum bandwidth of c2, while the upper bound of the leader bandwidth is c3.
In this paper, we also add the servers’ attributes to this model. Combined with
the theory of load balancing, FW stands for the load capacity of the follower, and
LW denotes the leader’s load capacity. Load capacity is reflected by the CPU idle
time V1, the surplus storage space V2, and the remaining network bandwidth V3.
However, the two types of requests, read and write, have different effects on server



1190 P. Hao, L. Hu, J. Jiang, X. Che

load capacity. Thus, we denote that the number of requests for two types as rw1

and rw2 to show their respective influences on ZooKeeper.

NOTATION DEFINITION

λsi Client arrival rate to server i, i = 1, 2, 3, . . ., represents the followers,
and i = L is the leader

ν Client departure rate under ideal conditions
µ Actual client departure rate
ρ The intensity of service, ρ = λ/µ
γ The portion of the departure rate due to a client fault
fsL The leader sL failure rate
fl The link l failure rate
W The average client waiting time (response time)
Nsi The number of operations that pass on server i, where i = L repre-

sents the leader
rwi The number of requests, i = 1 denotes the type of requests read, i = 2

denotes the type of requests write
Pn Pn = P{N = n} (n = 0, 1, 2, . . .) denotes the event probability when

the number of clients n is in a stable state.
D(x) Throughput is counted as the number of packets that pass through

a server in the interval x
Sx The rate of transmission in the interval x
LWsL The performance of server L, referring to the leader using factors vi

to describe them
FWsi The performance of server i, referring to the follower using factors vi

to describe them
ci The bandwidth constraint. The assigned bandwidth of the clients is

expressed as i = 1, i = 2 denotes the maximum follower bandwidth,
and i = 3 denotes the maximum leader bandwidth

vsii The measurement of server i’s performance concerning factor i

Table 1. The major symbols used in this paper

4 COORDINATION MODEL

In this section, we develop the strategy to adjust ZooKeeper deployment and provide
two models for analyzing the coordination process.

4.1 Simple Model

We first consider a simple model for ZooKeeper without considering the unexpected
accidents that occur in the real conditions. Based on the overall situation, the
coordination model is assumed to be M/M/1. In addition, FCFS (first-come-first-
serve) is the queuing discipline model in ZooKeeper.



A Stochastic Adjustment Strategy for Coordination Process in Distributed Networks 1191

Figure 2. The simple architecture used for the queuing theory

As shown in Figure 2, the leader is the central pivot in the system and is also
the organizer when refereeing a proposal. Thus, the buffer of each follower is filled
with requests that the leader must address. According to queuing theory, the arrival
rate for the followers i is λsi (i = 1, 2, 3, . . . ,m). Requests from follower i follow the
probability σsi (i = 1, 2, 3, . . . ,m) to the leader, and their arrival rate at the leader
λsL is defined in Equation (1):

λsL =
rw2

rw1 + rw2

×
m∑
i=1

σsiλsi. (1)

According to Little’s law [26], we consider the average waiting time for one
follower in Equation (2):

W =
1

ν − λ
. (2)

We assume that a client submits a request to the server and does not submit
another request until the result is returned to the client. Therefore, the number
of operations NsL, as shown in Equation (3), means that the operation has passed
through the leader. The number of operations assigned to the followers is denoted by
Nsi in Equation (4). We also assume that each request occupies identical bandwidth
and that bandwidth capacity is limited, which means that the total bandwidth used
between the clients and followers during a given interval should be less than the
followers could provide in practice. We apply the constraint shown in Equation (5):



1192 P. Hao, L. Hu, J. Jiang, X. Che

NsL = λsL ×W, (3)

Nsi = λsi ×W, (4)

c1 ×Nsi ≤ c2. (5)

4.2 General Model

In practice, failure cases are considered in the general model. This model supple-
ments the simple model and is closer to reality. There are three types of failure:
physical failure, leader-caused failure and client-caused failure. The physical failure
rate fl denotes the link error rate. The leader’s failure rate fsL results in reelection.
When the leader is out of control, the followers first terminate their connections with
the clients. Then, the followers vote for the role of a new leader. Each follower has
at least one connection with the others. The votes are marked with zxid to represent
the transaction state, and the votes also have the server id that reflects the source.
When a server gets a majority of votes (more than half), that server is chosen to be
the new leader and reestablish the coordination process in ZooKeeper. The system
may experience less throughput during the voting process. In addition, we account
for the client’s failure rate γ, which reduces the departure rate µ. The follower
may cause the failure, but it will not influence the performance. Information about
a client’s session is stored by both the followers and the leader. When a follower
failure occurs, the connected client receives a message from the follower or the TTL
times out. Then, the client chooses a new active follower from the set of followers.
Recovery from this type of failure is both simple and fast. Therefore, we ignore it in
the remainder of this paper. Due to the coordination process, failure will be detected
whatever it occurs among the leader, its followers, and their clients. Assuming that
the starting time is x = 0, we define the number of operations assigned to followers
in Equation (6):

Nsi = λ×W −
∫ x=t

x=0

γ dx−
∫ x=t

x=0

fl dx− fsL × λsi ×W. (6)

The two types of requests, read and write, reflect the different coordination
process shown in Figure 1. Therefore, we must compute the number of packets for
the two request types differently. The number of packets D(x) (x = t1, t2, t3, . . . , tn)
in an interval is defined in Equation (7). Using the number of packets D(x), the
rate of transmission Sx can be measured indirectly, as shown in Equation (8):

D(x) =
rw2

rw1 + rw2

×Nsi × [6 + 3× (M − 2)] +
rw1

rw1 + rw2

×Nsi × 2, (7)

Sx =
dD(x)

dt
. (8)



A Stochastic Adjustment Strategy for Coordination Process in Distributed Networks 1193

Then, we introduce the Markov birth-death process to describe the dynamic
client changes. Assumed that λn−1 = λn−2 = . . . = λ0, and µn = µn−1 = . . . = µ1.
Then, the probability of an empty queue can be derived under the constraint of∑
P = 1 as shown in Equation (9):

P0 =
1

1 +
∑∞

n=1 ρ
n
. (9)

The variable ns denotes the probability of success for completing the coordina-
tion process. Moreover, the bandwidth limit cmax should not be negligible. Fur-
thermore, if the type of request is read, then the M/M/1 queuing system transforms
into M/M/1/cmax during the read. However, the write type rarely reaches the up-
per bound of the bandwidth because of its order in the leader. Thus, we assume
that write type requests still use the M/M/1 queuing system. Then, we have the
following:

ns =
rw2

rw1 + rw2

× (1− fl)× (1− fsL)× (1− P rw1
0 )

+
rw1

rw1 + rw2

× (1− fl)× (1− fsL)× (1− P rw2
0 ). (10)

In order to simplify the probability of an empty queue, we transform the P0

as (10) into (11) using the queuing theory of M/M/1.

P rw1
0 =

∞∑
n=1

Pn = 1− P0 = 1− ρ. (11)

Then, we separate the formula (10) into two parts according to the different types
of requests. By using the simplified formulation (11), we conclude the probability
of success for completing the type of request write in Equation (12):

ns1 =
rw2

rw1 + rw2

× (1− fl)× (1− fsL)× ρ. (12)

The probability of an empty queue for the type of request read obey with the
theory of M/M/1/cmax, and the probability in (10) is simplified into (13). Thus, the
probability of success for completing the type of request read is computed as

P rw2
0 = ρi × 1− ρ

1− ρcmax+1
(i = 0, 1, 2, . . . , cmax), (13)

ns2 =
rw1

rw1 + rw2

× (1− fl)× (1− fsL)× 1− ρ
1− ρcmax+1

. (14)

Next, we consider how to achieve the load balancing in the system. More specifi-
cally, the follower is mainly responsible for dealing with the requests from the clients.
Due to the increasing number of requests, we assume the leader is mainly responsible



1194 P. Hao, L. Hu, J. Jiang, X. Che

for the decision part without receiving the requests directly from the client. Thus,
we define the capacity of followers and leader, respectively. We choose the met-
rics to give a comprehensive understanding of the capacity of the followers in (15),
which including the CPU idleness V1, the surplus storage space V2, and the surplus
bandwidth of access for the server V3. Then, we set the weights k1, k2, and k3 for
the three metrics. Specific to ZooKeeper, the capacity for dealing with the requests
would mainly influence the CPU, the storage for requests would mainly influence the
memory metric, and the bandwidth would be used for communication and delivery.
Thus, we take the three important metrics and set the weight of them almost the
same. The constraint of the bandwidth is shown in Equation (16), which defines
the minimal surplus bandwidth.

FWsi = k1 × V si
1 + k2 × V si

2 + k3 × V si
3

(k1 + k2 + k3 = 1, V si
1 ∈ (0, 1), V si

2 ∈ (0, 1), V si
3 ∈ (0, 1)), (15)

min(V si
3 ) =

c2 −Nsi × c1
c2

. (16)

Load balancing is the global theory for evaluating the system. For the assign-
ment of workload, the regulation is to distribute jobs to the servers according to
the capability. If the server has a higher capability, it could do more work than the
servers which have lower capability. This arrangement can achieve the balance for
the system, and such that it could improve the utilization of the resource. Thus, we
give the formula (17) as follows:

Nsi

FWsi

≈ Nsj

FWsj

. (17)

The system maintains the state shown in Equation (17) to achieve the best use of
the resources for each server. We observe the indicator b1 and show the relative load
of follower i in (18). When b1 exceeds its upper limit, bound1, the current number
of servers in the ZooKeeper cluster is insufficient to service the requests. From a
follower viewpoint, the cluster needs to scale as the number of requests increases.
Otherwise, the performance will degrade:

b1 =
Ns

Nsi × FWsi

≥ bound1. (18)

The definition for the leader capacity is similar to that of the followers. We
apply the constraints shown below in Equations (19) and (20):

LWsL = k4 × V sL
1 + k5 × V sL

2 + k6 × V sL
3

(k4 + k5 + k6 = 1, V sL
1 ∈ (0, 1), V sL

2 ∈ (0, 1), V sL
3 ∈ (0, 1)), (19)

min(V sL
3 ) =

c3 −m× c2
c3

. (20)



A Stochastic Adjustment Strategy for Coordination Process in Distributed Networks 1195

By checking the relative load of the leader b2, as shown in Equation (21), we
judge the timing for adjusting the deployment with b1. For example, if we add
some quantity of followers, the leader load will increase as the number of requests
increases. A heavy leader load results indirectly in slower responses. When the
load exceeds the leader’s upper limit bound2, the number of followers in the system
should be correspondingly reduced.

b2 =
D(x)

LWsL × b1
≥ bound2 (21)

Through the formulations in Equations (18) and (21), whether to scale the
system and when to adjust the followers are the problems that we must address. We
synthesize two aspects to consider this problem. After trading off the two aspects,
we obtain the formulation in Equation (22):

b3 = k7 × b1 + k8 × b2

(k7 + k8 = 1, b1 ∈ (0, 1), b2 ∈ (0, 1)) (22)

where the threshold is represented by b3. The case in which bound1 and bound2
are both achieved is out of our scope because that condition denotes that the leader
capacity needs to be improved to guarantee the performance. Instead, we focus on
the utility when sufficient resources are available. When b3 is achieved, the number
of followers should be adjusted, either maintained, increased or decreased. The
adjustment of followers could be simply described as follows:

b3 =


increase the number of followers, beyond bound1 && equals b3

keep status,

decrease the number of followers, beyond bound2 && equals b3

(23)

5 NUMERICAL RESULTS

In this section, we use a realistic platform to demonstrate follower reassignment
as the basis for load balancing. We observe the three metrics of load balancing
and the throughput in two related deployments. Then, we compute the relative
loads for the followers and the leader to explore the threshold b3. Complementary
to the theoretical analysis, the experimental results both allow us to gain a better
understanding of the reassignment operation and provide guidance to determine
approaches which will improve the system’s performance and utility.

5.1 Experimental Setup

Under the ZooKeeper platform, we evaluate our model using a random local area
network topology, which means that we pick the servers randomly from the set of
local network. Every server runs on Intel Core i3 and has 2 GB of RAM. We assume



1196 P. Hao, L. Hu, J. Jiang, X. Che

that the number of servers is s and configure three different deployments (‘s = 3’,
‘s = 5’, and ‘s = 7’) for the experiment. Then, we could make the adjustment
from two groups, one group is between ‘s = 3’ and ‘s = 5’, the other is between
‘s = 5’ and ‘s = 7’. We execute each experiment 50 times to obtain average values,
and the experiments mainly involve the actions both the leader and followers take
part in. The arrival rate increases by a factor of 10 until it reaches the upper
limit of the servers’ capacity. Although the load of each server reflects the latency,
we still set an acceptable latency range of 100 ms. Additionally, in this paper, we
define the latency that starts when the clients submit a request and ends when the
clients obtain the results from the followers. The ramp-up period is set at 1s, during
which each factor is monitored until it reaches a stable state. We intentionally set
the weights k1:k2:k3 = 4:3:3 for evaluating the followers’ loads, and to represent
the similar importance for the three metrics, as well as that of the leader. The
upper limit of the bandwidth c2 for the followers is fixed, and the upper limit for
the leader c3 is also fixed. The metrics for the failure part (e.g. the client’s failure
rate γ, the link error fl , the leader’s failure rate fsL ) are set as the realistic pattern
rather than the assumed value. Thus, the throughput S1 and the number of packets
D(x) could be derived. Meanwhile, the related information of CPU, memory and
bandwidth would be required through monitoring with the input metrics, and the
adjustment is performed after computing the bound.

5.2 Evaluation Results

5.2.1 The Analysis for Followers

We first demonstrate the trend of three metrics to evaluate the server loads as
the number of requests from each follower increases: CPU utilization (%), memory
utilization (%), and network bandwidth (%). In addition, the throughput measures
the number of requests in a millisecond.

The definition of x axis means that the number of requests would be submitted
to the system. The results in y axis are collected from each follower and computed
averagely. The results, presented in Figure 3 a), show that the trend of follower’s
CPU utilization as the number of requests increases. A similar trend occurs not only
in the deployment as fewer servers but also more servers. The CPU utilization trend
is related to the follower workloads. Thus, the CPU utilization increases with the
heavier load of followers accordingly. However, the two deployments are different
that more followers cause the CPU utilization of each follower to decrease with the
same number of requests. When the number of requests reaches a certain point, the
followers nearly achieve maximal capacity. The utility of the CPU in the system
approximately achieves its extreme. This is reason for scaling the system to serve
more requests.

In Figure 3 b), the available memory is sufficient for the experiment. The trend
of memory utilization also changes with the number of requests. The more followers
there are, the total required storage space could be divided more. Moreover, the



A Stochastic Adjustment Strategy for Coordination Process in Distributed Networks 1197

a) The trend of CPU utilization for the followers

b) The trend of Memory utilization for the followers



1198 P. Hao, L. Hu, J. Jiang, X. Che

c) The trend of Network bandwidth for the followers

d) The trend of Throughput for the followers

Figure 3. The capacity of the follower with the increasing number of requests



A Stochastic Adjustment Strategy for Coordination Process in Distributed Networks 1199

trend when ‘s = 3’ changes more obviously due to the more requests of each follower.
However, the dynamic states of network bandwidth are not only related to the
number of requests, but also influenced by the network condition (e.g. congestion).
The finite bandwidth capacity is one of the main reasons that caused the congestion.
Another is the queuing length of each follower. Thus, as shown in Figure 3 c),
when the number of requests is within a certain range, the utilization of network
bandwidth expands as the number of requests increases, and the same trend occurs
in network I/O. However, when the number of requests exceeds the bandwidth
capacity, a decreasing trend appears due to the capacity limit. Moreover, as this
trend approaches zero, the system breaks down. The peak point for the deployment
‘s = 3’ comes up earlier than the other two deployment due to the more number of
requests from followers, and it also means that the limit also appears earlier. The
deployment ‘s = 5’ and ‘s = 7’ has the similar tendency in this figure. However, the
average number of requests for ‘s = 7’ is less than the deployment ‘s = 5’, and the
limit point is almost the same mainly due to the conflicting requests.

With the increasing number of requests, the trend of the throughput is shown
in Figure 3 d). The figure shows that the throughput decreases when the number of
requests is 1 000, 2 000 and 5 000. After that, the trend gradually stabilizes. This
result is indirectly related to the resource utilization. When the received load is well
below the capacity, the throughput is high. As the load of followers increases, the
throughput decreases sharply. Firstly, the deployment ‘s = 3’ has not been achieved
the turning point, the throughput keeps higher because of the largest number of
requests. Then, the throughput would decrease with some reasons (e.g. the capacity
of servers, congestion, and the conflicting requests). Thus, the deployment ‘s = 7’
has the highest throughput after the first point of the deployment ‘s = 3’ until the
limit point. When the number of requests achieves the limit point, the deployment
‘s = 5’ and ‘s = 7’ would converge to similar throughput.

In summary, the first time each experiment executes, there are small deviations
due to the adaptive phase. The four graphs with dotted points are superimposed
to simply analyze the capacities of followers and the system’s performance under
the three deployments. We can make the following conclusions from the findings
above. First, CPU utilization is steady in each experiment. Next, memory utiliza-
tion fluctuates within 20 % of full utilization. Bandwidth utilization is lower than
memory utilization, which means that storage is more likely to be a bottleneck than
the bandwidth in ZooKeeper.

In the ‘s = 3’ deployment, the system can serve approximately ten thousand
requests, but it appears to reach a non-working state when the number of requests
exceeds ten thousand. This result indicates that a bound exists in ZooKeeper when
served requests beyond the extreme point, and the adjustment of deployment should
be considered. The deployment of ‘s = 5’ has more servers to deal with the re-
quests. Therefore, the limit expands to 12 000 requests the same as the deployment
‘s = 7’. Although the deployment ‘s = 5’ and ‘s = 7’ has the similar extreme
point, the throughput for the deployment ‘s = 7’ has the advantage than the de-
ployment ‘s = 5’, as shown in Figure 3 d). When the capacity of the follower in



1200 P. Hao, L. Hu, J. Jiang, X. Che

the system is exceeded, an adjustment must be considered to guarantee the perfor-
mance.

5.2.2 The Analysis for the Leader

The results presented in Figure 4 show the relative load of the leader using the
three metrics. The x axis represents for the number of requests that the leader
received. With regard to CPU utilization, the trend for the leader is almost similar.
The deviations between the three deployments in Figure 4 a) are caused by the
overhead, which produces through the different numbers of requests. With the
number of followers increasing, the utilization of CPU is higher gradually. Thus,
the deployment ‘s = 7’ has the highest utilization than the other two deployment.
For the memory utilization in Figure 4 b), the ‘s = 7’ deployment needs more space
than the ‘s = 5’ deployment, and the ‘s = 5’ deployment needs more space than the
‘s = 3’ deployment. The situation is directly opposite to the trend of followers. From
the leader’s point of view, the reason for this disparity is that the number of followers
results in the different total number of requests. Thus, this situation means that the
leader must maintain more information to manage and control the system. With the
requests swarming in, congestion becomes severe and leads to a lower bandwidth
utilization as shown in Figure 4 c). Thus, the deployment ‘s = 7’ has the lower
utilization. When the number of requests from each follower achieves 5 000, the two
deployments ‘s = 5’ and ‘s = 7’ would reach the limit, and the derivation between
the two deployments is around 0.5 % utilization. When the number of requests from
each follower achieves 10 000, the bandwidth for deployment ‘s = 5’ and ‘s = 7’ have
slight increasing due to the higher number of requests. The deployment ‘s = 5’ has
risen around 0.04 %, and the deployment ‘s = 7’ has risen around 0.02 %. Thus, the
swarming does not influence much to the limit situation.

In Figure 4 d), firstly, the deployment ‘s = 5’ has higher throughput than the
deployment ‘s = 3’ due to the higher number of requests. Then, the throughput
would decrease because of the increasing load of leader, and the deployment ‘s = 7’
decreases sharply from the number of requests 1 000 to the number of requests
2 000. Until the limit point which the number of requests from each follower is
5 000, the deployment ‘s = 5’ and ‘s = 7’ has similar throughput. Thus, when we
are ready to increase the number of followers, we also need to consider the leader‘s
state. Moreover, when the leader approaches its breakdown point, it also influences
overall system performance. Thus, the adjustment timing should consider the two
conflicting roles as follows.

5.2.3 The Adjustment for the System

We first consider maximizing the utility in this paper. Load balancing is intended
to take full advantage of the resource rather than to only consider the limits of
hardware capacity. For dealing with more requests, the system needs to expand
the cluster of followers. However, the more burden on the leader would cause the



A Stochastic Adjustment Strategy for Coordination Process in Distributed Networks 1201

a) The trend of CPU utilization for the leader

b) The trend of Memory utilization for the leader



1202 P. Hao, L. Hu, J. Jiang, X. Che

c) The trend of Network bandwidth for the leader

d) The trend of Throughput for the leader

Figure 4. The capacity of the leader with the increasing number of requests



A Stochastic Adjustment Strategy for Coordination Process in Distributed Networks 1203

Figure 5. The tendency of the bound as the number of requests increases in ZooKeeper

worse performance. Thus, we combine the two conflicting situations to adjust the
deployment. The timing for adjust could depend on various needs of applications,
such as the requirement of throughput, bandwidth and memory.

Figure 5 depicts the trend of bound3, which is derived from bound1 and bound2.
We set the proportions of k7 and k8 according to the proportions computed from
the communication steps between the follower and the leader. During the complete

Figure 6. The throughput of the leader and followers before and after adjustment



1204 P. Hao, L. Hu, J. Jiang, X. Che

experimental procedure, bound1 of the followers decreases as the system scales be-
cause of the increasing load. Then, the bound2 of the leader also decreases because
of the realistic platform. Under the same number of requests, bound1 is smaller
when there are fewer followers. When the number of requests is below 5 000, the
trend of the ‘s = 5’ and ‘s = 7’ deployment decreases more sharply than that of
the ‘s = 3’ deployment. As the deployment of ‘s = 3’, before the 5 000-request
point, the number of followers could also be decreased. The trend remains stable,
decreasing gradually between 5 000 requests and the extreme. This result denotes
the timing that the resource utility achieves optimality. Thus, we assume that our
actions should be taken after the extreme. Namely, the extreme is the point at which
to adjust the followers to maintain a specific throughput volume. For example, the
strategy could adjust from the deployment ‘s = 3’ to ‘s = 5’ as shown here. The
similar adjustment could be from the deployment ‘s = 5’ to ‘s = 7’. Note that the
specific adjustment strategy should be further studied according to different objec-
tives. By eliciting the leader’s bound, bound2, and the followers’ bound, bound1, we
deduce the threshold bound3 ≈ 5.30 for ZooKeeper in our cases. Figure 6 compares
the throughput before and after the adjustment. The result demonstrates that the
leader and followers are still in the steady phase and that the performance has been
improved through the adjustment.

6 CONCLUSIONS

The research here provides a novel perspective for the analysis of ZooKeeper per-
formance. In the emerging large platform, coordination services offer more capacity
for the new challenge. In this paper, we developed a stochastic model to describe
the coordination process. Based on this model, we derived an optimal strategy for
adjusting server deployments in ZooKeeper and observed the results using a real en-
vironment. The experimental results demonstrated the trend of various server met-
rics, and the results revealed the sensitivity of each metric with providing insights for
control schemes. Meanwhile, the influences of the performance we quantified could
aid in making deployment decisions. Considering the conflicting roles involved in
load balancing, thresholds are given to maximize the resource utilization. In the fu-
ture, we can potentially improve system scalability, reliability and availability based
on specific multimedia applications using the distributed platform.

Acknowledgement

This work is funded by: National Key R & D Plan of China under Grant No. 2017Y-
FA0604500, National Sci-Tech Support Plan of China under Grant No. 2014BAH02-
F00, by National Natural Science Foundation of China under Grant No. 61701190, by
Youth Science Foundation of Jilin Province of China under Grant No. 20160520011-
JH and 20180520021JH, by Youth Sci-Tech Innovation Leader and Team Project of
Jilin Province of China under Grant No. 20170519017JH, by Key Technology Inno-
vation Cooperation Project of Government and University for the whole Industry



A Stochastic Adjustment Strategy for Coordination Process in Distributed Networks 1205

Demonstration under Grant No. SXGJSF2017-4, and by Key Scientific and Techno-
logical R & D Plan of Jilin Province of China under Grant No. 20180201103GX.

REFERENCES

[1] Kreutz, D.—Ramos, F. M. V.—Veŕıssimo, P. E.—Rothenberg, C. E.—
Azodolmolky, S.—Uhlig, S.: Software-Defined Networking: A Comprehen-
sive Survey. Proceedings of the IEEE, Vol. 103, 2015, No. 1, pp. 14–76, doi:
10.1109/JPROC.2014.2371999.

[2] Sahoo, J.—Salahuddin, M. A.—Glitho, R.—Elbiaze, H.—Ajib, W.: A Sur-
vey on Replica Server Placement Algorithms for Content Delivery Networks. IEEE
Communications Surveys and Tutorials, Vol. 19, 2017, No. 2, pp. 1002–1026, doi:
10.1109/COMST.2016.2626384.

[3] Hunt, P.—Konar, M.—Junqueira, F. P.—Reed, B.: ZooKeeper: Wait-Free
Coordination for Internet-Scale Systems. USENIX Annual Technical Conference,
Vol. 8, 2010, p. 9.

[4] Apache HBase. Availaible at: http://hbase.apache.org/.

[5] Marz, N.: Storm: Distributed and Fault-Tolerant Realtime Computation. Available
at: https://www.storm-project.net/, 2015.

[6] Cai, M.—Liang, C.—Chen, W.—Su, H.: Realtime Vehicle Routes Optimization
by Cloud Computing in the Principle of TCP/IP. 10th International Conference on
Service Systems and Service Management (ICSSSM ’13), IEEE, 2013, pp. 113–118,
doi: 10.1109/ICSSSM.2013.6602650.

[7] Goel, L. B.—Majumdar, R.: Handling Mutual Exclusion in a Distributed
Application Through ZooKeeper. International Conference on Advances in Com-
puter Engineering and Applications (ICACEA ’15), IEEE, 2015, pp. 457–460, doi:
10.1109/ICACEA.2015.7164748.

[8] Skeirik, S.—Bobba, R. B.—Meseguer, J.: Formal Analysis of Fault-Tolerant
Group Key Management Using ZooKeeper. 2013 13th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid), 2013, pp. 636–641, doi:
10.1109/CCGrid.2013.98.

[9] Okorafor, E.—Patrick, M. K.: Availability of JobTracker Machine in
Hadoop/MapReduce ZooKeeper Coordinated Clusters. Advanced Computing, Vol. 3,
2012, No. 3.

[10] Jiang, C.—Ding, Z.—Wang, P. et al.: An Indexing Network Model for Infor-
mation Services and Its Applications. 2013 IEEE 6th International Conference on
Service-Oriented Computing and Applications, 2013, pp. 290–297.

[11] Kalantari, B.—Schiper, A.: Addressing the ZooKeeper Synchronization Ineffi-
ciency. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R. K., Sinha, P. (Eds.):
Distributed Computing and Networking (ICDCN 2013). Springer Berlin Heidelberg,
Lecture Notes in Computer Science, Vol. 7730, 2013, pp. 434–438.

[12] Junqueira, F. P.—Reed, B. C.—Serafini, M.: Zab: High-Performance Broad-
cast for Primary-Backup Systems. 2011 IEEE/IFIP 41st International Confer-

https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/COMST.2016.2626384
http://hbase.apache.org/
https://www.storm-project.net/
https://doi.org/10.1109/ICSSSM.2013.6602650
https://doi.org/10.1109/ICACEA.2015.7164748
https://doi.org/10.1109/CCGrid.2013.98


1206 P. Hao, L. Hu, J. Jiang, X. Che

ence on Dependable Systems and Networks (DSN ’11), 2011, pp. 245–256, doi:
10.1109/DSN.2011.5958223.

[13] Pham, C. M.—Dogaru, V.—Wagle, R. et al.: An Evaluation of ZooKeeper for
High Availability in System S. Proceedings of the 5th ACM/SPEC International Con-
ference on Performance Engineering (ICPE ’14), 2014, pp. 209–217.

[14] Abdel-Rahman, M. J.—Mazied, E. D. A.—Teague, K. et al.: Robust Controller
Placement and Assignment in Software-Defined Cellular Networks. 26th International
Conference on Computer Communication and Networks (ICCCN ’17), IEEE, 2017,
pp. 1–9.

[15] Marotta, A.—D’Andreagiovanni, F.—Kassler, A.—Zola, E.: On the En-
ergy Cost of Robustness for Green Virtual Network Function Placement in 5G Vir-
tualized Infrastructures. Computer Networks, Vol. 125, 2017, pp. 64–75.

[16] Chen, J.-B.—Chen, C.-C.: Using Particle Swarm Optimization Algorithm in Mul-
timedia CDN Content Placement. Fifth International Symposium on Parallel Ar-
chitectures, Algorithms and Programming (PAAP ’12), IEEE, 2012, pp. 45–51, doi:
10.1109/PAAP.2012.15.

[17] Jayasundara, C.—Nirmalathas, A.—Wong, E.—Chan, C.: Improving
Energy Efficiency of Video on Demand Services. IEEE/OSA Journal of Opti-
cal Communications and Networking, Vol. 3, 2011, No. 11, pp. 870–880, doi:
10.1364/JOCN.3.000870.

[18] Llorca, J.—Tulino, A. M.—Guan, K. et al.: Dynamic In-Network Caching for
Energy Efficient Content Delivery. INFOCOM, 2013, pp. 245–249, doi: 10.1109/IN-
FCOM.2013.6566772.

[19] Choi, N.—Guan, K.—Kilper, D. C.—Atkinson, G.: In-Network Caching Ef-
fect on Optimal Energy Consumption in Content-Centric Networking. 2012 IEEE
International Conference on Communications (ICC ’12), 2012, pp. 2889–2894, doi:
10.1109/ICC.2012.6364320.

[20] Lange, S.—Gebert, S.—Zinner, T. et al.: Heuristic Approaches to the Controller
Placement Problem in Large Scale SDN Networks. IEEE Transactions on Network
and Service Management, Vol. 12, 2015, No. 1, pp. 4–17.

[21] Ramesh, S.—Rhee, I.—Guo, K.: Multicast with Cache (MCache): An Adap-
tive Zero-Delay Video-on-Demand Service. IEEE Transactions on Circuits and Sys-
tems for Video Technology, Vol. 11, 2001, No. 3, pp. 440–456, doi: 10.1109/INF-
COM.2001.916690.

[22] Guo, M.—Ammar, M. H.—Zegura, E. F.: Selecting Among Replicated Batching
Video-on-Demand Servers. Proceedings of the 12th International Workshop on Net-
work and Operating Systems Support for Digital Audio and Video (NOSSDAV ’02),
2002, pp. 155–163, doi: 10.1145/507670.507692.

[23] Chang, C. W.—Huang, G.—Lin, B. et al.: LEISURE: Load-Balanced Network-
Wide Traffic Measurement and Monitor Placement. IEEE Transactions on Parallel
and Distributed Systems, Vol. 26, 2015, No. 4, pp. 1059–1070.

[24] Kim, H.-Y.: An Energy-Efficient Load Balancing Scheme to Extend Lifetime in
Wireless Sensor Networks. Cluster Computing, Vol. 19, 2006, No. 1, pp. 279–283.

https://doi.org/10.1109/DSN.2011.5958223
https://doi.org/10.1109/PAAP.2012.15
https://doi.org/10.1364/JOCN.3.000870
https://doi.org/10.1109/INFCOM.2013.6566772
https://doi.org/10.1109/INFCOM.2013.6566772
https://doi.org/10.1109/ICC.2012.6364320
https://doi.org/10.1109/INFCOM.2001.916690
https://doi.org/10.1109/INFCOM.2001.916690
https://doi.org/10.1145/507670.507692


A Stochastic Adjustment Strategy for Coordination Process in Distributed Networks 1207

[25] Bui, H.—Johnson, A.—Jacob, R. et al.: Multipath Load Balancing for M ×
N Communication Patterns on the Blue Gene/Q Supercomputer Interconnection
Network. 2015 IEEE International Conference on Cluster Computing (CLUSTER
2015), 2015, pp. 833–840, doi: 10.1109/CLUSTER.2015.140.

[26] Simchi-Levi, D.—Trick, M. A.: Introduction to Little’s Law as Viewed on Its 50th

Anniversary. Operations Research, Vol. 59, 2011, No. 3, p. 535.

Pingting Hao received her B.E. degree in 2013 from Jilin Uni-
versity. She is currently pursuing her Ph.D. in the Department
of Computer Science, Jilin University, China. Her research in-
terests include distributed computing, content delivery networks
and software defined networks.

Liang Hu received his B.Sc. degree from the Harbin Institute of
Technology (HIT), Harbin, and M.Sc. and Ph.D. degrees from
the College of Computer Science and Technology, Jilin Univer-
sity (JLU), Changchun, China. He has been Professor since 2002
and Ph.D. supervisor since 2003 with the School of Jilin Univer-
sity. His current research interests include distributed comput-
ing, network computing and security, data security and privacy.

Jingyan Jiang received her B.E. degree in 2012 from Jilin Uni-
versity. She is currently pursuing her Ph.D. in the Department
of Computer Science, Jilin University, China. Her research in-
terests include distributed computing, multimedia networks and
software defined networks.

https://doi.org/10.1109/CLUSTER.2015.140


1208 P. Hao, L. Hu, J. Jiang, X. Che

Xilong Che received his M.Sc. and Ph.D. degrees in computer
science from Jilin University, in 2006 and 2009, respectively.
Currently, he is Associate Professor and Master Supervisor at the
College of Computer Science and Technology, Jilin University,
China. His current research areas are parallel and distributed
computing, machine learning, and related applications. He is
also a member of the IEEE and the corresponding author of this
paper.


