
Computing and Informatics, Vol. 37, 2018, 838–864, doi: 10.4149/cai 2018 4 838

COST-EFFICIENT SCHEDULING FOR DEADLINE
CONSTRAINED GRID WORKFLOWS

Alireza Dehlaghi-Ghadim

School of Electrical and Computer Engineering
University of Tehran
Tehran, Iran
e-mail: a.dehlaghi@ut.ac.ir

Reza Entezari-Maleki

School of Computer Science
Institute for Research in Fundamental Sciences (IPM)
Tehran, Iran
e-mail: entezari@ipm.ir

Ali Movaghar

Department of Computer Engineering
Sharif University of Technology
Tehran, Iran
e-mail: movaghar@sharif.edu

Abstract. Cost optimization for workflow scheduling while meeting deadline is
one of the fundamental problems in utility computing. In this paper, a two-phase
cost-efficient scheduling algorithm called critical chain is presented. The proposed
algorithm uses the concept of slack time in both phases. The first phase is deadline
distribution over all tasks existing in the workflow which is done considering criti-
cal path properties of workflow graphs. Critical chain uses slack time to iteratively
select most critical sequence of tasks and then assigns sub-deadlines to those tasks.
In the second phase named mapping step, it tries to allocate a server to each task
considering task’s sub-deadline. In the mapping step, slack time priority in select-

Cost-Efficient Scheduling for Deadline Constrained Grid Workflows 839

ing ready task is used to reduce deadline violation. Furthermore, the algorithm
tries to locally optimize the computation and communication costs of sequential
tasks exploiting dynamic programming. After proposing the scheduling algorithm,
three measures for the superiority of a scheduling algorithm are introduced, and
the proposed algorithm is compared with other existing algorithms considering the
measures. Results obtained from simulating various systems show that the proposed
algorithm outperforms four well-known existing workflow scheduling algorithms.

Keywords: Grid computing, workflow, slack time, critical path, cost-based schedul-
ing

Notations

T Set of all tasks in the application
E Set of all dependencies in the application
ti Task i
eij Dependency between task i and task j
δ Deadline of the application
S Set of servers
si Server i
Tij Processing time of task ti on server sj
Cij Processing cost of task ti on server sj
S(ti) The server allocated to execute task ti
TiS(ti) Execution time of task ti on S(ti)
Delay(ti, tj) Data transmission time between task ti and task tj

on the link between S(ti) and S(tj)
imm preds(ti) All tasks in the workflow graph in which ti is their

immediate successor
imm succs(ti) All tasks in the workflow graph in which ti is their

immediate predecessor
MET(ti) Minimum time for the execution of task ti on the fastest

server
MTT(eij) Minimum data transmission time between task ti

and task tj
EST(ti) Earliest start time of task ti
LFT(ti) Latest finish time of task ti
ST(ti) Slack time of task ti
CST Chain start time
CFT Chain finish time
SST Schedule start time
SFT Schedule finish time
NC Normalized cost
θ Deadline factor
Tmin Minimum execution time of the application

840 A. Dehlaghi-Ghadim, R. Entezari-Maleki, A. Movaghar

1 INTRODUCTION

Grid is an infrastructure with the aim of solving high scale problems in science,
economy, aerology, engineering and many other fields [1]. Resource sharing is one of
the most significant advantages of grid computing [2]. The most important resources
shared in grids include CPU, main memory, secondary memory, network bandwidth,
and data. Traditional resource management techniques provide no incentive for
users to share resources fairly. Consequently, to support different levels of Quality of
Service (QoS) and manage priority between user applications, utility grid computing
has been emerged [3, 4]. In this paradigm, users have to pay for each time they use
servers with specific QoS. How to allocate grid servers to the tasks to satisfy the
specific needs is one of the important challenges in this area.

This paper focuses on workflow scheduling with the aid of heuristics. In this case,
workflows are composed of several tasks with partial order, in the way that some
tasks have control or data dependencies on the others. Many complex applications in
different domains such as e-science as bioinformatics and astronomy, and e-business
can be modeled as workflows [5]. To solve the applications, the resulted workflows
need to be processed, so the tasks should be executed based on their dependen-
cies [6]. We can describe workflows with Directed Acyclic Graphs (DAGs) in which
each node in DAG represents a specific task in the corresponding workflow. There-
fore, the scheduling problem can be stated as assigning a DAG of tasks to the limited
processing units according to their requirements and transposition constraints. To
solve this type of scheduling problems, two different approaches can be used: ap-
proximation and heuristic. In the approximate algorithms, since it is unlikely that
there can ever be efficient polynomial-time exact algorithms solving NP-hard prob-
lems, one settles for polynomial-time sub-optimal solutions so called approximation,
which uses formal computational models to obtain sufficiently good solution instead
of searching the entire solution space for an optimal solution. Heuristic represents
the class of algorithms which makes more realistic assumptions about a priori knowl-
edge concerning process and system loading characteristics [7, 8].

Generally, mapping tasks on distributed servers is an NP-hard problem, and
workflow scheduling as an optimization problem produces large scheduling over-
head, especially for problems with two-dimensional constraints such as time and
cost [9, 10]. The most well-known goal considered for workflow scheduling is mini-
mizing the makespan of the application. Although many research papers have ad-
dressed this problem [9, 11], in the economic scheduling, cost reduction along with
satisfying the deadline is very important and that should be taken into considera-
tion in workflow scheduling [12]. Consequently, traditional approaches for scheduling
tasks in grid community are no longer suitable for utility grids. Therefore, some new
methods have been proposed in the past years to fulfill this requirement [4, 6, 9,
10, 13, 14, 15, 16, 17, 30]. Many recent approaches in workflow scheduling consider
critical path as a hint to assign sub-deadlines to the tasks [11, 13, 17, 18, 19], but
deadline distribution with those methods is not efficient enough to decrease deadline
violations. Another disadvantage of the previously presented scheduling methods is

Cost-Efficient Scheduling for Deadline Constrained Grid Workflows 841

the lack of priority between tasks in the mapping step. To overcome these short-
comings, we develop a new scheduling algorithm with two steps. In the first step,
an efficient method for initial distribution of tasks deadlines is presented, and in the
second step, scheduling priority for the task with minimum slack time is considered
to reach a better result. In order to evaluate the proposed algorithm and compare
it with others, we simulate three types of well-known workflows under various as-
sumptions and system configurations. Simulation results show the advantage of the
proposed algorithm in comparison with four most-cited recent algorithms.

The remainder of this paper is organized as follows. In Section 2, some related
work done on scheduling problem, especially on workflow scheduling in grid envi-
ronments, is presented. In Section 3, the scheduling problem in general case and its
details in our context are described. The main proposed critical chain algorithm to-
gether with other sub-methods is presented in Section 4. In Section 5, experimental
results obtained from simulation are given. Finally, Section 6 concludes the paper
and presents the future work which can be done in this research field.

2 RELATED WORK

There are several research works addressing the problem of mapping workflows on
multiprocessors [18, 20, 21]. However, some constraints like communication delays
and specifically budget issues on economic grids make the previously done research
work on multiprocessor systems inefficient when they are applied to the grids.

Foster et al. [22] have described a General-purpose Architecture for Reservation
and Allocation (GARA) that supports QoS specification. Dogan et al. [23] have
studied the scheduling of a set of independent tasks considering some QoS factors
such as reliability, security and timeliness. Tabbaa et al. [24] have presented a new
scheduling algorithm for DAG applications in clusters. The algorithm considers
the failure of resources and tries to schedule tasks to the cluster servers to toler-
ate the faults occurred in the system. Entezari-Maleki et al. [25] have proposed
a genetic-based task scheduling algorithm to minimize the makespan of grid ap-
plications. The algorithm proposed in [25] only considers the makespan as a QoS
factor. However, there are few papers considering the cost of scheduling as a QoS
factor. Kardani-Moghaddam et al. [26] have proposed a hybrid genetic algorithm
and variable neighborhood search which uses a fitness function to balance between
makespan and execution cost of each scheduling solution. Agrawal et al. [27] have ex-
plored linear workflow scheduling for linear workflows, and found an approximation
algorithm to maximize throughput in the one-port model. Moreover, they proved
that finding a schedule respecting a given period and a given latency is NP-hard.

Yu et al. [9] have proposed the deadline-MDP algorithm that divides a DAG to
partitions and then distributes the deadline over the partitions. Finally, deadline-
MDP algorithm tries to locally optimize the cost for each partition using Markov
models. It has been shown that deadline-MDP algorithm outperforms previous
methods such as DTL and greedy cost [9, 10]. The genetic algorithm was used to

842 A. Dehlaghi-Ghadim, R. Entezari-Maleki, A. Movaghar

optimize the time of scheduling under budget constraint in [6]. Zhao et al. [28] have
proposed two algorithms to schedule workflows with budget constraints. The first
algorithm initially schedules all tasks to faster servers and then reschedules some
tasks to meet the desires. Similarly, the second algorithm assigns each task to its
cheapest server, and reschedules the tasks to the faster and more expensive servers
as long as the budget is acceptable. According to Yuan et al. [29], Deadline Bottom
Level (DBL) is a simple and efficient heuristics for workflow scheduling. In this
method, all tasks are divided into several groups based on their bottom level with
a backward method. The overall deadline is distributed over the groups considering
maximum processing cycle of tasks in that group. All tasks in a group inherit
a unique deadline of the corresponding group. Unlike the DTL method [9], the start
time of each task is determined by the latest finish time of its immediate predecessors
instead of the finish time of the last task in the previous level. Although DBL and
DTL are effective and efficient, these algorithms show poor performance in firm
deadlines. Yuan et al. [10] have presented the Deadline Early Tree (DET) method.
First, they create Early Tree which is a spanning tree for primary schedule. Then
they exploit dynamic programming to assign time window to each critical task, and
consequently, find time window for non-critical tasks. Finally, the method tries to
assign cheaper servers to each task according to its time window. The number of
servers was assumed to be unlimited which is unrealistic assumption in most cases.

Cost-effective scheduling of deadline-constrained applications have been also in-
vestigated in hybrid clouds [15, 30, 31, 32, 33, 34]. Henzinger et al. [15] have designed
a framework to handle cost-time trade-off in economic workflow scheduling called
FlexPRICE. They tried to present the cost-time curve to enable users to select the
appropriate deadline with an acceptable price. In fact, FlexPRICE was presented to
solve cloud workflow programming, but the type of the problem is similar to the grid
computing. Fard et al. [35] have introduced a pricing model and a truthful mech-
anism for scheduling single tasks considering monetary cost and completion time.
With respect to the social cost of the mechanism, they extended the mechanism for
dynamic scheduling of scientific workflows. Calheiros et al. [31] have presented an
architecture for coordinated dynamic provisioning and scheduling which is able to
cost-effectively complete applications within their deadlines. They considered the
whole organization workload at individual tasks level, and their accounting mech-
anism was used to determine the share of the cost of utilization of public cloud
resources to be assigned to each user. Poola et al. [30] considered deadline and bud-
get constraints as QoS demanded by users, and tried to design a robust algorithm
for scheduling of scientific workflows.

Abrishami et al. [13] have proposed a partial critical path scheduling based on
properties of critical path. In deadline assignment step, the deadline is distributed
over tasks, and then the cost of each allocation is locally optimized to provide
the best possible result in each allocation. For deadline distribution, the method
iteratively selects a sequence of tasks in the DAG and assigns the deadline to each
member of that sequence. For this assignment, authors apply three different policies
on the deadline distribution method: optimized policy, decrease cost policy, and fair

Cost-Efficient Scheduling for Deadline Constrained Grid Workflows 843

policy. The optimized policy iteratively tests all feasible assignments and selects the
best one. It is obvious that this approach is time consuming, and it is not feasible for
large-scale problems. The decrease policy is based on a greedy method which tries to
approximate the optimized policy. In this policy, each task is assigned to the fastest
server, and it is tried to decrease the cost by rescheduling a task to a cheaper server.
The fair policy is similar to the decrease policy except that starting from the first
task towards the last task in path, it substitutes the assigned server with the next
slower server without exceeding sub-deadline. This procedure continues iteratively
until no substitution can be made. According to the results reported in [13], the
proposed algorithms show high performance in absence of server limitation.

3 PROBLEM DEFINITION

Directed Acyclic Graph (DAG) is one of the most acceptable models to repre-
sent workflow applications. Let G(T,E) denote a DAG representing an application
where T is the task set T = {t1, t2, . . . , tn} in which n is the number of all tasks
in the application. Moreover, edge set E represents the edges of the related DAG
and shows the control or data dependencies between the tasks. The notation eij
denotes an edge from the vertex ti to tj, and means that the task corresponding
to the vertex tj requires input data or command produced by execution of task ti.
Suppose that all tasks are topologically numbered in which each arc demonstrates
the priority of i < j, means that execution of task tj only depends on the tasks
with lower numbers. The tasks having no input (output) edges are named entry
(exit) tasks. For simplicity and without loss of generality, we suppose that always
there is only one entry task in the application. If an application has more than one
entry task, we can simply add a dummy task (a task that requires no processing)
to it to produce our DAG of interest. Similarly, we can do the same for exit task
in the graph. The number attached to each node represents the processing cycle of
the corresponding task in the form of Million Instructions (MI). Also, the number
attached to each arc eij shows the amount of data which should be sent from ti
to tj. Figure 1 shows an example of DAG representation. In the graph represented
in Figure 1, a node with index of i shows task ti.

A service model in the utility grid computing consists of Grid Service Providers
(GSPs) in which each of them provides some servers with specific QoS. The cost of
processing in each server is proportional to the speed of process which means that
if the scheduler allocates a faster server to execute a task, the user has to pay more
cost [9]. Each server supports limited number of task types. We consider each of
GSPs as a grid node. Assume that there are m service providers represented by set S
where S = {s1, s2, . . . , sm}. Hence, for each task, there are several candidate servers
which can execute the task. Assume Tij is the processing time of task ti executed
on server sj, and Cij is its corresponding processing cost. If sj is not capable of
processing ti, we consider both Tij and Cij to simply being infinity. It is assumed
that dummy tasks can be processed on any server.

844 A. Dehlaghi-Ghadim, R. Entezari-Maleki, A. Movaghar

0

1 2

3 4

5

100,000 MI
Type: A

426,000 MI
Type: B

468,000 MI
Type: A

84,000 MI
Type: A

536,000 MI
Type: C

968,000 MI
Type: C

768MB 256MB

1GB 512MB 512MB

512MB 512MB

Figure 1. DAG representation of a sample workflow

In this paper, two well-known QoS measures in grids, execution time and cost,
are considered. Therefore, our objective in this paper is to assign an appropriate
server to the tasks to execute them with the goal of minimizing the overall execution
cost while both tasks’ precedence and application deadline are taken into account.
To achieve this, we can consider workflow scheduling as an optimization problem
with trade-off between time and cost [36]. Let δ denote a given deadline showing
the latest possible finish time of the application or exit task. Let sti and fi denote
the start and finish times of task ti, respectively. Therefore, the workflow scheduling
problem can be formulated as Equation (1).

min Σi∈TΣ1≤k≤mCikxik

S.t.

Σ1≤k≤mxik = 1, i ∈ T,

fi < δ, i ∈ T,

fi − sti = TiS(ti), i ∈ T,

sti > fj + Delay(tj, ti), j ∈ imm preds(i),

xik ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ k ≤ m,

S(ti) = S(tj)⇒ (sti > fj) ∨ (fi < stj), i, j ∈ T

(1)

Cost-Efficient Scheduling for Deadline Constrained Grid Workflows 845

where

xij =

{
1, ti is assigned to sj,

0, otherwise.

The constraint Σ1≤k≤mxik = 1 in Equation (1) checks to make sure that there
is a unique executor for each task. Similarly, condition fi < δ ensures meeting the
overall deadline. Moreover, the constraint fi − sti = TiS(ti) checks the feasibility
of task execution on the server in a given time slice, where S(ti) is the server as-
signed to execute task ti, and TiS(ti) is execution time of task ti on S(ti). Each
task would be executed on a resource only if its required data is transferred to the
resource. This constraint is checked by sti > fj + Delay(tj, ti), where Delay(tj, ti) is
data transmission time on the link between S(ti) and S(tj) which is computed as
Equation (2).

Delay(ti, tj) =
eij

bandwidth(S(ti), S(tj))
(2)

where bandwidth(S(ti), S(tj)) denotes the bandwidth of the link between servers
executing tasks ti and tj.

In our model, it is considered that the number of servers is limited and some
of the servers are busy in some cases, so they cannot be allocated to the tasks.
The constraint S(ti) = S(tj)⇒ (sti > fj) ∨ (fi < stj) checks if the same server is
allocated to execute both tasks ti and tj. If it is, the start time of one of the
tasks (e.g., task tj) has to be greater than the finish time of the another one (e.g.,
task ti). De et al. [36] showed that the time-cost optimization problem for DAG
scheduling is a Discrete Time-Cost Trade-off Problem (DTCTP). DTCTP is an
NP-hard problem, and the best-known solutions use dynamic programming, and
branch and bound method to solve the problem. Unfortunately, these solutions are
extremely time-consuming when the number of tasks and/or servers gets larger.

4 THE PROPOSED ALGORITHM

In order to efficiently schedule the tasks on the servers, we need an initial estimation
of execution times of the tasks on servers. This estimation could help us to identify
critical tasks of the application and schedule them on fast servers to meet the overall
deadline of the application. So, in the first step, we propose an algorithm to divide
the deadline on all tasks. After applying the algorithm of the first step, each task
will have its own deadline in which the task should be processed before that deadline.
The algorithm of the first step works based on the concept of slack time that is well-
known in multiprocessor scheduling community. We use slack time in the deadline
distribution algorithm to obtain the critical path not only for the whole graph, but
also for all its sub-graphs. This method helps us to have fair deadline distribution.
In the second step, in order to meet deadline as much as possible, critical tasks
should be scheduled on faster servers. So, it is a good idea to have task priority in
mapping step. Therefore, some models of priority are used in the mapping step and

846 A. Dehlaghi-Ghadim, R. Entezari-Maleki, A. Movaghar

then dynamic programming technique is exploited to have an efficient sequential
task scheduling.

After describing the totality of the proposed algorithm, details of the algorithm
are provided in the following sections. Some notations used in the algorithm are
introduced in Section 4.1. Deadline distribution over all the tasks is described
in Section 4.2. In Section 4.3, an illustrative example of the proposed deadline
distribution algorithm is provided. After deadline distribution phase, partitioning
technique is explained in Section 4.4. This technique is used to have better mapping
for pipeline branches. Finally, in Section 4.5, the mapping algorithm based on
priority method is explained.

4.1 Basic Definitions

Minimum Execution Time (MET) for task ti refers to the minimum time for an
execution of task ti on the fastest available server which is capable of processing
task ti. Equation (3) shows MET calculation.

MET(ti) = min
s∈S

ET (ti, s) (3)

where S and ET (ti, s) denote the set of servers in the system and the execution time
of task ti on server s, respectively. In fact, mins∈S ET (ti, s) is the execution time of
task ti on the fastest available resource for executing ti.

Minimum Transfer Time (MTT) for arc eij denoted by MTT(eij) refers to the
minimum time for data transmission of eij on the maximum available bandwidth of
the grid. The calculations of MTT(eij) is shown in Equation (4).

MTT(eij) = min
∀S(ti),S(tj)∈S

Delay(ti, tj). (4)

Earliest Start Time (EST) for each task refers to the earliest possible time that
the task can start its execution. In other words, EST shows earliest possible start
time of task ti if all predecessors of ti are executed on the fastest server(s). Similarly,
Latest Finish Time (LFT) of a task refers to the latest possible finish time of the
task while executing all successors of that task on the fastest server does not cause
absolute deadline violation. Therefore, if execution of task ti terminates at the time
LFT + ε and then all other tasks are executed on the fastest server, the execution
of entire application will be finished on the time δ + ε. We can compute EST and
LFT as Equation (5) and Equation (6), respectively.

EST(tentry) = 0,

EST(ti) = max
tp∈imm preds(ti)

(
EST(tp) + MET(tp) + MTT(epi)

)
, (5)

LFT(texit) = δ,

LFT(ti) = min
tc∈imm succs(ti)

(
LFT(tc)−MET(tc)−MTT(eic)

)
. (6)

Cost-Efficient Scheduling for Deadline Constrained Grid Workflows 847

Assume all predecessors and successors of task ti are planned to be executed
on the fastest server(s), so we have a wide range of time to schedule ti. In other
words, we are free to schedule task ti in each part of this time period. Subtracting
minimum execution time of task ti from this time period, slack time of ti shown by
ST(ti), is obtained. In fact, ST(ti) is the maximum possible extra time for executing
task ti minus its minimum execution time. Equation (7) shows the slack time of
task ti.

ST(ti) = LFT(ti)− EST(ti)−MET(ti). (7)

4.2 Deadline Distribution

Assigning a sub-deadline to each task according to the overall deadline of an appli-
cation is the main objective of this step. In other words, we wish to assign a time
window to each task for execution. This time window is determined by Schedule
Start Time (SST) and Schedule Finish Time (SFT). During the deadline assign-
ment, we are dealing with two types of tasks: assigned and unassigned tasks. If
we assign a sub-deadline to a task (specifying both the start and finish times for
the task), it is flagged as an assigned task, otherwise, it is called unassigned task.
Dedicating the time interval of SST and SFT to the tasks does not mean that the
tasks should be executed in these intervals; but these intervals give us an offline
approximation of execution time of tasks based on other tasks within the workflow.
The final goal of deadline distribution phase is assigning fair SST and SFT to each
task. For this purpose, first, we have to compute earliest start time (EST) and latest
finish time (LFT) of each task. Note that, for the assigned tasks, we do not com-
pute EST and LFT measures, because they are equal to SST and SFT, respectively.
Deadline assignment procedure is represented in Algorithm 1.

This algorithm begins with computing MET and MTT for all tasks, and then it-
eratively updates EST, LFT, and ST for each task and chooses a chain of unassigned
tasks having minimum slack time. Considering this procedure, we certainly have
a sequence of consecutive unassigned tasks that have minimum slack time. The first
element of this sequence has assigned parent tasks and the last element has assigned
child tasks. We call this sequence as critical chain. In other words, a critical chain
is a sequence of unassigned tasks in which each task ti is the immediate successor of
task ti−1 in the chain. Moreover, all tasks in the critical chain have the same slack
time which is the minimum one amongst slack times of all unassigned tasks within
the application. If there is more than one critical chain with the aforementioned
characteristic, one of them is arbitrarily chosen.

After selecting a critical chain, a time window can be assigned to each task
of the chain. Let CST (Chain Start Time) denote a maximum LFT of immediate
predecessors of the first task in the chain, and similarly, CFT (Chain Finish Time)
denote a LFT of the last task in the chain. Now, we have a chain interval time
CFT–CST which should be distributed over chain’s tasks. We have already dis-
tributed this time interval to all tasks of the chain considering MET of each task.
Actually, SST of the first task in the chain is its CST. Therefore, to obtain SFT

848 A. Dehlaghi-Ghadim, R. Entezari-Maleki, A. Movaghar

Algorithm 1: Deadline Distribution

1 Input: Application

/* initialization */

forall ti ∈ Application do
Compute MET(ti);
Compute MTT(ti);

end

while (there are unassigned tasks) do
Update EST and LFT for all unassigned tasks;
minSlack←−∞;
chain← null;

/* Check for critical sequence of task to schedule */

for i = 0 to i = numberOfTasks− 1 do
if IsAssigned(ti) then

continue;
end
ST(ti)←− LFT(ti)− EST(ti)−MET(ti) ;
if ST(ti) < minSlack then

sequence←− null ;
add ti to the end of sequence ;
minSlack←− ST(ti);

else if TF (ti) = minSlack then
if sequence.lastItem is imm pred of ti then

add ti to the end of sequence
end

end

end
/* distribute deadline over some partitions */

CST←− max
t∈imm Preds(Sequence.firstItem)

LFT(t);

CFT←− LFT(sequence.lastItem) ;

Distribute deadline (CFT− CST) over all partitions in sequence
proportional to MET(ti) ;

end

(sub-deadline) of a task, it is sufficient to only add time interval assigned to the task
to its SST. SST of the next task in the chain is also equal to SFT of the previous
task in that chain. It turns out that SFT of the last task in the chain is equal to
CFT. We mark all the tasks in the chain as assigned tasks and update unassigned
tasks’ EST and LFT measures and then continue with selecting a new critical chain.

Cost-Efficient Scheduling for Deadline Constrained Grid Workflows 849

This procedure goes on until all tasks are assigned. It should be mentioned that
for each assigned task, EST and LFT are considered as SST and SFT, respectively.
By assigning time window to the last task, sub-deadline assignment procedure is
completed.

Finding computational complexity of the proposed deadline distribution algo-
rithm is beyond the scope of this paper, but intuitively, it can be seen that in the
worst-case, the algorithm assigns sub deadline to at least one task in each iteration.
Moreover, the complexity of each iteration for updating SST and SFT is O(n2),
where n is the number of tasks in the workflow. Therefore, the computational com-
plexity of the algorithm is O(n3), but the upper bound can be more tight than
stated. This bound is pessimistic and the practical complexity for real applications
is much less than this value. From another point of view, we can consider that the
complexity of updating SST, SFT and ST is O(e), where e is the number of depen-
dency relations between the tasks, or the number of edges in DAG representing of
the workflow. Therefore, the computational complexity of the algorithm is O(ne).
Since e can take (n)(n + 1)/2 in worst case, the computational complexity of our
proposed algorithm is O(n3).

4.3 An Illustrative Example

Figure 2 is an example of critical chain deadline distribution for workflow application
shown in Figure 1 while a sample grid environment with the specification presented
in Table 1 is considered. Each processing node in the sample grid has its own
specific processing power indicating million instructions that the node can process
per second (MIPS). Obviously, different processing nodes have different usage prices
based on their processing speeds. In this sample, bandwidths of all links among
the servers are assumed to be 512 Mbps. In Figure 2 A), MET and MTT measures
are shown for each task. As an example, task t2 has 426 000 MI with computation
requirement type of B. The fastest server which can execute this task is server s2.
Therefore, MET(t2) is 426 000 MI/2 000 MIPS = 213 S. Similarly, we can compute
MTT and MET measures for all tasks.

We can compute sub-deadlines for this example in three iterations shown in
Figure 2 B) to Figure 2 D). The measures EST, LST and ST are computed for all
tasks, and critical chain is obtained (e.g., {t0, t2, t4, t5}). This step is shown in
Figure 2 B). In the first iteration, chain interval is equal to whole deadline (1250).
Since, task t2 needs 225 seconds to be completed (MET + MTT = 213 s + 12 s =
225 s), and task t4 needs 125 seconds, the time assigned to task t2 is 225/125 = 9/5
times greater than the time assigned to task t4. Similarly, the time interval will be
distributed over all members of the critical chain. Iteratively, we update EST, LST
and ST measures to obtain another critical chain (chain {t1} in Figure 2 C)). Since,
there exists only one task in critical chain shown in Figure 2 C), the whole time
interval is assigned to task t1, and SST and SFT measures of task t1 are set to 50
and 500, respectively (Figure 2 D)). Finally, SST and SFT measures related to task
t3 are forced to be 500 and 750, respectively.

850 A. Dehlaghi-Ghadim, R. Entezari-Maleki, A. Movaghar

0

1 2

3 4

5

MET = 25s

MET=213s

MET = 117s

MET= 21s

MET=134s

MET = 242s

MTT=12s MTT=4s

MTT=16s MTT=8s
MTT=8s

MTT=8s

MTT=8s

A 0

1 2

3 4

5

EST = 0s
LFT = 650s
FT = 625s

EST = 37s
LFT = 875s
FT = 625s

EST = 258s
LFT = 1000s
FT =625s

EST = 383s
LFT = 1250s
FT = 625s

EST = 29s
LFT = 850s
FT = 800s

EST = 66s
LFT = 1000s
FT = 800s

Current Critical Chain

Other Dependencies

B

0

1 2

3 4

5

SST = 0s
SFT = 50s

EST = 54s
LFT = 500s
FT = 425s

EST = 91s
LFT = 750s
FT = 525s

Current Critical Chain

Other Dependencies

SST = 50s
SFT = 500s

SST = 500s
SFT = 750s

SST = 750s
SFT = 1250s

C

Current Critical Chain

SST = 50s
SFT = 500s

0

1 2

3 4

5

SST = 0s
SFT = 50s

EST = 91s
LFT = 750s
FT = 525s

Other Dependencies

SST = 50s
SFT = 500s

SST = 500s
SFT = 750s

SST = 750s
SFT = 1250s

D

Figure 2. Deadline distribution over a sample workflow

4.4 Partitioning Technique

Partitioning is a method to optimally solve branches with several sequential tasks
in grid workflows [9]. In partitioning model, tasks are divided into two different
categories: simple tasks and synchronization tasks. If a task has at most one im-
mediate predecessor, and at most one immediate successor, then the task is named
simple task, otherwise, it is called synchronization task. We use the word branch

Server Server Type
Processing Power Price per Second

(MIPS) ($)

s1 A, B, D 1 000 0.001

s2 B, C, E 2 000 0.004

s3 A, C, D, E 4 000 0.016

Table 1. Sample grid specification with three processing nodes

Cost-Efficient Scheduling for Deadline Constrained Grid Workflows 851

to refer to several sequential simple tasks (a sub-graph like a pipeline workflow).
The mapping problem of branches can be solved using dynamic programming and
hidden Markov model. In Markov model, each of the states can be considered as
a triple like [termination time, number of scheduled tasks in a branch, last scheduled
server]. Afterwards, one can calculate value of each state with the help of previous
states using dynamic programming. In this problem, the value of each Markov state
is the cost of scheduling. The detailed description of partitioning technique can be
found in [9]. Moreover, it should be mentioned that partitioning does not take part
in deadline distribution phase of the proposed algorithm. This technique is used
besides mapping phase. First, we partition the workflow in the branches, and then,
in the mapping phase, we allocate a resource to all tasks in the branch with dynamic
programming if we encounter a branch.

It remains a subtle point that dynamic programming is very time consuming,
and calculation time extremely increases with increasing the problem size. Size of
this problem depends on three different factors: the number of branch tasks, number
of servers, and termination time range. The number of branch tasks and servers are
constant values and if those numbers get higher, dynamic programming becomes
inefficient. In almost all cases in our problem, we encounter few task branches
with limited number of servers which can process each task. Therefore, dynamic
programming can appropriately tolerate those factors in our case. As mentioned
earlier, the third factor is termination time. If the time interval is wide, then we can
segment the time to larger time pieces. Actually, we can handle larger problems in
exchange for a bit of accuracy using segmentation.

4.5 Mapping Based on Priority

In the mapping phase, we try to map servers to the tasks to optimize the overall
cost besides meeting the overall deadline. To do this, it is tried to have a local
optimization in server allocation process to hopefully reach the global optimization.
In the mapping phase, we iteratively pass over three steps. Mapping algorithm
firstly selects a ready task (partition), a task that all of its immediate predecessors
have been executed. Secondly, it updates the start time of unscheduled tasks to
the minimum finish time of immediate predecessor plus delay of incoming link of
predecessor. When there are one or more processors for processing a task before
expiring its deadline, we choose the cheapest processor among those. If there is no
server available to fulfill task’s deadline, a server with minimum deadline violation
is selected. Since both the number and power of the servers existing in the system
are limited, it is important to have a priority algorithm to select a ready task to be
assigned to the limited servers. The following three different methods for priority-
based mapping are used in this paper:

Simple priority: A ready task with lower task ID has higher priority for scheduling
in this method. Using this mechanism, we can simulate random priority.

852 A. Dehlaghi-Ghadim, R. Entezari-Maleki, A. Movaghar

Start time priority: A ready task with minimum start time has higher priority
during the mapping phase. The main idea of start time priority method is that
if a task has a lower start time, then there are probably more tasks waiting
for that task, so it should be scheduled as soon as possible. The other idea
behind start time priority is that, as soon as there is a ready task available for
scheduling, it may be better to schedule it and do not wait for other tasks to
become ready.

Slack time priority: For each ready task, a measure named slack time is com-
puted using SST and SFT measures. Equation (8) computes slack time for each
task.

ST(ti) = SFT(ti)− SST(ti)−MET(ti). (8)

In slack time priority, the ready task with minimum slack time is prior to be
scheduled. The main idea of slack time priority method is that if a task has
lower slack time, then scheduling this task is more likely to be critical, and post-
poning its scheduling may lead to local sub-deadline violation and, consequently,
possible global deadline violation.

According to the results presented in Section 5, slack time priority shows better
performance in comparison with two other approaches. Finally, for the sake of
brevity, we only present the performance analysis of the slack time priority.

5 PERFORMANCE EVALUATION

Accurate performance evaluation not only depends on the perfect implementation
of the proposed and benchmark algorithms, but also it highly relies on the test
data and experimental setup. In this section, it is described how workflow test sets
are generated, and what are the main experimental setups. After that, the results
obtained from the experiments are presented.

5.1 Generating Workflows

Three types of common workflow structures, pipeline, parallel and hybrid work-
flows [9, 10, 11, 13, 14, 19, 37], are considered in this paper. These structures are
shown in Figure 3. Pipeline workflow consists of numbers of tasks in a sequential
order (Figure 3 A)). Parallel workflows include multiple pipelines with some middle
synchronizer tasks (Figure 3 B)). Hybrid workflows are combinations of pipeline and
parallel workflows in an arbitrary order (Figure 3 C)). Structure of pipeline workflows
is simple, but many factors influence on construction of parallel and hybrid work-
flows. Most important factors in parallel workflow construction are the maximum
width of graph (the number of parallel pipeline chains), and maximum number of
possible sub-pipeline tasks. We set the maximum width and the maximum pipeline
length to 10 and 20, respectively. There is no constraint on choosing other numbers
for width and maximum pipeline length. We just choose those numbers according

Cost-Efficient Scheduling for Deadline Constrained Grid Workflows 853

A) Pipeline B) Parallel C) Hybrid

Entry Task Simple Task Exit Task

Figure 3. Different types of random workflow structures

to previously done similar work [10]. Generating hybrid workflow structures is more
complex. There are some papers addressing this problem [37, 38, 39]. They study
parametric features of each generation method such as average critical path length
and average edge. In [39], a tool for random graph generation, named TGFF, which
is approximately fair in graph generation was presented. According to study done
by Cordeiro et al. [37], the Max-in/Max-out degree method is one of the best meth-
ods for workflow generation. Hence, TGFF is used in this paper to produce hybrid
workflows with Max-in/Max-out method. For TGFF method, the Max-in (Max-out)
parameters are considered from 1 to 3 (Maxin(Maxout) ∈ {1, 2, 3}), and the number
of tasks varies from 30 to 1000. Figure 3 C) shows a sample output of TGFF with
specified parameters. In addition to random workflows, we compare the proposed
method with other algorithms applying the standard workflows used in [13] called
CyberShake, Montage, LIGO, Gnome, and SIPHT, which are real workflows in the
scientific or business communities.

5.2 Experimental Setup

We consider details of real environments in our experiments such as grid structure,
network bandwidth, processing power of each processing node, largeness of work-
flows, deadline determination and so forth. All assumptions made in this work are
consistent with previously done research work [6, 9, 10, 13, 14]. In this section, we
have a glance on implementation details.

Workflow Specification: The structures of workflows are chosen randomly as il-
lustrated in Section 5.1. From the viewpoint of granularity, we consider three

854 A. Dehlaghi-Ghadim, R. Entezari-Maleki, A. Movaghar

types of workflows: small, medium and large. The number of tasks vary from
30 to 200, from 200 to 600, and from 600 to 1 000 in small, medium and large
workflows, respectively. For the heterogeneity of workflows, it is assumed that
each task has specific processing requirements. We assume there are 15 different
types of tasks. Moreover, the size of each task varies from 100 000 MI to 900 000
MI in this study. For each workflow, there are several exit tasks and only one
entry task. Each task can be executed as soon as its corresponding resource
receives the required data for processing that task. The input/output data for
the task changes from 10 MB to 1 GB, as well.

Grid Specification: To simulate the server heterogeneity in grid network, we con-
sider 15 different types of services, each service supported by 10 different grid
servers. Network bandwidth between each two grid servers is considered to be
in the range of 200 Mbps to 512 Mbps. Grid server processing power shown by
MIPS (Million Instructions Per Second) varies from 1 000 MIPS to 5 000 MIPS
for each node. For each processing node there is a price proportional to its power
ranging from 0.001 $ to 0.025 $. This means that executing a task on a server
with a processor n times faster than another, imposes n times more cost to the
scheduling.

Hardware Specification: We run the simulation on a regular PC with Intel R©
CoreTM i5-4200M (3M Cache, up to 3.10 GHz) and 4 GB RAM. Based on this
hardware configuration, each test case runs in 1 to 2 seconds (except for huge
pipeline workflows), and consequently, each test set containing more than 500
different test cases runs in less than 30 minutes. For a pipeline workflow test
case with 200 tasks, it takes up to 5 minutes to run. It turns out that the time
required to run the simulation reduces by using more powerful hardware.

Deadline Assignment: Each workflow is tested with 9 different deadlines, i.e.,
δn = Tmin×θ, where Tmin is the minimum completion time for that workflow on
the specified grid, and θ ∈ {1, 1.05, 1.1, 1.15, 1.2, 1.5, 2, 2.5, 3}. Practically, there
is no need to consider θ > 3, because in that range, all tasks are delivered to
lower and cheaper processing nodes, and approximately all methods show the
same efficiency. Determining Tmin is an NP-hard problem, so we use HEFT
greedy algorithm [28] to estimate minimum completion time.

5.3 Result Analysis

We compare our method with four recent most-cited methods: PCP Fair, PCP
Decrease, DTL, and DBL [9, 13, 29]. As mentioned earlier, we use three types
of workflows to do experiments. Each of random workflows is tested by over 800
instances to achieve more reliable results. Each instance is tested by 5 different
methods with 8 different deadlines, and the experiment is done with near 100 000
iterations. Three different priority-based mapping methods are tested, but for the
sake of brevity, only one of the results is reported here.

Cost-Efficient Scheduling for Deadline Constrained Grid Workflows 855

DBL DTL Decrease PCP Fair PCP Critical Chain

Small 0 0 0 0 100
PipeLine Medium 0 0 0 0 100

Large 0 0 0 0 100

Small 10.4 10.5 0.33 0.22 89
Parallel Medium 11.88 11.78 2.78 1.56 83.69

Large 17 17 0.22 13.44 69.33

Small 26.02 25.4 0.34 11.23 48.87
Hybrid Medium 20.09 22.10 2.91 22.27 31.58

Large 29.89 24.66 0 16.31 36.62

Table 2. Best result percentage

In our study, an algorithm is superior to another if it appropriately satisfies the
following three properties:

Best results: if results of two different schedulings violate the deadline, the result
that has the minimum time is the best result for our case study. If none of
them has deadline violation, the result with the minimum scheduling price is
the best one. An algorithm with maximum percentage of best results is named
best suitable algorithm in our study.

Deadline Violation Rate (DVR): if an algorithm has minimum deadline viola-
tion rate, then it is superior to the others.

Average cost: the algorithm with minimum average cost is preferred to the others.

The best result percentages of all algorithms for all test sets are given in Ta-
ble 2. As it can be seen in Table 2, from the aspect of the best results percent-
age, the proposed critical chain method is dominant. This means that for most of
the applications, critical chain shows the best performance compared to the other
benchmarks.

In pipeline workflows, critical chain uses dynamic programming for branches,
and computes optimal solution; therefore, this method is dominant in this type
of workflows. Since the algorithm produces best result in pipeline workflows, the
percentage of the test cases on which any other method can produce best result is
zero. This is shown in Table 2 by elements 0 inside cells related to the pipeline
workflows. It should be mentioned that since the scheduling problem considered
in this paper belongs to the set of NP-hard problems, and there is no polynomial
solution to solve it, we tried to solve it by dynamic programming that is very time
consuming. Therefore, the best solution with 100% confidence in pipeline workflows
is achieved by imposing extra scheduling time on the scheduler. Dynamic program-
ming imposes heavy computational overhead to the scheduler, so that, computing
the best solution for over 200 sequential tasks in a reasonable time is impractical for
schedulers. For the parallel workflows, our algorithm is dominant too with a slight
decrease in performance in comparison with other algorithms. Parallel workloads

856 A. Dehlaghi-Ghadim, R. Entezari-Maleki, A. Movaghar

contain many pipeline chains and our algorithm uses dynamic programming and
fair deadline distribution to receive this performance. If we consider a very long
length for a parallel workload, then we have to solve many long pipeline problems
to schedule the long-length parallel workload, and as a result, we may encounter the
performance problem described above. It is worthwhile to mention that schedul-
ing parallel workloads has no polynomial optimal solution. Therefore, performance
degradation in comparison with pipeline workflows is reasonable. In the hybrid
workflows, the pipeline chains are in minority, so dynamic programming cannot be
useful further, but our algorithm still shows relatively good performance. We be-
lieve that our deadline distribution method has an important role to achieve this.
Based on the simulations done, we found that increasing the size of the graph does
not considerably change the results. Hence, the proposed algorithm shows the same
performance for different workflow sizes. In other words, the structure of a workflow
has much greater impact on the results. We continue to analyze the algorithms in
the view of deadline violation rate and average cost properties for each of the work-
flow structures. For the sake of brevity, we depict only two classes of diagrams for
each workflow type. The left-side diagrams in Figure 4 show average cost resulted by
algorithms. Since these diagrams show the average cost for all small, medium, and
large applications, they should be normalized to match with each other in a single
diagram. The Normalized Cost (NC) is computed as Equation (9).

NC =
Scheduling Cost

Minimum Scheduling Cost
. (9)

After scheduling each workflow, the cost resulting from the scheduling is divided
by the minimum scheduling cost obtained from a greedy algorithm and then NC is
achieved. The minimum scheduling cost is obtained from greedy scheduler that
assigns each task to the cheapest resource with unlimited deadline. The right-
side diagrams in Figure 4 show the deadline violation rate of the algorithms. If
a violation rate of one algorithm is α with β as a deadline factor, it means that α is
the probability of deadline violation by applying that scheduling algorithm with
β × Tmin as a deadline. All algorithms try to schedule all tasks to faster servers
whenever deadlines are firm (deadline = 1). This tends to increase the scheduling
cost resulted from all methods. Moreover, the rate of deadline violation increases in
this situation. Expanding the deadline associated with each task, and as a result,
increasing the overall deadline of the workflow, deadline violation rate and execution
cost resulted from all algorithms decrease.

For the pipeline (Figure 4 A) and Figure 4 B)) and parallel (Figure 4 C) and
Figure 4 D)) workflows, DVR and NC for critical chain get minimum values com-
pared to the other algorithms. This shows that the best method for scheduling
these types of workflows amongst all of the algorithms implemented in this paper
is critical chain. For hybrid workflows (Figure 4 E) and Figure 4 F)) DVR in all
deadlines and NC for soft deadlines are minima in critical chain method, but in
the firm deadlines, NC for critical chain is slightly more than DBL algorithm. It is

Cost-Efficient Scheduling for Deadline Constrained Grid Workflows 857

A- NC for Pipeline Workflows

B- DVR for Pipeline Workflows

C- NC for Parallel Workflows

D- DVR for Parallel Workflows

E- NC for Hybrid Workflows F- DVR for Hybrid Workflows

0

0.5

1

1.5

2

2.5

1 1.05 1.1 1.15 1.2 1.5 2 2.5

No
rm

ali
ze

d
Co

st

Deadline Factor

DBL Dtl PCP Decrease PCP Fair Critical chain

0

0.05

0.1

0.15

0.2

0.25

0.3

1 1.05 1.1 1.15 1.2 1.5 2 2.5

De
ad

lin
e

Vi
ol

at
io

n
Ra

te

Deadline Factor

DBL Dtl PCP Decrease PCP Fair Critical Chain

0

0.5

1

1.5

2

2.5

1 1.05 1.1 1.15 1.2 1.5 2 2.5 3

No
rm

al
ize

d
Co

st

Deadline Factor

DBL Dtl PCP Decrease PCP Fair Critical Chain

0

0.2

0.4

0.6

0.8

1

1.2

1 1.05 1.1 1.15 1.2 1.5 2 2.5 3

De
ad

lin
e

Vi
ol

at
io

n
Ra

te

Deadline Factor

DBL Dtl PCP Decrease PCP Fair Critical Chain

0

0.5

1

1.5

2

2.5

1 1.05 1.1 1.15 1.2 1.5 2 2.5 3

No
rm

ali
ze

d
Co

st

Deadline Factor

DBL Dtl PCP Decrease PCP Fair MCP Simple

0

0.2

0.4

0.6

0.8

1

1.2

1 1.05 1.1 1.15 1.2 1.5 2 2.5 3

De
ad

lin
e V

io
lat

io
n

Ra
te

Deadline Factor

DBL Dtl PCP Decrease PCP Fair Critical Chain'VMXMGEP 'LEMR

Figure 4. Comparison of Normalized Cost (NC) and Deadline Violation Rate (DVR) re-
sulted from all algorithms for random workflows

predictable, because in a firm deadline, critical chain tries to not exceed deadline
by scheduling tasks on the faster (consequently more expensive) resources. Finally,
it can be stated that DVR and average NC for critical chain are minima in compar-
ison with other algorithms. Hence, the proposed critical chain method outperforms
previous methods from the viewpoint of best results, deadline violation rate, and
average cost.

As mentioned in Section 5.1, we apply our proposed algorithm on realistic stan-
dard workflows presented in [13]. The results obtained from applying the proposed
algorithm on medium size workflows including CyberShake, Montage, and LIGO are
presented in Figure 5, and similarly the results gained from workflows with large
and small sizes, Gnome and SIPHT, are presented in Figure 6. As can be seen in

858 A. Dehlaghi-Ghadim, R. Entezari-Maleki, A. Movaghar

B – DVR for CyberShake Workflow

A – NC for CyberShake Workflow

D – DVR for Montage Workflow

C – NC for Montage Workflow

F – DVR for LIGO Workflow

E – NC for LIGO Workflow

0

0.2

0.4

0.6

0.8

1

1.2

1 1.05 1.1 1.15 1.5 2 2.5 3

D
ea

dl
in

e
Vi

ol
at

io
n

R
at

e

Deadline Factor

DBL Dtl PCP Decrease PCP Fair Critical Chain

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

1 1.05 1.1 1.15 1.5 2 2.5 3

N
or

m
al

iz
ed

 C
os

t

Deadline Factor

Chart TitleDBL Dtl PCP Decrease PCP Fair MCP_s2_floatCritical Chain

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.05 1.1 1.15 1.5 2 2.5 3

D
ea

dl
in

e
Vi

ol
at

io
n

R
at

e

Deadline Factor

DBL Dtl PCP Decrease PCP Fair MCP_s2_floatCritical Chain

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

1 1.05 1.1 1.15 1.5 2 2.5 3

N
or

m
al

iz
ed

 C
os

t

Deadline Factor

DBL Dtl PCP Decrease PCP Fair MCP_s2_floatCritical Chain

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 1.05 1.1 1.15 1.5 2 2.5 3

D
ea

dl
in

e
Vi

ol
at

io
n

R
at

e

Deadline Factor

DBL Dtl PCP Decrease PCP Fair MCP_s2_floatCritical Chain

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

1 1.05 1.1 1.15 1.5 2 2.5 3

N
or

m
al

iz
ed

 C
os

t

Deadline Factor

DBL Dtl PCP Decrease PCP Fair MCP_s2_floatCritical Chain

Figure 5. Comparison of Normalized Cost (NC) and Deadline Violation Rate (DVR) re-
sulted from all algorithms for standard benchmark workflows with medium sizes

both Figure 5 and Figure 6, our algorithm dominates other algorithms in average
by minimizing DVR and reducing the scheduling cost.

6 CONCLUSIONS AND FUTURE WORK

The basic principle used in utility computing and grid computing is identical which is
providing computational resources as a service. One of the most important problems
in such environments is scheduling deadline constrained bag-of-tasks applications on
computational resources. In this paper, we study the deadline of applications as one

Cost-Efficient Scheduling for Deadline Constrained Grid Workflows 859

B – DVR for Gnome Workflow (Large size)

A – NC for Gnome Workflow (Large size)

D – DVR for SIPHT Workflow (Small size)

C – NC for SIPHT Workflow (Small size)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 1.05 1.1 1.15 1.5 2 2.5 3

D
ea

dl
in

e
Vi

ol
at

io
n

R
at

e

Deadline Factor

DBL Dtl PCP Decrease PCP Fair MCP_s2_floatCritical Chain

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

1 1.05 1.1 1.15 1.5 2 2.5 3

N
or

m
al

iz
ed

 C
os

t

Deadline Factor

DBL Dtl PCP Decrease PCP Fair MCP_s2_floatCritical Chain

0

0.2

0.4

0.6

0.8

1

1.2

1 1.05 1.1 1.15 1.5 2 2.5 3

D
ea

dl
in

e
Vi

ol
at

io
n

R
at

e

Deadline Factor

DBL Dtl PCP Decrease PCP Fair MCP_s2_floatCritical Chain

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

1 1.05 1.1 1.15 1.5 2 2.5 3

N
or

m
al

iz
ed

 C
os

t

Deadline Factor

DBL Dtl PCP Decrease PCP Fair MCP_s2_floatCritical Chain

Figure 6. Comparison of Normalized Cost (NC) and Deadline Violation Rate (DVR) re-
sulted from all algorithms for standard benchmark workflows with large and small sizes

of the more interesting factors in grid computing, and try to deliver a service with
specified QoS and minimum cost. Therefore, our problem can be considered as
a time-cost trade-off problem. To solve this optimization problem, two-step critical
chain heuristic is presented. In deadline distribution phase, the algorithm applies
a fairer mechanism to better deadline distribution, which finally, leads to lower
cost of service. In the second step named resource allocation phase, resources are
allocated to the tasks efficiently according to the priority of tasks. Finally, applying
the proposed method to different scenarios and system settings, it is shown that the
proposed approach outperforms other similar existing methods.

Critical chain is applicable in other distributed computing domains such as
clouds. In cloud systems, customers can select their desired service based on their
budget and time constrains, and pay for using these services. Therefore, the prob-
lem of scheduling workflow applications on limited resources considering time and
budget constraints is an interesting problem in clouds. So, one possible extension
to this work is applying the proposed critical chain method on scheduling workflows
in cloud infrastructures considering their specific characteristics and requirements.

Critical path-based deadline distribution has deficiency in bursting tasks. In
other words, if the workflow width becomes unpredictable during the specified time
period, the deadline distribution based on critical path with any available method
would be inefficient. So, one can modify the proposed method to handle this type

860 A. Dehlaghi-Ghadim, R. Entezari-Maleki, A. Movaghar

of workflows. Furthermore, considering the map-reduce structure as a new type of
workflows and modifying the proposed method to have high performance in map-
reduce workflows can be assumed as another objective. Evaluating other perfor-
mance measures such as resource utilization and taking server setup cost into ac-
count can be considered as an important direction for improvements of the current
work.

REFERENCES

[1] Foster, I.—Kesselman, C.: The Grid 2: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, San Francisco, CA, USA, 2004.

[2] Czajkowski, K.—Fitzgerald, S.—Foster, I.—Kesselman, C.: Grid Informa-
tion Services for Distributed Resource Sharing. Proceedings of the 10th IEEE Inter-
national Symposium on High Performance Distributed Computing, San Francisco,
CA, USA, August 2001, pp. 181–194, doi: 10.1109/HPDC.2001.945188.

[3] Broberg, J.—Venugopal, S.—Buyya, R.: Market-Oriented Grids and Utility
Computing: The State-of-the-Art and Future Directions. Journal of Grid Computing,
Vol. 6, 2008, No. 3, pp. 255–276, doi: 10.1007/s10723-007-9095-3.

[4] Toporkov, V.—Yemelyanov, D.—Potekhin, P.—Toporkova, A.—Tseli-
shchev, A.: Metascheduling and Heuristic Co-Allocation Strategies in Distributed
Computing. Computing and Informatics, Vol. 34, 2015, No. 1, pp. 45–76.

[5] Yu, J.—Buyya, R.—Ramamohanarao, K.: Workflow Scheduling Algorithms for
Grid Computing. In: Xhafa, F., Abraham, A. (Eds.): Metaheuristics for Scheduling
in Distributed Computing Environments. Springer, Berlin, Heidelberg, Studies in
Computational Intelligence, Vol. 146, 2008, pp. 173–214.

[6] Yu, J.—Buyya, R.: A Budget Constrained Scheduling of Workflow Applica-
tions on Utility Grids Using Genetic Algorithms. The Workshop on Workflows
in Support of Large-Scale Science, Paris, France, June 2006, pp. 1–10, doi:
10.1109/WORKS.2006.5282330.

[7] Dong, F.—Akl, S. G.: Scheduling Algorithms for Grid Computing: State of the
Art and Open Problems. Technical Report No. 2006-504: School of Computing,
Queen’s University, Kingston, Ontario, 2006, pp. 1–55.

[8] Atanak, M. M.—Dogan, A.: Improving Real-Time Data Dissemination Perfor-
mance by Multi Path Data Scheduling in Data Grids. Computing and Informatics,
Vol. 34, 2015, No. 2, pp. 402–424.

[9] Yu, J.—Buyya, R.—Tham, C. K.: Cost-Based Scheduling of Scientific Workflow
Applications on Utility Grids. Proceedings of the 1st International Conference on
e-Science and Grid Computing, Melbourne, Australia, December 2005, pp. 140–147.

[10] Yuan, Y.—Li, X.—Wang, Q.—Zhu, X.: Deadline Division-Based Heuristic for
Cost Optimization in Workflow Scheduling. Information Sciences, Vol. 179, 2009,
No. 15, pp. 2562–2575.

[11] Rahman, M.—Venugopal, S.—Buyya, R.: A Dynamic Critical Path Algo-
rithm for Scheduling Scientific Workflow Applications on Global Grids. Proceed-

https://doi.org/10.1109/HPDC.2001.945188
https://doi.org/10.1007/s10723-007-9095-3
https://doi.org/10.1109/WORKS.2006.5282330

Cost-Efficient Scheduling for Deadline Constrained Grid Workflows 861

ings of the 3rd IEEE International Conference on e-Science and Grid Computing
(e-Science 2007), Bangalore, India, December 2007, pp. 35–42, doi: 10.1109/E-
SCIENCE.2007.3.

[12] Alkhanak, E. N.—Lee, S. P.—Khan, S. U. R.: Cost-Aware Challenges for Work-
flow Scheduling Approaches in Cloud Computing Environments: Taxonomy and
Opportunities. Future Generation Computer Systems, Vol. 50, 2015, pp. 3–21, doi:
10.1016/j.future.2015.01.007.

[13] Abrishami, S.—Naghibzadeh, M.—Epema, D. H. J.: Cost-Driven Scheduling of
Grid Workflows Using Partial Critical Paths. Proceedings of the 11th IEEE/ACM
International Conference on Grid Computing, Brussels, Belgium, October 2010,
pp. 81–88, doi: 10.1109/GRID.2010.5697955.

[14] Yao, Y.—Liu, J.—Ma, L.: Efficient Cost Optimization for Workflow Scheduling
on Grids. Proceedings of the International Conference on Management and Service
Science, Wuhan, China, August 2010, pp. 1–4, doi: 10.1109/ICMSS.2010.5577645.

[15] Henzinger, T. A.—Singh, A. V.—Singh, V.—Wies, T.—Zufferey, D.: Flex-
PRICE: Flexible Provisioning of Resources in a Cloud Environment. Proceedings of
the 3rd IEEE International Conference on Cloud Computing, Miami, USA, July 2010,
pp. 83–90, doi: 10.1109/CLOUD.2010.71.

[16] Arabnejad, H.—Barbosa, J. G.—Prodan, R.: Low-Time Complexity Bud-
get–Deadline Constrained Workflow Scheduling on Heterogeneous Resources.
Future Generation Computer Systems, Vol. 55, 2016, pp. 29–40, doi:
10.1016/j.future.2015.07.021.

[17] Rahman, M.—Hassan, R.—Ranjan, R.—Buyya, R.: Adaptive Workflow
Scheduling for Dynamic Grid and Cloud Computing Environment. Concurrency and
Computation: Practice and Experience, Vol. 25, 2013, No. 13, pp. 1816–1842.

[18] Kwok, Y. K.—Ahmad, I.: Dynamic Critical-Path Scheduling: An Effective Tech-
nique for Allocating Task Graphs to Multiprocessors. IEEE Transactions on Parallel
and Distributed Systems, Vol. 7, 1996, No. 5, pp. 506–521.

[19] Lin, M.—Lin, Z.: A Cost-Effective Critical Path Approach for Service Priority
Selections in Grid Computing Economy. Decision Support Systems, Vol. 42, 2006,
No. 3, pp. 1628–1640.

[20] Tabbaa, N.—Entezari-Maleki, R.—Movaghar, A.: Reduced Communications
Fault Tolerant Task Scheduling Algorithm for Multiprocessor Systems. Procedia En-
gineering, Vol. 29, 2012, pp. 3820–3825, doi: 10.1016/j.proeng.2012.01.577.

[21] Yang, T.—Gerasoulis, A.: DSC: Scheduling Parallel Tasks on an Unbounded
Number of Processors. IEEE Transactions on Parallel and Distributed Systems,
Vol. 5, 1994, No. 9, pp. 951–967.

[22] Foster, I.—Fidler, M.—Roy, A. J.—Sander, V.—Winkler, L.: End-to-End
Quality of Service for High-End Applications. Computer Communications, Vol. 27,
2004, No. 14, pp. 1375–1388, doi: 10.1016/j.comcom.2004.02.014.

[23] Dogan, A.—Ozguner, F.: Scheduling Independent Tasks with QoS Requirements
in Grid Computing with Time-Varying Resource Prices. In: Parashar, M. (Ed.): Grid
Computing – GRID 2002. Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 2536, 2002, pp. 58–69.

https://doi.org/10.1109/E-SCIENCE.2007.3
https://doi.org/10.1109/E-SCIENCE.2007.3
https://doi.org/10.1016/j.future.2015.01.007
https://doi.org/10.1109/GRID.2010.5697955
https://doi.org/10.1109/ICMSS.2010.5577645
https://doi.org/10.1109/CLOUD.2010.71
https://doi.org/10.1016/j.future.2015.07.021
https://doi.org/10.1016/j.proeng.2012.01.577
https://doi.org/10.1016/j.comcom.2004.02.014

862 A. Dehlaghi-Ghadim, R. Entezari-Maleki, A. Movaghar

[24] Tabbaa, N.—Entezari-Maleki, R.—Movaghar, A.: A Fault Tolerant Schedul-
ing Algorithm for DAG Applications in Cluster Environments. In: Snasel, V.,
Platos, J., El-Qawasmeh, E. (Eds.): Digital Information Processing and Communi-
cations (ICDIPC 2011). Springer, Berlin, Heidelberg, Communications in Computer
and Information Science, Vol. 188, 2011, pp. 189–199.

[25] Entezari-Maleki, R.—Movaghar, A.: A Genetic-Based Scheduling Algorithm
to Minimize the Makespan of the Grid Applications. In: Kim, T. H., Yau, S. S., Ger-
vasi, O., Kang, B. H., Stoica, A., Ślȩzak, D. (Eds.): Grid and Distributed Computing,
Control and Automation (GDC 2010, CA 2010). Springer, Berlin, Heidelberg, Com-
munications in Computer and Information Science, Vol. 121, 2010, pp. 22–31.

[26] Kardani-Moghaddam, S.—Khodadadi, F.—Entezari-Maleki, R.—Mova-
ghar, A.: A Hybrid Genetic Algorithm and Variable Neighborhood Search for
Task Scheduling Problem in Grid Environment. Procedia Engineering, Vol. 29, 2012,
pp. 3808–3814, doi: 10.1016/j.proeng.2012.01.575.

[27] Agrawal, K.—Benoit, A.—Magnan, L.—Robert, Y.: Scheduling Algorithms
for Linear Workflow Optimization. Proceedings of the IEEE International Symposium
on Parallel and Distributed Processing (IPDPS), Atlanta, GA, April 2010, pp. 1–12,
doi: 10.1109/IPDPS.2010.5470346.

[28] Zhao, H.—Sakellariou, R.: An Experimental Investigation into the Rank Func-
tion of the Heterogeneous Earliest Finish Time Scheduling Algorithm. In: Kosch, H.,
Böszörményi, L., Hellwagner, H. (Eds.): Euro-Par 2003 Parallel Processing. Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 2790, 2003, pp. 189–194.

[29] Yuan, Y.-C.—Li, X.—Wang, Q.—Zhang, Y.: Bottom Level Based Heuristic for
Workflow Scheduling in Grids. Chinese Journal of Computers, Vol. 31, 2008, No. 2,
pp. 280–290.

[30] Poola, D.—Garg, S. K.—Buyya, R.—Yang, Y.—Ramamohanarao, K.: Ro-
bust Scheduling of Scientific Workflows with Deadline and Budget Constraints in
Clouds. Proceedings of the IEEE 28th International Conference on Advanced Infor-
mation Networking and Applications, Victoria, Canada, May 2014, pp. 858–865, doi:
10.1109/AINA.2014.105.

[31] Calheiros, R. N.—Buyya, R.: Cost-Effective Provisioning and Scheduling of
Deadline-Constrained Applications in Hybrid Clouds. In: Wang, X. S., Cruz, I.,
Delis, A., Huang, G. (Eds.): Web Information Systems Engineering (WISE 2012).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 7651, 2012,
pp. 171–184.

[32] Qiu, X.—Yeow, W. L.—Wu, C.—Lau, F. C. M.: Cost-Minimizing Preemp-
tive Scheduling of Mapreduce Workloads on Hybrid Clouds. Proceedings of the
IEEE/ACM 21st International Symposium on Quality of Service (IWQoS), Montreal,
Canada, June 2013, pp. 1–6.

[33] Van den Bossche, R.—Vanmechelen, K.—Broeckhove, J.: Cost-Optimal
Scheduling in Hybrid IaaS Clouds for Deadline Constrained Workloads. Proceedings
of the IEEE 3rd International Conference on Cloud Computing, Miami, FL, USA,
July 2010, pp. 228–235, doi: 10.1109/CLOUD.2010.58.

https://doi.org/10.1016/j.proeng.2012.01.575
https://doi.org/10.1109/IPDPS.2010.5470346
https://doi.org/10.1109/AINA.2014.105
https://doi.org/10.1109/CLOUD.2010.58

Cost-Efficient Scheduling for Deadline Constrained Grid Workflows 863

[34] Wang, M.—Zhu, L.—Zhang, Z.: Risk-Aware Intermediate Dataset Backup Strat-
egy in Cloud-Based Data Intensive Workflows. Future Generation Computer Systems,
Vol. 55, 2016, pp. 524–533, doi: 10.1016/j.future.2014.08.009.

[35] Fard, H. M.—Prodan, R.—Fahringer, T.: A Truthful Dynamic Workflow
Scheduling Mechanism for Commercial Multicloud Environments. IEEE Transactions
on Parallel and Distributed Systems, Vol. 24, 2013, No. 6, pp. 1203–1212.

[36] De, P.—Dunne, E. J.—Ghosh, J. B.—Wells, C. E.: The Discrete Time-Cost
Tradeoff Problem Revisited. European Journal of Operational Research, Vol. 81, 1995,
No. 2, pp. 225–238.

[37] Cordeiro, D.—Mounié, G.—Perarnau, S.—Trystram, D.—Vin-
cent, J.-M.—Wagner, F.: Random Graph Generation for Scheduling Simulations.
Proceedings of the 3rd International ICST Conference on Simulation Tools and
Techniques (SIMUTools ’10), Torremolinos, Spain, March 2010, pp. 60:1–60:10, doi:
10.4108/ICST.SIMUTOOLS2010.8667.

[38] Li, H.: Workload Characterization, Modeling, and Prediction in Grid Computing.
Doctoral Thesis. LIACS, Computer Systems Group, Faculty of Science, Leiden Uni-
versity, 2008.

[39] Dick, R. P.—Rhodes, D. L.—Wolf, W.: TGFF: Task Graphs for Free.
Proceedings of the 6th International Workshop on Hardware/Software Codesign
(CODES/CASHE ’98), Seattle, USA, March 1998, pp. 97–101.

https://doi.org/10.1016/j.future.2014.08.009
https://doi.org/10.4108/ICST.SIMUTOOLS2010.8667

864 A. Dehlaghi-Ghadim, R. Entezari-Maleki, A. Movaghar

Alireza Dehlaghi-Ghadim is currently Ph.D. candidate in the
Department of Electrical and Computer Engineering, University
of Tehran, Tehran, Iran. He received his M.Sc. degree from
Sharif University of Technology, Tehran, Iran, in 2012, and his
B.Sc. degree from Iran University of Science and Technology,
Tehran, Iran in 2009. His main research interests are grid and
cloud computing, task scheduling algorithms, load balancing and
resource allocation methods.

Reza Entezari-Maleki is Post-Doctoral Researcher in the
School of Computer Science at Institute for Research in Funda-
mental Sciences (IPM) in Tehran, Iran. He received his Ph.D. in
computer engineering (software discipline) from Sharif Univer-
sity of Technology, Tehran, Iran in 2014, and M.Sc. and B.Sc.
degrees in computer engineering (software discipline) from Iran
University of Science and Technology, Tehran, Iran in 2009 and
2007, respectively. He visited the Seoul National University in
Seoul, South Korea, Duke University in NC, USA, and Insti-
tuto Superior Técnico in Lisbon, Portugal in 2012, 2013, and

2015, respectively, His main research interests are performance/dependability modeling
and evaluation, grid and cloud computing, and task scheduling algorithms.

AliMovaghar is Professor in the Department of Computer En-
gineering at Sharif University of Technology in Tehran, Iran and
has been on the Sharif faculty since 1993. He received his B.Sc.
degree in electrical engineering from the University of Tehran
in 1977, and M.Sc. and Ph.D. degrees in computer, informa-
tion, and control engineering from the University of Michigan,
Ann Arbor, in 1979 and 1985, respectively. He visited the Insti-
tut National de Recherche en Informatique et en Automatique
in Paris, France and the Department of Electrical Engineering
and Computer Science at the University of California, Irvine in

1984 and 2011, respectively, worked at AT & T Information Systems in Naperville, IL in
1985–1986, and he was teaching at the University of Michigan, Ann Arbor in 1987–1989.
His research interests include performance/dependability modeling and formal verification
of wireless networks and distributed real-time systems. He is a senior member of the IEEE
and the ACM.

