
Computing and Informatics, Vol. 37, 2018, 946–968, doi: 10.4149/cai 2018 4 946

OBJECT MAPPING IN THE OPC-UA PROTOCOL
FOR STATICALLY AND DYNAMICALLY TYPED
PROGRAMMING LANGUAGES

Piotr P. Nikiel

CERN
CH-1211 Geneva 23
Switzerland
e-mail: piotr@nikiel.info

Krzysztof Korcyl

Institute of Nuclear Physics PAN
ul. Radzikowskiego 152
31-342 Kraków, Poland
e-mail: Krzysztof.Korcyl@ifj.edu.pl

Abstract. Two or more object-oriented components located in networked com-
puters can form a distributed system to exchange information and execute meth-
ods. The most known approaches include object request broker architectures (e.g.
CORBA), messaging-service architecture (e.g. based on ZMQ or JMS) or some vari-
ant of Service Oriented Architecture (e.g. SOAP). One of new approaches in the
field is the OPC-UA protocol. While having common parts with all aforementioned
architectures, it brings very rich and extensible information modelling capabilities,
versatility and dynamic address space model, among others. This paper proposes
a mapping of information model (applicable in the OPC-UA protocol) into class
and object structure of an object-oriented programming language. Special atten-
tion is paid to whether given programming language is statically or dynamically
typed, with examples and applications in C++ for the former case and Python for
the latter. The study also covers the cases of using the proposed mapping at both
server- and client-side of OPC-UA software.

Keywords: Middle-ware, OPC-UA

Mathematics Subject Classification 2010: 94-A99

Object Mapping in the OPC-UA Protocol . . . 947

1 INTRODUCTION

There are many architectures and software technologies enabling data exchange
between software applications. In the software layering stack they are positioned
between a software layer devised to send or receive data (e.g. particular end-user
software application) and a layer that enables access to the communication medium
(e.g. operating system functions providing access to the network protocol stack or
a software library implementing HTTP client). Such a glue layer is often termed
“middle-ware”.

The software technologies, architectures and programming languages evolved
over the years and many new concepts became common, for example object orien-
tation, or common usage of programming languages running in virtual machines,
to name a few. In parallel there was a shift towards higher-level programming lan-
guages, which are less bound to specific execution environment architecture or even
completely independent from it. Middle-ware technologies followed the evolution,
profiting both from advancements in programming as well as in ubiquity of network-
oriented software, thanks to nowadays presence of the Internet almost everywhere.

Today the middle-ware technologies take part in all steps of data exchange, such
as:

• supporting varied data types, possibly including nested or otherwise aggregated
types, as well as types defined in run-time, and data serialization1 of these types,

• processing of serialized data such as timestamping, encoding, encryption or
checksum verification at the reception,

• ensuring guaranteed, timely and efficient data exchange, possibly notifying when
these conditions cannot be met,

• establishing and shutting down communication channels in varied communica-
tion patterns (e.g. one-to-one, one-to-many or other).

The consequences of abandoning the middle-ware layer seem to be quite serious.
Then some or most of its tasks have to be carried out by the application layer. The
obvious consequence is the lack of abstraction which such a layer would provide, so
the application layer would have to deal also with e.g. on-the-wire data encoding
concerns. Also modularity and portability would be affected, the former one by
not being able to rework data exchange mechanisms without touching the applica-
tion layer while the latter one by potentially being bound to the initially chosen
communication medium.

To take a practical example, let us imagine a system of one data publisher
and many receivers, for example: a system distributing currency quotes. A sim-
ple substitute for middle-ware solution could be e.g. publishing the data in plain

1 Serialization is a transformation of given data (e.g. a variable in a computer program)
to a stream of octets, such that it can be sent over network and restored at a remote
program to a representation which is identical to the original data.

948 P.P. Nikiel, K. Korcyl

text, with currency pairs in the consecutive lines, where each line would have the
currency pair identifier and the bid and ask prices, all comma-separated. An in-
terested receiver would connect to the publisher and wait for the delivery of one or
more lines of text. This already brings in many open questions starting from the
format of numbers (e.g., which decimal separator to use?) and lines (which newline
character(s) to use?) up to what happens when a receiver is interested only in one
currency pair? Does it have to receive all the pairs and ignore all but the one of the
interest?

Even bigger concern arises when the receiver has to automatically process the
data. In our example, the plain text is attractive to humans but no so much for
automated processing where it is not only redundant but also ambiguous. Assuming
some binary format helps to alleviate some issues but not all of them (e.g., when the
receiver is interested only in a part of the data). Generally, it is clear that a more
generic solution in middle-ware layer would be desired.

An improvement can be achieved when a generic data serialization approach
is used. Such an approach typically requires that the data format (often called
a protocol) is described beforehand in a supported notation. The description can be
then used to govern the behaviour of the data serializer and deserializer (e.g., the
serializer knows the offset of a given data field in the serialized message). More im-
portantly, such a description can be used to obtain programming language bindings
to data structures which are to be serialized.

There are many examples of such generic data serializers. One of the most known
is the Abstract Syntax Notation One (ASN.1) [1], commonly used as a workhorse
of many protocols like SNMP [2] and other. The notation used to describe the data
format has a well defined syntax covering any data format which bases on prim-
itive data types (Booleans, integers, etc.) or an aggregation of those (sequence,
set, etc.). The description written according to the ASN.1 notation can be used to
generate bindings (mappings) in many possible programming languages using the
ASN.1 compilers, such that a software developer just refers to field names in gen-
erated bindings and not to encoding-specific data. Interestingly, the ASN.1 makes
a distinction between the notation itself (being a description of exchanged informa-
tion) and particular encoding types which are specified in different documents [3].
Therefore one notation can be encoded using many possible ways, including binary
formats, XML and other.

A second example is a much newer generic data serializer called Google Protocol
Buffers [4]. The Google Protocol Buffers defines a message description format called
“proto files”. The description format lets define message types that an application
would use and then generate mappings for a number of supported programming
languages. Such a mapping not only provides an entry point for the programming
language but also contains everything which is needed to output or input data in
a serialized, binary form.

One must mention that some programming languages support serialization as
a built-in feature. The Java programming language with its Java Virtual Machine is
a notable example [5]. A significant improvement with regard to both examples cited

Object Mapping in the OPC-UA Protocol . . . 949

above (the ASN.1 and the Google Protocol Buffers) is that in order to serialize given
object, only the information from its class is needed, without any prior preparation
of external description of the data format2. In practice it has an advantage of
being able to exchange information as objects between systems in most pristine
way with no additional cost in encoding and serialization. However the downside is
that the mechanism is specific to the Java programming language and the usage of
such serialized objects from another programming language clearly falls beyond the
intended purpose of the mechanism.

All three examples shown above illustrate how to interface an important part of
middle-ware layer – data serialization and encoding – to a programming language
of choice. However nothing was said yet on factual transport of serialized data from
one system to another.

Message oriented middle-ware (often abbreviated as MOM) is one of the most
common paradigms used in the data exchange between systems. The bottom line
of message orientation is that the visible interface from the application layer is
expressed in terms of messages having properties like source identifier, destina-
tion identifier(s), validity, priority, persistence settings and among others, payload.
The payload is where the actual information is to be placed, and most gener-
ally it can be seen as an array of octets(bytes). The payload is where higher
level data is supposed to be placed after serialization. Therefore combining the
aforementioned data serializers with a message oriented middle-ware form a pow-
erful combination which can transport high level data from one application to
another while hiding away details of network technology or data encoding con-
cerns.

A common feature of message oriented middle-ware is that it supports many
communication patterns like one-to-one, one-to-many, many-to-many, and others.
As a consequence, many data exchange problems can be solved efficiently, e.g. in
the aforementioned example of currency quotes distribution, using one-to-many com-
munication pattern, only one message publication would be sufficient to update all
interested receivers.

There are many notable examples of message oriented middle-ware. One can
imagine using UDP/IP datagrams through the means of socket API (e.g. BSD sock-
ets) with some data serializer as a very basic approach. In the recent years, Ze-
roMQ [6] gained wide interest as a general purpose distributed messaging library,
with a focus on the performance and support for diversified communication pat-
terns. When coupled with the aforementioned Google Protocol Buffers (or another
general purpose data serializer), the two offer a powerful message-oriented data ex-
change solution. In Java-related technologies, the state-of-the-art approach uses
the Java Message Service [7], abbreviated as JMS. The JMS itself stays as an ab-
straction layer on concrete distributed messaging implementation, with support for
many open-source and commercial messaging solutions. Taking into account Java’s

2 The class must implement java.io.Serializable interface so that this mechanism could
work.

950 P.P. Nikiel, K. Korcyl

support for built-in serialization, the JMS delivers a straighforward approach for
exchanging high level data (Java objects) out-of-the-box.

Message oriented middle-ware is not the only paradigm for data exchange be-
tween software systems. Object request broker architectures (abbreviated ORB)
take a completely different approach, often termed “distributed object” paradigm.
The primary difference is that the ORB approach looks at the problem from the per-
spective of (remotely placed) objects rather than from the perspective of message
circulation. The basic role of an ORB is letting interaction between the objects (e.g.
calling their methods) no matter where they are - such a feature is called “location
transparency”. To illustrate how this paradigm might be used for the data exchange
between software systems, we can imagine an object A in a system that wants to
share data and an object B in a system that wants to obtain the data. In such
a configuration, the object B might (“remotely”) execute a method “getData()” on
the remote object A, obtaining the data as a value returned from such a call.

One of the most notable examples of ORB architectures is the Common Object
Request Broker Architecture [8], often abbreviated “CORBA”. CORBA requires
that interfaces of the interacting objects are specified in an Interface Definition
Language, abbreviated IDL. A source file in IDL language is then passed to IDL
compiler which generates stub and skeleton code3 in a chosen programming language.
The generated stub, when called upon, is able to pass the call request to a remote
object where the factual implementation gets executed.

One of the primary deficits of CORBA as a data exchange solution is that it is
focused around objects interaction (i.e. passing method invocations remotely) and
not around data exchange per se. It is easy to notice CORBA advantages when
it comes to one-to-one, synchronous communication. However many data exchange
problems require one-to-many communication which although possible, does not
fit CORBA architecture well. Publish-subscribe communication pattern of course
can be implemented in CORBA (e.g. following object-oriented publish-subscribe
design pattern, also called observer design pattern [9]), but its asynchronous ex-
ecution (not to slow down the publisher by clients) requires advanced CORBA
mechanisms and complex designs. In these factors it is inferior to message-oriented
solutions.

WebServices is a more recent paradigm, covering a big number of specific proto-
cols, technologies and software products, like XML-RPC or SOAP. Their common
part is profiting from the design choices that were (and still are) responsible for
rapid growth of the internet: HTTP, text-based data encoding like XML or JSON
and openness of standards. Using XML-RPC or SOAP with a language binding
compiler in fact enables to replicate the distributed-object paradigm, known e.g.
from CORBA. The XML and JSON allow data exchange with unlimited struc-
turing features, though the overhead of text based data to its binary counterpart
cannot be ignored. It is one of the reasons for which better suited protocols are cho-

3 In CORBA terminology, stub is the caller’s interface while skeleton is the callee’s
interface.

Object Mapping in the OPC-UA Protocol . . . 951

sen when performance or smaller foot-print (e.g. for embedded applications) mat-
ter.

One of the newest additions to the catalogue of the data exchange solutions is
the OPC Unified Architecture, abbreviated as OPC-UA [10]. OPC-UA is a stan-
dard covering wide span of aspects of data exchange between software applica-
tions, including support for extensible and rich information models, notifications,
support for rich meta-data and multiple encoding manners (including binary and
XML).

Rich information model of OPC-UA, covering well beyond object oriented se-
mantics, is especially attractive for its application in data exchange software written
in high-level object-oriented programming language. Therefore it is interesting to
study possible mappings and bindings between application’s classes and objects
and their representations exposed to remote systems communicated using OPC-
UA. Some inspiration to this study comes from CORBA architecture as well as
from other types of mappings in object-oriented programming languages, e.g. from
object-relational mappings for database interfacing or from XSD-CXX project pro-
viding XML Schema to C++ data binding compiler [11]. The work presented in this
paper has its roots in the previously published research on model-based generation
of OPC-UA servers [12, 13].

The primary application of the mappings studied in the paper is for a distributed
control system of the ATLAS Experiment, one of experiments at the Large Hadron
Collider at CERN in Geneva, Switzerland. The OPC-UA is used in the ATLAS
Experiment for the data exchange between software components deployed on nodes
of the distributed system. The system is currently composed of about 150 machines
running Linux; the majority of them run at least one OPC-UA server delivering
data obtained from varied types of hardware. A particular challenge of such a sys-
tem is that it integrates numerous types of data sources; each data source type has
different interface (i.e. schema of published information), different amount of data
published per unit of time and might be implemented in a different software tech-
nology (many of the integrated components are made by external contributors or
external companies). The OPC-UA has been selected as the protocol of choice for
component integration because of its high-level object-oriented information model
and wide adoption in industry; at the same time it enables to establish much weaker
coupling between systems than e.g. CORBA, enabling to easily integrate diversified
nodes and providing a lot of flexibility.

The mapping approaches studied in the paper attempt to fill the gap between
high-level object-oriented programming languages and middle- ware protocols with
rich information modelling capabilities. The study focuses on implementation of
mapping known from the ORB-like architecture to the new standard OPC-UA.
The additional novelty is that the process of mapping is carried out fully dy-
namically (if permitted by the programming language), without a priori know-
ledge of exposed object interfaces and type definitions. Few examples of object-
oriented systems are given for considerations of practical aspects of proposed ap-
proaches.

952 P.P. Nikiel, K. Korcyl

2 OPC-UA INFORMATION MODEL
AND ITS OBJECT-ORIENTED ASPECTS

Information exposed by an OPC-UA server is organized as a graph [10]. The vertices
of the graph are called nodes while the edges are called references. Each node is
assigned a type, one of: Object, ObjectType, Method, Variable, VariableType,
ReferenceType, View and it also has an address. There are some built-in nodes, e.g.
the root node symbolizing an entry point to the OPC-UA address space exposed by
the server.

A reference (being graph’s edge) may be placed only between two nodes. Each
reference has a type, either one of built-in OPC-UA types (e.g. HasComponent,
HasTypeDefinition) or a custom reference type.

Let us take a simple example of an OPC-UA address-space exposing just one
object called “sensor1” of a class “Sensor”, having two fields: “id” and “value”
and a method “calibrate”. Such an address-space would have graph representation
according to the OPC-UA information model as in the Figure 1.

Object

sensor1

Variable

sensor1.id

Variable

sensor1.value
ObjectType

Sensor

HasTypeDefinition

Built-in obj

root

HasComponent

Method

sensor1.calibrate

HasComponent

HasComponent

HasComponent

Figure 1. Graph representing OPC-UA address-space described as Example 1

In an OPC-UA server exposing such information model, the graph is stored
in the server’s OPC-UA address-space. A primary way to obtain the graph by
an OPC-UA client is to invoke the “browse request”, which takes an address of
a node and returns all references originating from the node, including their types
and addresses pointed to by them. Therefore, by applying one of the common graph
search algorithms (e.g. the breadth-first search or the depth-first search [14]) and
starting from the built-in root node, an interested client can discover the whole
graph.

However, it is not necessary to know the whole graph to just invoke OPC-UA
operations on a remote system: the node address in the address-space is sufficient
to uniquely identify any node.

Object Mapping in the OPC-UA Protocol . . . 953

Following operations (also known as transactions) can be invoked on nodes of
the address-space4:

1. Read and Write of given property of a given node: all nodes support common
properties like “description” or “localized name”. In addition, variables support
“value” property which refers to data stored by a variable.

2. Call: which is a way to invoke methods.

3. Begin, Modify and Stop Monitoring: which implement publish-subscribe func-
tionality in the OPC-UA and let a client be notified about new data.

4. Browse, as explained above.

3 OPC-UA OBJECT MAPPING TO PROGRAMMING
LANGUAGE OBJECTS

3.1 OPC-UA Mapping for Distributed-Object Paradigm

The mapping compatible with the distributed-object paradigm is attractive because
of its inherent object-oriented properties and proven track record of Object Request
Broker architectures (as in e.g. CORBA).

A primary feature of such a mapping should be that an object residing in server
application, having a particular interface (methods), could be used through a proxy
object residing in client’s application. Therefore each invocation of a method should
be routed using OPC-UA to a factual remote implementation at server side, as
illustrated in Figure 2.

client application server application

factual
implementation

proxy object

original caller

OPC-UA

perception

Figure 2. Distributed-object in OPC-UA: factual route of the call operation (solid line)
and client-side perception (dotted line)

However, compared to many ORB architectures like CORBA, the OPC-UA in-
formation model (including interfaces of objects exposed through the address space)
is just a graph stored in the server’s memory, and there is no restriction to add or
delete new vertices (nodes) or edges (references) in the runtime. The OPC-UA it-
self does not impose any restriction on requiring the model to be known at compile

4 The list is not complete, it just enumerates operations attractive in the scope of the
study.

954 P.P. Nikiel, K. Korcyl

time. On the other hand, many commonly used programming languages require
type definitions (including interfaces of objects, that is classes) to be known at com-
pile time. Therefore we can speak of many scenarios depending on features of the
implementation programming language (separately at client and server side) and
chosen mapping approach.

It is worth to emphasize that in this analysis for every high-level class (e.g. “Sen-
sor” from the example in Figure 1) three different type definitions are considered:

• the type definition in the OPC-UA information model, which is stored in the
server’s address space and can be changed at runtime,

• the type definition for the proxy object at client side, its requirements depend
on the chosen programming language,

• the type definition for the factual implementation at server side, its requirements
depend on the chosen programming language.

There are three relevant traits to be observed in case of C++ as the implemen-
tation language either for client or server side:

• storing a reference to an object (whether achieved by pointers or by C++ refer-
ence) does not need a class definition (a forward declaration or opaque-pointer
technique can be used),

• calling a method requires the class definition to be known at compile time,

• C++ does not support reflection5.

Therefore, in C++ implementation at the server side, the type definition for the
information model cannot be deduced in run-time (no reflection), and it must be
given, along with the source code, with the type definition for factual implementa-
tion’s class. Similarly, at client side, the proxy object definition must be equivalent
to the type definition for the information model at the server side, so both must be
given at compile time. C++ implementation brings one more requirement: the type
definition in the OPC-UA information model must be constant, otherwise incosis-
tency might arise between all three type definitions.

Java shares many similarities with C++ in the context of the analysis, but it
brings an important advantage. Java supports reflection, which in Java not only
lets the code to inspect class definitions but also lets invoke the methods discovered
using reflection mechanism [15]. Practically it means that a Java object given at
runtime could be used as the factual implementation and then mapped as a remote
object using OPC-UA. However, the opposite is not straight-forward: creation of
a Java class solely on the information from the dynamic information model.6

5 Reflection is a feature of a programming language letting the executed code to inspect
itself, e.g. to get a list of methods declared in a given class at run-time.

6 One could imagine an approach based on bytecode manipulation libraries, however it
is not a straight-forward and common solution.

Object Mapping in the OPC-UA Protocol . . . 955

A big difference is achieved when a dynamically-typed programming language
is chosen for the implementation. Let us consider Python as an example of such
language.

Python enables a number of very attractive features relevant to the study. The
first one is the support for a custom definition for accessor methods for object’s
fields, which enables to intercept get and set operations on the fields ([16] on operator
overloading). The methods have standardized names, getattr and setattr ,
respectively. Though having to be defined before the interpreter or compiler is run,
they can use run-time data, effectively imitating that the object’s list of fields and
their types can be altered at runtime. In addition, the act of accessing field’s data can
be fully customized and refer to the data external to the object, i.e. imitating field
access to a remote object. Such application will be further studied in Section 3.2.

The second feature is the support to intercept invocations to call any callable
object through a method called call . When a custom implementation is pro-
vided, the call might redirect to a remote invocation of a method through OPC-UA,
among other applications.

Let us illustrate the possibilities of combining usage of getattr and call

in an example as in the UML diagram in Figure 3.

Node
+ address : Address

Object
- methods : Method[]
+ __get_attr__()

Method
+ __call__()

methods

Diagram: class diagram Page 1
Figure 3. Classes (and their relations) providing remote method invocation capabilities
over OPC-UA in Python for distributed-object paradigm

The intention of the example is to illustrate how an object request broking
could be facilitated by these features. An example system has an OPC-UA address
space with an object called “anObject” with a method called “testMethod”. At
the client side, in Python program, according to the UML diagram, we construct
two objects: “obj” of class “Object” and “method” of class “Method”. We insert
“method” object into “methods” list in the object. Since both objects are descen-
dants of “Node” class, both have an “address” field. The address of “obj” and
“method” point to aforementioned OPC-UA address space nodes “anObject” and
“anObject.testMethod”.

The aim of the example is to show that invoking “obj.testMethod()” can be
given an implementation which performs an OPC-UA transaction invoking respec-
tive methods on the server-side.

The invocation of “obj.testMethod()” will first call getattr method of “obj”
object with an argument of “testMethod”. A provided custom implementation will
intercept the call and identify that requested object’s field “testMethod” is in fact

956 P.P. Nikiel, K. Korcyl

a method (it is in “methods” list) and return its reference, turning it into invocation
equivalent to: “testMethod()”. In the next step, call method of “Method” class
will be invoked, this time its provided implementation will perform an OPC-UA call
transaction on the remote server and return its result. As can be seen, the caller
might not even know that the call is effectively handled by a remote method, which
is the purpose of the location-transparency feature of distributed-object paradigm.

3.2 OPC-UA Mapping for Data Access

In a similar fashion to mapping object’s methods remotely, one could imagine map-
ping object’s fields to OPC-UA variables bound to a particular object.

Let us consider the address-space from example in Figure 1, excluding methods,
for C++ programming language. In C++ (or, with minimal changes, Java), we
could naively depict an equivalent of “Sensor” class with its instance:

c l a s s Sensor
{

pub l i c :
s t r i n g id ;
double va lue ;

} ;

Sensor sensor1 ;

However in C++ object’s fields are just memory locations and their access (ei-
ther read or write) cannot do anything else than to access the memory locations.
Therefore some additional support is required to synchronize object’s fields with
their OPC-UA counterpart.

The first approach to consider could be called a snapshot approach, where a copy
of data stored in remote object’s variables is put on object’s user request to local
object fields. The implementation synchronizing the contents could be provided
either as object’s method or as an external function. Such implementation would
use OPC-UA synchronous read transaction.

Another possible approach is to use publish-subscribe mechanism in OPC-UA
where each notification (carrying new updates) takes care of copying the received
data to object’s fields. The object’s user obtains the data without prior request,
behind the scenes. Such configuration would have downsides though, especially
because of possible race conditions between two threads – the object’s user’s thread
and the updating thread. Addressing the race condition by a mutex would no longer
make it look like behind the scenes update.

A different mapping can be studied for C++, which would map OPC-UA object
fields into accessor methods (set, get or both, depending on the information model)
rather than to C++ object’s fields. Such mapping would drift away from the most

Object Mapping in the OPC-UA Protocol . . . 957

obvious class declaration shown in the listing above, however it would be free from
issues of the previous approach:

c l a s s Sensor
{

pub l i c :
s t r i n g get Id () ;
double getValue () ;

} ;

Sensor sensor1 ;

It is worth noting that the approach can be applied to server-side and client-side
C++ code. Particular examples are detailed in the Section 4.

Similarly to the conclusions drawn in Section 3.1, moving to a more dynamic
programming language like Python has benefits also for data-access mapping. Afore-
mentioned getattr and setattr methods can be used to intercept access
to fields of a Python object, respectively returning or setting the value from/to
a remote OPC-UA address-space. To illustrate this, let us again look at the “Sen-
sor” object example (example in Figure 1). When a suitable implementation is
provided for the getattr method, the following statement can invoke a read
operation to fetch the remote value and return it like from a plain local object:
sensor1.value.

When studying mapping for data access, differences in data types between cho-
sen programming language and the OPC-UA types need to be solved. OPC-UA
supports many built-in types which have direct equivalents in common program-
ming languages, like integers of varied bit length, floats, Booleans or strings. N-di-
mensional arrays of those data types are natively supported without need to create
custom types. A special “opaque” data type called variant is also supported which
can hold any of the built-in primitive types. Therefore no additional work is ex-
pected to profit from built-in types in mapped objects in programming language of
choice.

However, OPC-UA supports additional ways to define data types which require
the type definition to be first available in the address-space. Among them there
are so called “simple types” (effectively one of built-in types with a custom name),
“enumerations” (resembling “enums” known from C or C++) and “structured data
types”. A structured data type resembles structures known from the C program-
ming language. In the context of OPC-UA applications, it enables atomic transfer
of the whole structure thus guaranteeing that transport layer events like message
fragmentation or buffer size restrictions will not deliver an incomplete snapshot of
data. This comes at a price however: a structured data type requires that encoding
definition (either for binary or XML serialization) is supplied by the application and
stored in the address-space. Thus a mapping for data access involving structures
requires that in-application serializer is created (using code generation or dynamic

958 P.P. Nikiel, K. Korcyl

language features or differently).

4 IMPLEMENTATION AND ITS PRACTICAL ASPECTS

So far, the paper explained various conceptual aspects of OPC-UA object mapping
for object-request-broker approach and for generic data-access approach, for server
side and client side, taking into account relevant features of programming language.
This chapter shows how the concepts were implemented.

This paper has roots in the Quasar project, which is a model-based development
environment for rapid generation of OPC-UA servers in C++ [12, 13]. A distinctive
feature of Quasar relevant to this paper is that Quasar uses a server-side object
mapping in the C++ programming language for the data access, e.g. to map read,
write operations directly into objects as well as to support the publish-subscribe
mechanism in the same approach. As shown in the Section 3.1, for such a configu-
ration, the objects’ definition must be known at compile-time. Quasar achieves this
by generating classes in C++ from the information model stored in an XML file.
The same information model is then stored in the exposed OPC-UA address space
and protected from being changed at the runtime, for consistency between C++
classes and the information model.

This study extends Quasar’s functionality by adding support for methods. The
implementation follows Quasar concepts, that is: methods are declared in the Design
file (which is a file primarily storing the information model in the XML format);
server build process then generates stubs for implementation and required glue logic.
As a result, OPC-UA client request to call a method is mapped in 1:1 relation to
a method definition provided in C++ at server side.

To evaluate practical aspects of the mapping for clients in C++, authors have
studied a stub generation approach re-using much of Quasar’s code generation. As
an input, a Design file, in Quasar format is required. For a chosen class (out of all
classes defined in the Design file), a proxy class can be generated, wrapping fields
access and method invocations into OPC-UA transactions. This effectively creates
a companion code for any situation where a client in C++ needs to access data
from an OPC-UA server created in Quasar. In this mapping, however, methods in
OPC-UA have direct equivalent in the generated stubs while variables have accessor
methods instead of fields. In authors opinion it is a most robust approach knowing
that C++ does not support overloading field access operator.

For Python programming language at client side, authors have created a library
called UaObjects. The purpose of the library is to profit from dynamic nature
of Python and let instantiate object mappings to OPC-UA at run-time for clients,
both for methods and for data access (read, write, monitored items). The UaObjects
extensively uses the approach of overloading getattr , setattr and call

methods. PyUaf library [17] is used for OPC-UA interfacing.
The UaObjects library exposes a couple of classes as the API:

• Session – represents an open connection to OPC-UA server

Object Mapping in the OPC-UA Protocol . . . 959

• Node – represents a node in the OPC-UA address-space, stores OPC-UA node
address.

• Object – a specialization of Node class representing an object in the address-
space.

• Variable – a specialization of Node class representing a variable in the address-
space.

• Method – a specialization of Node class representing a method.

The programmer’s entry point to the UaObjects library is by instantiation of a Ses-
sion, supplying PyUaf client handle and server’s URI:

session = uao.Session(client, server uri)

A primary feature of the Session object is that it can be given an OPC-UA address
pointing to an OPC-UA address-space object and perform the object mapping. Such
feature is achieved by calling a method get object, e.g.:

obj = session.get object(’anObject’, 2) # 2 is namespace index

The mapping is performed recursively by walking the address-space graph us-
ing the Depth-First-Search graph algorithm. As an effect, the whole hierarchy of
descendant objects becomes accessible from Python. Thanks to this, a hierarchy
of objects can be “walked” like nested classes with no further calls to UaObjects
functions.

Let us illustrate the process by an example from a building automation domain.
Figure 4 shows a graph of address-space information model.

When get object method is invoked with an address of e.g. “airConditioner”
object, the following would happen:

• Browse request is executed on “airConditioner” object, returning three refer-
ences: one method, one object reference and one variable; they get stored in the
object being created.

• The process is recursively repeated for all discovered objects.

Few examples of possible uses of objects mapped by UaObjects library are:

• airConditioner.turnOn() will invoke the method over OPC-UA,

• airConditioner.temperatureSetting = Float(22.5) will invoke a write op-
eration, any error will be thrown,

• airConditioner.temperatureSensor.temperature will invoke a read opera-
tion over OPC-UA and return the obtained value or None, or throw for an error.

960 P.P. Nikiel, K. Korcyl

Object

airConditioner.
temperatureSensor

Variable

airConditioner.temperature
Sensor.temperature

Built-in obj

root

Method

airConditioner.temperature
Sensor.calibrate

Object

airConditioner

Method

airConditioner.turnOn

Variable

airConditioner.
temperatureSetting

NOTE: all references are of HasComponent type.

Figure 4. An example OPC-UA information model to illustrate UaObjects library fea-
tures. The text in greyed fields corresponds to OPC-UA addresses of the nodes (apart
from “root” address, which in the OPC-UA is encoded as a numeric identifier, here shown
as a string, for simplicity).

5 PERFORMANCE CONSIDERATIONS

Performance is usually an important factor in taking a decision whether to use or
to avoid given protocol or solution. Authors have measured the performance of
various OPC-UA based approaches studied in this paper and compared it against
CORBA and ZMQ/Protocol Buffers under most fair conditions. The primary goal
was to measure the time of operation comprising passing payload of given size from
either client to server or server to client (both directions were tested separately).
Since solely synchronous operations were tested (thus obtained time is the complete
duration of the whole operation), obtained operation durations have been used to
calculate throughput.

The factual ways of passing data depended on the protocol under test:

• For OPC-UA, write and read operations were under test as well as calling meth-
ods either taking arguments (to pass data from a client to a server) or returning
values (to pass data from a server to a client). In all situations, a server un-
der test was created with Quasar, with either UASDK or open62541 used as

Object Mapping in the OPC-UA Protocol . . . 961

OPC-UA communication stacks (backends)7. As a client, a C++ based client
was used (with object mappings generated at compile-time, as described in the
paper) or a Python based client with object mappings created in run-time (using
UaObjects library, as described in the paper).

• For ZMQ+Google Protocol Buffers, a protocol description file has been prepared
and then compiled with the “proto” compiler for C++. The protocol description
file containted just one message type consisting of an operation selector (i.e. put
data, get data) and the data. For client to server data transfer, a message with
“put data” operation with a payload would be sent, and a confirmation message
with no payload would be returned. For server to client data transfer, a message
with “get data” operation with no payload would be sent, and a confirmation
message with payload would be returned. For the transport mechanism ZMQ’s
request-reply was chosen on top of TCP/IP.

• For CORBA, an interface description file has been prepared and then compiled
with the IDL-C++ compiler. OmniORB 4.1.6-2 has been used as the CORBA
provider at both client and server side with GIOP as the protocol. Just one
interface has been used, taking a string as an argument and returning a string,
depending on chosen operation (“get data” or “put data”), a payload would be
put in either arguments (for client to server data transfer) or in the return values
(for server to client data transfer).

The common configuration of all tests were:

• 1 server and 1 client computer; the server was an 8-core Intel i7 machine at
3.6 GHz clock with 24 GB of RAM, the client was an 4-core Intel i7 machine at
2.4 GHz clock with 8 GB of RAM. Both machines ran Linux operating system;

• physical network connection: Gigabit Ethernet, direct cable connection between
both machines. There were no other active network connections;

• request-reply communication pattern was used;

• end-user payload size was considered as the sweeped parameter;

• all test programs were compiled at best optimization levels available;

• all test programs verified size of data at reception with the value configured for
given test; an inconsistency would have aborted the test.

The durations of operations are presented in the Figure 5.
The following conclusions could be made from both figures:

• For very small payload sizes (up to 32 B), three clusters of results are visible:
ZMQ-based results as clear winners with operations durations of about 100µs;
remaining solutions based on C++ (including CORBA and OPC-UA with C++
clients) with operations durations of about 300µs; OPC-UA results with client
in Python with durations of about 600µs. Since the only difference between the

7 At the time of writing, methods support was available only with the UASDK backend.

962 P.P. Nikiel, K. Korcyl

1
10

10
0

10
00

10
00

0
10

00
00

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Q
ua

sa
r+

U
A

S
D

K
, C

++
 c

lie
nt

,w
rit

e
va

ria
bl

e

Q
ua

sa
r+

U
A

S
D

K
, C

++
 c

lie
nt

,r
ea

d
va

ria
bl

e

Q
ua

sa
r+

U
A

S
D

K
, C

++
 c

lie
nt

,w
rit

e
by

 m
et

ho
d

ca
ll

Q
ua

sa
r+

U
A

S
D

K
, C

++
 c

lie
nt

,r
ea

d
by

 m
et

ho
d

ca
ll

Q
ua

sa
r+

op
en

62
54

1,
 C

++
 c

lie
nt

,w
rit

e
va

ria
bl

e

Q
ua

sa
r+

op
en

62
54

1,
 C

++
 c

lie
nt

,r
ea

d
va

ria
bl

e

Q
ua

sa
r+

U
A

S
D

K
, P

yt
ho

n
cl

ie
nt

,w
rit

e
va

ria
bl

e

Q
ua

sa
r+

U
A

S
D

K
, P

yt
ho

n
cl

ie
nt

,r
ea

d
va

ria
bl

e

Q
ua

sa
r+

U
A

S
D

K
, P

yt
ho

n
cl

ie
nt

,w
rit

e
by

 m
et

ho
d

ca
ll

Q
ua

sa
r+

U
A

S
D

K
, P

yt
ho

n
cl

ie
nt

,r
ea

d
by

 m
et

ho
d

ca
ll

P
ro

to
B

uf
 +

 Z
M

Q
, C

++
, r

eq
ue

st
-r

ep
ly

 p
ut

 d
at

a

P
ro

to
B

uf
 +

 Z
M

Q
, C

++
, r

eq
ue

st
-r

ep
ly

 g
et

 d
at

a

C
O

R
B

A
, r

ea
d

by
 m

et
ho

d
ca

ll

C
O

R
B

A
, w

rit
e

by
 m

et
ho

d
ca

ll

da
ta

 s
iz

e
/ a

rg
um

en
t s

iz
e

[B
]

time [us]

Figure 5. Time required to complete one operation of a given type vs size of payload data.
Note X axis is logarithmic and within the range of 1 B–100 kB to emphasize the lower end
of the measurements.

Object Mapping in the OPC-UA Protocol . . . 963

second and the third group of results is the programming language (C++ vs.
Python), we assume it is the primary factor contributing to the results and not
the protocol itself.

• For payload sizes from 64B to 1024B, ZMQ’s “put data” implementation joins
the second group of results while “get data” implementation still stays ahead by
at least twice shorter operation time. The origin of the asymmetry is not clear.
Apart from this, observations from the point above still hold true.

• For payload sizes bigger than 1 024 B network related delay becomes the primary
contributor. It is worth noticing that apart from Python implementation, all
other results converge, however ZMQ-based implementation to transfer data
from server to client is still the fastest one.

Based on the results, throughput figures were charted in the Figures 6 and 7.
Please note that for chosen communication medium (Gigabit Ethernet) the maxi-
mum throughput of the medium itself is about 125 MB/s8 and in fact, for big payload
sizes, the throughput figures converge to about 80–85 % of the medium throughput
for all C++ implementations of all 3 chosen protocols.

The following overall conclusions can be made:

• For a data exchange application based on “distributed object” principles (call-
ing remote methods to send/receive data), CORBA and OPC-UA have similar
performance. Significant differences apply to both protocols in aspects different
from the performance.

• For applications where latency matters most ZMQ surpasses both CORBA and
OPC-UA by a very significant factor.

Please note that measurements described in the chapter focused on synchronous
request-reply communication patterns. Some of the measured solutions (e.g. ZMQ)
offer truly asynchronous data transfers (e.g. ZMQ’s Pub-Sub pattern) which, how-
ever, have completely different principle of operation and different properties. For
example, a subscriber has no control of the rate at which it is receiving data; also
error handling is at a different level, e.g., a subscriber might not be getting any data
because of either publisher does not have any new data or there is a network issue.
Therefore ZMQ’s asynchronous communication patterns have not been included in
the comparison.

6 CONCLUSIONS

In the paper, authors have studied application of rich information modelling features
of OPC-UA to mapping classes and objects defined in OPC-UA address-space into

8 This, of course, is a rough simplification: on top of the medium, Ethernet frame
headers, IP packet headers and TCP headers contribute to what amount of bandwidth is
left for payload data.

964 P.P. Nikiel, K. Korcyl

1
10

10
0

10
00

10
00

0
10

00
00

10
00

00
0

02040608010
0

12
0

Q
ua

sa
r+

U
A

S
D

K
, C

+
+

 c
lie

nt
,w

rit
e

va
ria

bl
e

Q
ua

sa
r+

U
A

S
D

K
, C

+
+

 c
lie

nt
,r

ea
d

va
ria

bl
e

Q
ua

sa
r+

U
A

S
D

K
, C

+
+

 c
lie

nt
,w

rit
e

by
 m

et
ho

d
ca

ll

Q
ua

sa
r+

U
A

S
D

K
, C

+
+

 c
lie

nt
,r

ea
d

by
 m

et
ho

d
ca

ll

Q
ua

sa
r+

op
en

62
54

1,
 C

+
+

 c
lie

nt
,w

rit
e

va
ria

bl
e

Q
ua

sa
r+

op
en

62
54

1,
 C

+
+

 c
lie

nt
,r

ea
d

va
ria

bl
e

Q
ua

sa
r+

U
A

S
D

K
, P

yt
ho

n
cl

ie
nt

,w
rit

e
va

ria
bl

e

Q
ua

sa
r+

U
A

S
D

K
, P

yt
ho

n
cl

ie
nt

,r
ea

d
va

ria
bl

e

Q
ua

sa
r+

U
A

S
D

K
, P

yt
ho

n
cl

ie
nt

,w
rit

e
by

 m
et

ho
d

 c
al

l

Q
ua

sa
r+

U
A

S
D

K
, P

yt
ho

n
cl

ie
nt

,r
ea

d
by

 m
et

ho
d

 c
al

l

P
ro

to
B

uf
 +

 Z
M

Q
, C

+
+

,
re

qu
es

t-
re

pl
y

pu
t d

at
a

P
ro

to
B

uf
 +

 Z
M

Q
, C

+
+

,
re

qu
es

t-
re

pl
y

ge
t d

at
a

C
O

R
B

A
, r

ea
d

by
 m

et
ho

d
ca

ll

C
O

R
B

A
, w

rit
e

by
 m

et
h

od
 c

al
l

da
ta

 s
iz

e
[B

]

throughput [MB/s]

Figure 6. Throughput expressed in payload data size per second as a function of the
payload size. The X axis is logarithmic.

Object Mapping in the OPC-UA Protocol . . . 965

1
10

10
0

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

0.
450.
5

Q
ua

sa
r+

U
A

S
D

K
, C

+
+

 c
lie

nt
,w

rit
e

va
ria

bl
e

Q
ua

sa
r+

U
A

S
D

K
, C

+
+

 c
lie

nt
,r

ea
d

va
ria

bl
e

Q
ua

sa
r+

U
A

S
D

K
, C

+
+

 c
lie

nt
,w

rit
e

by
 m

et
ho

d
ca

ll

Q
ua

sa
r+

U
A

S
D

K
, C

+
+

 c
lie

nt
,r

ea
d

by
 m

et
ho

d
ca

ll

Q
ua

sa
r+

op
en

62
54

1,
 C

+
+

 c
lie

nt
,w

rit
e

va
ria

bl
e

Q
ua

sa
r+

op
en

62
54

1,
 C

+
+

 c
lie

nt
,r

ea
d

va
ria

bl
e

Q
ua

sa
r+

U
A

S
D

K
, P

yt
ho

n
cl

ie
nt

,w
rit

e
va

ria
bl

e

Q
ua

sa
r+

U
A

S
D

K
, P

yt
ho

n
cl

ie
nt

,r
ea

d
va

ria
bl

e

Q
ua

sa
r+

U
A

S
D

K
, P

yt
ho

n
cl

ie
nt

,w
rit

e
by

 m
et

ho
d

 c
al

l

Q
ua

sa
r+

U
A

S
D

K
, P

yt
ho

n
cl

ie
nt

,r
ea

d
by

 m
et

ho
d

 c
al

l

P
ro

to
B

uf
 +

 Z
M

Q
, C

+
+

,
re

qu
es

t-
re

pl
y

pu
t d

at
a

P
ro

to
B

uf
 +

 Z
M

Q
, C

+
+

,
re

qu
es

t-
re

pl
y

ge
t d

at
a

C
O

R
B

A
, r

ea
d

by
 m

et
ho

d
ca

ll

C
O

R
B

A
, w

rit
e

by
 m

et
h

od
 c

al
l

da
ta

 s
iz

e
[B

]

throughput [MB/s]

Figure 7. Throughput expressed in payload data size per second as a function of the
payload size. The X axis is logarithmic and within range of 1 B–256 B to illustrate the
lower range of payloads. The source data is the same as in the Figure 6.

966 P.P. Nikiel, K. Korcyl

classes and objects of chosen programming language. A number of conclusions have
been identified:

• Strongly-typed programming languages (as C++ in the study) enable a di-
rect method mapping to OPC-UA methods, however direct fields mapping has
a number of practical down-sides. Authors identify that indirect mapping using
accessor methods is a more robust solution.

• Weakly-typed and dynamic programming languages (Python in the study) en-
able direct mapping of both methods and fields to their OPC-UA counterparts.
In addition, a number of “convenience” features is possible like run-time type
conversion and possibility to walk the OPC-UA address-space graph by just
refering to object fields.

• Languages with support for reflection enable to create the corresponding OPC-
UA information model based on programming language class.

The following deliverables are additional effects of the study:

• methods support for Quasar environment,

• UaObjects library for Python,

• code generator enabling client-side mappings to OPC-UA for C++.

7 FURTHER STUDY

Authors would like to point out that the OPC-UA gives a possibility to modify the
address-space by client requests9. Such feature opens further possible improvements:

• Adding or deleting object instances in run-time by a client might be attractive
in many scenarios. For example, it might be more practical to configure the
address-space contents by a client than by changing server’s configuration. Such
scenario easily fits to all cases studied in the paper because it does not change
(or add or delete) types definitions.

• Adding, deleting or altering type definitions in run-time by clients would not be
compatible at least with C++ mappings studied in the paper, however, there is
no obvious obstacle for such application in Python.

One could also imagine an extension of the UaObjects library towards Python’s
meta-classes concept. In such approach, creation of Python’s classes in run-time
based solely on information from OPC-UA information model could be attempted.

9 In a multi-user networked environment, it seems natural that such a feature should
be restricted only to the clients having certain (i.e. elevated) privileges. In the OPC-UA
this restriction is implemented by requesting authentication when a session (i.e. an OPC-
UA connection) is created, for example by using the username-password authentication.
Then the server will allow only certain users to modify the address-space, for example by
checking whether the username bound to the session through which such request comes is
in the set of users with elevated privileges.

Object Mapping in the OPC-UA Protocol . . . 967

REFERENCES

[1] International Telecommunication Union: Information Technology – Abstract Syntax
Notation One (ASN.1): Specification of Basic Notation, Recommendation ITU-T
X.680, also known as ISO 8824-1.

[2] Douglas, M.—Schmidt, K.: Essential SNMP. 2nd ed., O’Reilly, 2009. ISBN 978-
0-596-00840-6.

[3] International Telecommunication Union: Information Technology – ASN.1 Encod-
ing Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules
(CER) and Distinguished Encoding Rules (DER), Recommendation ITU-T X.690,
also known as ISO 8825-1.

[4] Google: Protocol Buffers, Website, https://developers.google.com/

protocol-buffers/, accessed 27-Dec-2016.

[5] Java Object Serialization Specification, Java SE v.8, https://docs.oracle.com/

javase/8/docs/technotes/guides/serialization/index.html.

[6] Hintjens, P.: ZeroMQ: Messaging for Many Applications. O’Reilly, 2013. ISBN
978-1-449-33406-2.

[7] Monson-Haefel, R.—Chappell, D.A.: Java Message Service. O’Reilly, 2001.
ISBN 978-0-596-00068-5.

[8] Henning, M.—Vinoski, S.: Advanced CORBA Programming with C++. Addison-
Wesley Professional Computing Series, 1999. ISBN 978-0-201-37927-9.

[9] Gamma, E.—Helm, R.—Johnson, R.—Vlissides, J.: Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1994. ISBN 978-0-
201-63361-2.

[10] Mahnke, W.—Leitner, S.-H.—Damm, M.: OPC Unified Architecture. Springer-
Verlag, 2009. ISBN 978-3-540-68898-3, doi: 10.1007/978-3-540-68899-0.

[11] Code Synthesis Tools CC: C++/Tree Mapping Getting Started Guide, avail-
able at: http://www.codesynthesis.com/projects/xsd/documentation/cxx/

tree/guide/.

[12] Nikiel, P. P.—Farnham, B.—Filimonov, V.—Schlenker, S.: Generic OPC-
UA Server Framework. Proceedings of 21st International Conference on Computing
in High Energy and Nuclear Physics (CHEP2015), Okinawa, Japan, 2015. Journal of
Physics: Conference Series, Vol. 664, 2015, Art. No. 082039.

[13] Nikiel, P. P.—Farnham, B.—Schlenker, S.—Soare, C.-V.—Filimo-
nov, V.—Abalo Miron, D.: Quasar – A Generic Framework for Rapid Devel-
opment of OPC-UA Servers. Proceedings of ICALEPCS 2015, Melbourne, Australia,
2015.

[14] Cormen, T.H.—Leiserson, C. E.—Rivest, R. L.—Stein, C.: Introduction to
Algorithms. MIT Press, 2009. ISBN 978-0-262-03384-8.

[15] Horstmann, C. S.—Cornell, G.: Core JavaTM: Volume I, Fundamentals. 9th ed.,
Prentice Hall, 2012. ISBN 978-0-13-708234-6.

[16] Lutz, M.: Python: Pocket Reference. 5th ed., O’Reilly, 2014. ISBN 978-1-449-
35701-6.

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/index.html
https://doi.org/10.1007/978-3-540-68899-0
http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/
http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/

968 P.P. Nikiel, K. Korcyl

[17] Pessemier, W.—Deconinck, G.—Raskin, G.—Saey, P.—Van Winckel, H.:
UAF: A Generic OPC Unified Architecture Framework. Software and Cyber-
infrastructure for Astronomy II., Proceedings of the SPIE, Vol. 8451, 2012,
Art. No. 84510P, 10 pp.

Krzysztof Korcyl is Adjunct in Institute of Teleinformatics
of Cracow University of Technology, Poland and in Institute of
Nuclear Physics PAN, Cracow, Poland where he received his
habilitation in physics. He worked for the third level trigger of
Delphi experiment at LEP and subsequently for TDAQ system
of ATLAS experiment at LHC at CERN, Geneva. His research
interests include modeling of large scale real time systems and
applicability of FPGA and GPGPU technologies for improving
performance in data acquisition and filtering systems.

Piotr P. Nikiel is Software Engineer in the Detector Control
System of the ATLAS experiment at LHC at CERN, Geneva.
He received his M.Sc. in computing from Cracow University of
Technology, Poland and his M.Sc. in electronic engineering from
AGH University of Science and Technology, Cracow, Poland.
He is software architect of the Quasar project and author of
many OPC-UA based applications used at CERN. His research
interests include model-based software engineering, embedded
systems and programming languages.

