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Abstract. In this paper, we present a novel approach to visual smoke detection
based on stereo vision. General smoke detection is usually performed by analyzing
the images from remote cameras using various computer vision techniques. The
literature on smoke detection shows a variety of approaches, and the focus of this
paper is the improvement of the general smoke detection process by introducing
stereo vision. Two cameras are used to estimate the distance and size of the detected
phenomena based on stereo triangulation. Using this information, the minimum
size and overall dynamics of the detected regions are further examined to ensure the
elimination of false alarms induced by various phenomena (such as the movement of
objects located at short distances from the camera). Such false alarms could easily
be detected by the proposed stereo system, allowing the increase of the sensitivity
and overall performance of the detection. We analyzed the requirements of such
system in terms of precision and robustness to possible error sources, especially
when dealing with detection of smoke at various distances from the camera. For
evaluation, three existing smoke detection methods were tested and the results were
compared to their newly implemented stereo versions. The results demonstrated
better overall performance, especially a decrease in false alarm rates for all tested
methods.
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1 INTRODUCTION

Wildfires, unlike many other natural disasters, are perhaps the only ones that can
be largely prevented. Nevertheless, the consequences of uncontrolled wildfires are
catastrophic and can lead to significant material damage and can have detrimen-
tal impacts on both human safety and health. Regardless of whether the wild-
fires started accidentally or caused by arson, the hazard can be avoided if they are
promptly identified and quickly extinguished.

A lot of efforts have been invested in the early detection of wildfires. Traditional
detection is usually based on observers who monitor the surrounding environment
in search for a smoke. This is due to the nature of wildfires, where in most cases
smoke is visible long before the flame. This is particularly evident for environments
with dense vegetation such as forest areas, where fire is not visible until it catches
the crowns. The observers are located on observation towers positioned at carefully
chosen locations, such as hills, in order to have a better view of the surroundings.
Unfortunately, wildfires often occur during extreme conditions such as drought and
high temperatures, leading to concentration difficulties and a decreased ability to
focus on the actual recognition of smoke.

This issue was partly solved by introducing a camera-based surveillance, allow-
ing the observer to control several observation posts from a single remote location.
Unfortunately, practice has shown that these systems still require a long-term atten-
tion. To further improve the effectiveness of such systems, automatic smoke detec-
tion methods have been developed. Reliability of these methods relies on advanced
computer vision algorithms that take into account many different smoke character-
istics in order to properly identify the smoke in the image taken from the camera.
The system raises an alarm if it determines the presence of smoke in the image.
However, a final confirmation by a human operator is still required to distinguish
real threats from false alarms.

There is a relation between false alarm and correct detection rates for a given
smoke detection system. Although most existing systems have the ability to change
the detection sensitivity using detection parameters, this relation between false
alarms and correct detections is not significantly affected. An increase in detection
sensitivity usually leads to a higher number of correct detections, but unfortunately
also to a higher number of false alarms. On the other hand, lowering the detec-
tion sensitivity can result in a missed detection, making the system unusable and
unreliable. It would be of great benefit to find a solution to reduce the number
of false alarms while simultaneously maintaining the acceptable number of correct
detections.

In this paper we propose the improvement of the existing smoke detection meth-
ods by introducing stereo vision to the detection system. Application of stereo vision
in smoke detection systems has already proven to be useful, as shown in [1, 2]. How-
ever, in those solutions, stereo vision is primarily used to extract foreground objects
from the background. Foreground objects are then further analyzed: i.e., in [1]
wavelet transform and discrete cosine for feature extraction and recognition based
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on fuzzy-neural networks is used, while in [2] additional image features are extracted
(contrast, brightness, edge strength, etc.) in order to validate smoke regions. This is
different from our approach, where we use stereo vision to estimate the distance to
the object or phenomenon visible in the image, what is further used to analyze the
detected regions; i.e., to check the minimum size and overall dynamics (changes in
size over time) of the detected candidate region. If those regions do not meet spec-
ified requirements, they can be discarded as false alarms. Please note that except
from introducing this feature to the detection process, the original smoke detection
methods are not modified in any way. However, lower false alarms rate achieved
by the proposed improvement allows us to raise the detection sensitivity. In other
words, it is possible to achieve not only lower rate of false alarms, but also to in-
crease the rate of correct detections as well as the coverage area of the used smoke
detection method.

Depth information of the scene visible in the image has also been used to improve
existing smoke detection algorithms in recent work presented by Bugarić et al. [3].
However, in this solution distances are estimated using the precise virtual terrain
model. The main disadvantage of this system is that previous calculations are
mandatory to operate correctly. Calculating a depth map is done for the entire
image, which is time-consuming and can last up to ten minutes for high-resolution
images. Therefore, such calculations are done only for predefined camera preset
positions.

The approach presented in this paper uses stereo vision to process only the can-
didate regions detected as smoke. In this way we eliminate the need for calculating
the depth map for the entire image, meaning that we do not significantly influence
the execution time of the original smoke detection method. Also, with this ap-
proach, there is no need for using predefined preset positions and the camera can
move freely. Please note that using stereo vision, the calculated distance represents
the actual distance from the camera to the detected phenomenon, rather than the
distance to the terrain behind it, as it is the case in [3].

The rest of the paper is organized as follows: in Section 2 we give an overview
of existing visual smoke detection systems where we investigated the most common
phases for the detection process. In Section 3 we present our solution to visual
smoke detection based on stereo vision, Section 4 deals with possible improvements
over standard smoke detection approaches. Finally, a thorough evaluation is carried
out in Section 5 where we implemented stereo versions of three existing visual smoke
detection methods and compared them to their standard versions.

2 OVERVIEW OF VISUAL SMOKE DETECTION

There are various approaches to visual smoke detection, and in this section we will
cover the most common methods and aspects of the detection process. The research
in this field has begun over twenty years ago, with one of the first papers [4] dealing
with smoke detection based on a live stream from a surveillance camera. The de-
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veloped systems have been constantly improving since that period, and the field is
very alive with new methods constantly emerging. However, most of the methods
share several phases that are common to the general smoke detection process. We
can divide the detection process in several common phases and cover each phase
separately. It is important to emphasize that these phases do not have to be ex-
ecuted sequentially, or in a specific order. In some approaches they are executed
simultaneously, and this process is method dependent. Most commonly used phases
in smoke detection are: motion detection, region analysis, dynamics analysis and
the decision phase. In the following subsections we will briefly cover these phases.

2.1 Motion Detection

Motion detection is the most common phase in smoke detection. Wildfire smoke is
dynamic, and this property is used to isolate only the moving regions from the entire
scene. This phase generally acts as filter for subsequent phases to reduce the amount
of data for further computation, so only the detected regions are forwarded for fur-
ther analysis. There are many approaches to motion detection for smoke detection
purposes such as adaptive background estimation [5, 6], block mean difference [7, 8]
or motion history image [9, 10]. Adaptive background estimation approaches in [5, 6]
are similar and use a background estimation model based on rules for stationary and
moving pixels. In the case that the pixel intensities significantly deviate from the
background model they are considered as moving pixels and forwarded to the subse-
quent phases for further analysis. Another motion detection approach is described
in [11] where the background model is initialized dividing the input in 16× 16 size
blocks. After the setup phase, the model is updated using a selective temporal me-
dian with a fixed k-sized circular buffer. The difference between the input image
and the background model is computed and then binarized using a low and high
thresholds to identify small and high intensity variations. Those pixels that are
present in both of the masks generated by low and high thresholds are considered
as moving pixels. Extracted objects are then validated jointly using color shape
and gradient information to remove noise and artifacts. Further processing phases
involve shadow and ghost removal.

Motion detection approach using motion history image described in [9] represents
motion in successively layered image differences. Moving objects create silhouettes
that represent patterns of motions. The intensity in a motion history image (MHI)
represents the recency of motion in the observed scene. In this way, the motion from
several frames can be encoded in a single image. Using this approach, it is possible
to capture the gradient of smoke motion including orientation and direction.

2.2 Region Analysis

Another very important phase in the general smoke detection process is the region
analysis. This phase is often executed after motion detection, where region candi-
dates are extracted. Regions are analyzed based on different smoke characteristics
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such as color, texture, shape and size. Different methods use different approaches,
but it is generally a combination of several characteristics. However, all of the meth-
ods rely on color as one of the most important features. When dealing with color
analysis, one of the first steps is to choose a color space for analysis. Research de-
scribed in [12] deals with the effect of various color spaces on the performance of
different classifiers in smoke detection. One of the goals of the research was to find
a particular color space with highest separability between smoke and non-smoke pix-
els. Different color spaces were used in the analysis, such as RGB, YCrCb, CIELab,
HSI, and a HS’I which is an derivative of HSI. The results suggest that the perfor-
mance is a distinctive feature of the classifier itself, rather than the classifier-color
space combination, and that the favorable color space candidates are HSI and its
derivative, as well as RGB color space. Regardless of the color space, all of the
methods take into account specific chromatic characteristics of smoke. Smoke color
varies based on fuel type and moisture content but it is generally manifested as
a light to dark shade of gray. This means that the smoke pixels are positioned diag-
onally in the RGB color space and it is possible to dismiss the pixels that have high
deviation from the diagonal of the color space as implemented in [8, 13]. Another
smoke-specific feature is low chrominance in the smoke affected region. Detection of
a significant drop in chrominance could be a possible indicator of smoke appearance.
Another step in region analysis is using information about the texture of a given
region. There are various approaches to texture analysis, such as wavelet analy-
sis [14, 15] or the gray-level co-occurrence matrix (GLCM) [16]. Another important
factor in region analysis is the information about the morphological characteristics
of the region. Smoke regions have a rather convex contour based on irregular shape
with erratic silhouette [5]. Most common approach to isolate these types of regions
is to calculate the disorder parameter and compare it to the reference values [17].

2.3 Dynamics Analysis

Another common phase in smoke detection process is the analysis of the dynamics
of the candidate regions. The candidate regions are tracked over a certain period
of time to ensure they exhibit smoke-like behavior. Regions that do not conform to
motion characteristics of smoke can be rejected in this phase of the process. One of
the basic characteristics is the growth rate of smoke. Different methods use certain
thresholds to isolate only the regions that satisfy a set of predefined conditions [18, 6].
Another aspect is the direction of smoke movement. Smoke usually exhibits upward
as well as lateral motion, however, this factor heavily impacted by the wind speed
and direction and is rather difficult to predict. Work presented in [19] deals with
the analysis of the direction of smoke motion using accumulative motion orientation.
The aim of the analysis is to discover regions that are moving upwards due to high
temperatures. The method involves calculation of the temporal motion orientation
histogram. By removing the regions that do not exhibit growth and gradual upward
motion it is possible to reduce the overall number of false alarms and increase the
performance of the detection method.



A Stereo Approach to Wildfire Smoke Detection 481

2.4 Decision Phase

The decision phase is the final phase of the detection process. All the information
accumulated through the previous phases of detection is now taken into account in
order to make the final decision about raising an alarm. There are various approaches
to the decision-making based on the data from the previous phases of detection, such
as the Bayesian approach [11], neural networks [6, 20], random forests [21], support
vector machine [22], the mechanism of thought [23], and others. Based on the
available information and the specific decision process, the system makes the final
decision whether to raise an alarm for the given situation.

3 INTRODUCING STEREO VISION TO SMOKE DETECTION

Smoke is a phenomenon that has no clearly defined characteristics such as shape,
color, etc. This is precisely the reason why there are many different approaches to
smoke detection. However, analyzing the size of the smoke region candidates rarely
occurs among these approaches. This is due to limitations of the systems that use
a single camera, where the only option is to express this size in the number of pixels.
Using only this information, it is difficult to estimate the actual size of the smoke
phenomenon in the real world, as it largely depends on the camera parameters and
the distance of the phenomenon from the camera.

Stereo vision triangulation allows us to estimate a three-dimensional position
of the detected smoke in the real world, and also to estimate the real-world size of
that region and express it in standard units of measurement. In this way we can
further analyze the candidate regions detected as smoke based on their real-world
sizes, and thus reduce the number of false alarms. One such example would be
identifying false alarms caused by the uncontrolled movement of the vegetation in
the close vicinity of the camera based on the estimated size and overall dynamics
of the detected objects. Moreover, eliminating such types of false alarms allows us
to increase the detection sensitivity, eventually leading to the increase in correct
detections rate and coverage area of the used smoke detection method.

Any existing smoke detection system could be upgraded with this stereo vision
approach. Given that the smoke detection requires an estimation of relatively large
distances, a stereo vision system with a wide baseline is required. In the following
sections we analyze the problems that may arise and describe the guidelines that
have to be followed when upgrading the existing smoke detection systems.

3.1 Wide-Baseline Stereo Vision

In order to improve smoke detection performance, a stereo system should correctly
match the images captured by the cameras and obtain accurately triangulated three-
dimensional data. It is important to emphasize that the occurrence of smoke is
usually located several hundred meters away from the observation post where the
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system is installed. Stereo systems capable of estimating such relatively large dis-
tances have already been proposed [24, 25], however a study concerning advantages
and disadvantages of such a system as a part of a smoke detection was not carried
out to date.

Our system requires two cameras with a known horizontal displacement, whose
optical axes are parallel. In order to maintain the accuracy of a stereo system,
the horizontal displacement between these two cameras should be relatively wide.
The actual smoke detection is conducted on the images taken by one of the stereo
cameras (either left or right). Stereo vision techniques are applied only for the
candidate regions detected as smoke as the additional verification phase. In our
solution, the process of determining the distance of the detected phenomenon from
the camera is divided into two steps:

• Selecting a point that represents a smoke region candidate in the original image
and finding a corresponding point in the image of the other camera (correspon-
dence problem), and

• three-dimensional reconstruction (stereo triangulation).

Each of these steps is further explained in the following subsections.

3.1.1 Correspondence Problem

The correspondence problem is the problem to match image points from two stereo
images which are projections of the same point in a three-dimensional space. The
main requirement while taking a pair of stereo images in our solution is that the
pictures are taken at the same time instant. Smoke is a dynamic phenomenon, con-
stantly changing in shape and size. If this requirement is not met, projection of the
smoke on the image plane can be significantly different in two stereo images, making
the matching process difficult. As we show later in this section, even a single pixel
error in this phase could lead to significant errors when estimating the real-world
sizes of the smoke phenomenon. Please also note that any difference in perspective
or lighting of two stereo cameras, or any object occlusions can further accentuate
the correspondence problem.

Stereo cameras should, therefore, be mutually synchronized in order to capture
the images at the same time instant [26]. Automatic brightness adjustment should
also be avoided, as it may result in different lightning in two stereo images.

The points of interest would be the points that the smoke detection algorithm
determines as the potential candidates. The detection algorithm isolates the regions
of interest, and for each region a single point is selected for correspondence. The
selected point basically represents the geometric center of the region. Now, the task
is to find the corresponding point in the other image. There is a significant number
of existing algorithms for stereo correspondence. However, the main problem is not
to generate the disparity map for the given scene, but rather to calculate the actual
depth for a very sparse set of points that represents the candidate regions in each
frame.
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One possible way of achieving this task is to use normalized cross correlation. It
is a rather straightforward approach where a region around the given point is used
as a template. The aim is to find the best matching position of that template in
the second image. The search is not performed on the complete second image, but
rather on a limited region that covers the space were the corresponding point could
be in the second image given the constraints of the geometry of the stereo system.
Given the possible variation in brightness due to exposure or lightning conditions it
is necessary to perform the normalization of the regions. The point with the highest
correlation coefficient is used as the corresponding point in the second image. The
process of normalized cross correlation could be computationally demanding when
performed on large sets of correspondence points, but for a very sparse set that is
generally obtained from the candidate regions the computing load is negligible. We
can examine this in more detail. Specific implementation of normalized correlation
calculation is based on [27] as follows

γ(u, v) =

∑
x,y

[
f(x, y)− f̄u,v

]
[t(x− u, y − v)− t̄]{∑

x,y

[
f(x, y)− f̄u,v

]2∑
x,y [t(x− u, y − v)− t̄]2

}0.5 (1)

where f is the second image where we search for a match, t̄ is the mean of the
template, and f̄u,v is the mean of f(x, y) in the region under the template. This
calculates the normalized correlation coefficient for the template placed at a point
(u, v) in the second image. We can see that the time complexity of calculation for
a single point would be O(MtNt) where Mt and Nt represent the size of the template.
In case we would like to calculate the correspondence of each point in the image of
size MI × NI the time complexity would be O(NIMIMtNt). It is evident that the
computational cost of type of calculation is rather high, so it is necessary to perform
the calculation only for a set containing the points that represent the candidate
regions in order for the algorithm to work in real-time. For example, we can take
that the time constraint for real-time processing is 1 frame per second in order to
capture smoke dynamics. Average time to calculate normalized cross correlation for
a single point, where the template dimensions are 40 × 20 pixels, and the search
space in the second image is 900 × 100 pixels, on a machine with 3 GHz CPU is
approximately 14 ms. This implies that in order for the algorithm to be able to
work in real time we must use a sparse set of correspondence points that are most
probable candidates for detection.

3.1.2 Stereo Triangulation

The distance of the observed object or phenomenon from the camera is computed
using the disparity of two corresponding pixels. In our model, each camera is reason-
ably approximated by a pinhole camera model, thus ignoring camera lens distortion
and other optical nonlinearities. We consider lens to be a point through which all
incoming rays of light pass. This means that all objects, regardless of their distance
from the camera, project to a single point on the image plane.
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Z

X

Y

P(X , Y, Z )

B

f

ylx l

yr

x r

Figure 1. Stereo system

Figure 1 illustrates the configuration of a stereo system that we use to improve
the existing smoke detection methods. Two cameras that have parallel image planes
are separated in the X direction, and the baseline length is denoted by B. Both
cameras share the same focal length that we denote by f . The focal point of the
right camera is chosen as the origin of the three-dimensional world coordinate sys-
tem. Please note that, in order to minimize the measurement inaccuracy, these two
cameras have to be carefully aligned and well calibrated. Also, the cameras should
be securely mounted to ensure that the alignment is persevered with continuous use.

In this model, a randomly chosen point P (X, Y, Z) in a three-dimensional world
is projected onto two camera image planes. These projections in the left and right
image planes are represented by (xl, yl) and (xr, yr), respectively.

The relation of the point P (X, Y, Z) with respect to its image projections is
given by:

xr =
fX

Z
, xl =

f(X −B)

Z
. (2)

Therefore, using simple trigonometry, we can estimate the depth Z of the point
P (X, Y, Z):

Z =
fB

xr − xl
. (3)

From Equation (3) we see how the distance from the camera can be computed
using the disparity xr−xl. It can be seen that yl and yr coordinates do not influence
the actual calculation of the depth information. Please note that the aforementioned
model does not take into account the following irregularities: different focal lengths
of left and right camera, differences in principal point coordinates, skew and dis-
tortion parameters. Therefore, in order to use Equation (3) in practice, inputs into
this equation should first be normalized. However, even without such irregularities,
Equation (3) will not always provide us with the correct depth information. This
occurs for several reasons, so in the following of this chapter we will investigate pos-
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sible errors and discuss how they affect the proposed improvement of the existing
smoke detection methods.

3.2 Different Types of Errors

First, we must accept that the depth resolution of a stereo vision system is limited
due to the discrete nature of the imaging system [28, 24]. The projection of the
point P (X, Y, Z) onto the image planes is approximated to the nearest pixels with
coordinates (x̂l, ŷl) and (x̂r, ŷr). The error that is a result of this approximation is
referred to as a discretization error.

The discretization error generates an uncertainty polyhedron when we perform
the stereo triangulation. Due to the aforementioned approximation, the actual dis-
tance cannot be accurately determined, since it lies somewhere inside this polyhe-
dron. Figure 2 illustrates the discretization error in two dimensions, where uncer-
tainty areas are represented as diamond shapes.

The discretized image points that cause the error are at most within half a pixel
of the actual projection, that is:

x̂r = xr ±
xpix

2
, x̂l = xl ±

xpix
2

(4)

where xpix represents the distance between two adjacent pixels along the X direc-

tion. From this it follows that the maximum value of the observed depth Ẑ can be
calculated using Equation (5):

Ẑ =
Z

1± Z xpix

fB

. (5)

It can also be shown that the maximum value of the discretization error (Zdisc err)
is given by:

Zdisc err = |Z − Ẑ| = Z2 · xpix
fB ± Zxpix

. (6)

From Equation (6) we can see that the discretization error (Zdisc err) increases as
the depth Z increases. Several other interesting facts useful for a better estimation
of relatively large distances arise from this equation as well. First, since the focal
length of the calibrated camera is not a parameter that can be easily modified,
from Equation (6) it follows that we can improve distance estimation by increasing
the length of the baseline B. Second, image resolution affects the discretization
error as well, since it defines the distance between two adjacent pixels (xpix). From
Equation (6) it is obvious that the higher the resolution of the image, the smaller
the discretization error.

Nevertheless, it is important to notice the expression ±Zxpix in the denomina-
tor of Equation (6). Uncertainty areas represented as diamond shapes in Figure 2
are bounded by rays that go through the middle of each pixel in the image plane.
Therefore, the distance from the intersection of rays to the center of the diamond
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shape corresponds to the maximum discretization error. Recall, the maximum dis-
cretization error is achieved by moving half a pixel in a certain direction (in both
left and right image planes). As seen from Figure 2 this movement can result in the
estimated distance that is larger or smaller then the actual distance. Therefore, the
discretization error is measured from the intersection of rays to the center of the
diamond shape that is either further away or closer to the stereo cameras. Let us
denote these errors as a maximum positive and a maximum negative discretization
error, respectively. Maximum positive discretization error is defined by the neg-
ative prefix in the expression ±Zxpix, while the maximum negative discretization
error is defined by the positive prefix. Maximum discretization error (either positive
or negative) represents a worst case scenario, and in most cases the value of the
discretization error is smaller. It can also be noticed that the maximum positive
discretization error is larger than the maximum negative discretization error.

f

B

Figure 2. The discretization error as the result of the discrete nature of the imaging
system. Diamond shapes represent uncertainty areas, i.e., the system returns the same
distance for all the points inside the same diamond region.

It is also very important to consider possible camera alignment errors and their
impact on the depth estimation. Once the stereo rig is constructed, the cameras are
calibrated in order to obtain intrinsic and extrinsic camera parameters. Using the
calibration information we can model the possible misalignments of the individual



A Stereo Approach to Wildfire Smoke Detection 487

cameras relative to each other. However, the perfect calibration is not possible and
a certain degree of error will still be present. Additionally, the camera setting is
prone to slight misalignment due to continued usage and transport, so we also have
to take into account the possible errors that arise from this sort of misalignment. We
will consider four types of errors; e.g. error due to roll between cameras, error due
to pitch between cameras, error due to yaw between cameras and finally the error
due to lens distortion. These types of errors are explained in detail in [29] so we
will only cover them briefly. The first type of error is the depth error due to roll of
the second camera, while the first camera is correctly aligned. Using trigonometry
relations we can arrive at the the following equation:

Zroll err ' Z
X2(cosθ − 1)

B
(7)

where Zroll err is the depth error, Z is the true depth of the object, X2 is the true 3-D
coordinate of the object in the x dimension in the coordinate frame of the second
camera, θ is the roll angle of the camera, and B is the baseline.

Another type of possible error arises when the second camera is not on the same
level as the first, and rotates about a line which is parallel to the bar (pitch error).
This type of error can be calculated as follows:

Zpitch err ' −
1

2

X2Z(tanα)2

B
(8)

where α is the pitch angle between the two cameras.

The third type of error arises when the second camera is rotated about an axis
perpendicular to the epipolar plane and through the center of projection (yaw error).
This type of error can be approximated using the following equation:

Zyaw err ' −
tan β(Z2 +X2

2 )

B
(9)

where β is the yaw angle between the two cameras. It is important to emphasize
that this type of error is the most common, and contributes the most to the error
in measured depth.

Another type of error arises from the possible lens imperfections. Although we
use a pinhole camera model, we can also consider the impact of this type of error in
real world applications. As covered in [29], using the radial lens distortion model,
the depth error can be calculated as

Zlens err = Z − 1
1
Z
− f2

Z3B
[κ2X3

2 − κ1(X2 −B)3]
(10)

where κ1 and κ2 are the lens distortion coefficients.
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Now, the accumulated error can be approximated as:

Zacc err(Z, α, β, θ, κ) ' Zdisc err(Z) + Zroll err(θ)

+ Zpitch err(α) + Zyaw err(β) + Zlens err(κ). (11)

We can compare the effects of different types of errors on the accumulated error.
Figure 3 a) shows the comparison of the absolute yaw error and the discretization
error for variable distance of the observed object Z and yaw angle β.

a) b)

Figure 3. a) Absolute yaw error |Zyaw err| (green), and maximum absolute discretization
error Zdisc err (purple), b) absolute roll error |Zroll err| (green), and maximum absolute
discretization error Zdisc err (purple) (for a stereo system with B = 2 m, f = 4.655 mm,
xpix = 0.0071 mm, and X2 = 3 m)

When calculating the discretization error we use the maximum positive dis-
cretization error (the expression ±Zex in Equation (6) with a negative prefix) since
it generates a greater overall error. It is possible to see from the figure that the
slight misalignment of the camera in the yaw direction generates a significant error
(the graph shows the yaw error in the interval of ±0.5 degrees). On the other hand,
the effects of the roll and pitch errors are negligible compared to the discretization
error (Figure 3 b)) shows the comparison of the roll and discretization error). Since
the stereo setup for smoke detection will be working with relatively large distances
we can discern the roll and pitch errors that have an insignificant effect on the
accumulated error when compared to the discretization error.

For example, given a stereo setup with baseline B = 2 m, the focal length of
both cameras f = 4.655 mm, pixel dimensions in the image plane xpix = 0.0022 mm,
where the observed object is located at distance of Z = 500 m, with a shift in the x
dimension of X2 = 7.5 m relative to the second camera. In case that the detection
system requires the precision that would allow the depth estimation error to be no
more than 100 m for this distance, we can calculate the maximum allowed error
from different sources. Using the Equation (6) we can calculate that the maximum
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discretization error for the given distance would be Zdisc err = 66.9 m, so the rest of
the error from other sources would be 33.1 m. It is important to emphasize that this
is the maximum discretization error or the worst case scenario for the given distance.
If we assume that each of the remaining types of errors (roll, pitch and yaw error)
contribute evenly to the rest of the error it would mean that the maximum error from
each of these sources would be less than 11.03 m. This means that the alignment
accuracy for the given setup for specific rotations would be α < 6.19◦ (pitch error),
β < 0.0051◦ (yaw error) and θ < 6.21◦ (roll error). We omit the contribution of the
lens distortion error for practical reasons.

From this example we can understand which calibration alignment types require
more attention when constructing a stereo setup for smoke detection. Since we can-
not influence the discretization error (except by widening the baseline or increasing
the resolution of the image), the main key points are to ensure a thorough calibra-
tion of the system, and especially a very precise yaw orientation of the both cameras
since it has a significant impact on the overall error.

4 IMPROVEMENT OF STANDARD DETECTION APPROACHES
USING DEPTH INFORMATION

Standard visual smoke detection systems are usually equipped with a single rotating
camera or a setup of several cameras pointed in different directions covering the 360◦

area around the detection post. The images acquired from the camera are analyzed
in order to detect potential occurrence of smoke in the scene. In Section 2 we have
covered the main phases of smoke detection process that are common to most smoke
detection systems. However, using this kind of setup it is not possible to reliably
estimate the distance of the detected phenomena from the camera. This additional
information could be very useful in several phases of detection and help to improve
the overall reliability of the system.

There are two main phases that could be improved using the information about
the distance of the detected phenomena: region analysis phase and dynamics analysis
phase. As covered in Section 2, the region analysis phase deals with the analysis of
the candidate regions based on different smoke characteristics such as color, texture,
shape and size. In order to eliminate noise from the detection process, most of the
methods define a minimal size threshold for the detected region. This size is often
expressed in the number of pixels that constitute the region. However, the number of
pixels in the region does not provide the actual information about the physical size
of the detected object. A group of pixels could represent a small object close to the
camera or a large object at a great distance. One aspect of the improvement using
stereo vision is to provide this additional information about the actual distance of
detected objects. With this information it is possible to estimate the actual physical
size of the detected objects. Objects or phenomena that do not satisfy minimal size
constrains can now be eliminated from the detection process. This leads to a lower
number of false alarms and a more reliable and robust detection process.
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Another detection phase that could be improved is the dynamics analysis phase.
This phase deals with the behavior of the candidate regions over time, where the
regions are tracked over a certain period to verify that they exhibit smoke-like be-
havior. One of the main aspects of smoke dynamics is the growth rate of smoke
regions in the image. In the incipient phase of wildfire, smoke gradually appears in
the scene and continues to grow until reaching the full size. The growth rate and
smoke size depend on many different parameters such as the fuel type, moisture
content, wind speed and wind direction. However, it is possible to establish certain
growth thresholds based on empirical data. By estimating actual physical size of the
objects it is possible to eliminate regions in the image that exhibit very rapid growth
that is much faster than the natural expansion of wildfire smoke. Eliminating such
regions affects the performance of the system, by improving the reliability of the
detection and reducing the number of false alarms.

R

( Z )

P yr )

(a)

f

D

d

(b)

L

Figure 4. Calculating pixel coverage using: a) the relation between the point P (X,Y, Z)
in the real world and P ′(xr, yr) in the image plane, and b) the relation between shift L in
the real world and the shift ` in the image plane

As already mentioned, due to the perspective of the camera, a group of pixels
visible in the camera’s image plane can represent a small object close to the camera,
or a large object at a greater distance. Accordingly, we believe that it is better to
express the size of the detected objects in standard units of measurement (such as
meters) rather then in number of pixels.

Figure 4 illustrates the method used for estimating physical sizes of the objects
visible in the scene. Using a stereo vision system introduced in previous sections,
we can determine the depth (Z), as well as the actual distance (D) of the detected
phenomena from the camera. Please recall, in this scenario the focal point of the
right camera is chosen as the origin of the three-dimensional world coordinate sys-
tem, although the system could easily be adapted to operate using the left camera.
Also, as shown in Figure 1, the origin of the image coordinate system is positioned
in the center of the camera image plane.

Let us assume that the detected phenomena is located at point P (X, Y, Z) in
the real world, and that point P ′(xr, yr) represents the projection of the point P
onto the image plane of the (right) camera. We propose that the size of the de-
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tected phenomena be estimated from its projection onto the plane that has the
following characteristics: it and the detected phenomena are equal distance from
the (right) camera, and it is parallel to the (right) camera’s image plane (plane R
in Figure 4 a)).

Before proceeding to the actual estimation of the physical size of the detected
phenomena, let us make a remark: each pixel in the image also represents a space
in the real world. This space can also be projected onto the described plane R, and
therefore, the size of the space visible in the pixel can also be estimated.

Figure 4 b) demonstrates the method used to estimate the size of the physical
space (visible inside a single pixel) projected onto the plane R that is parallel to the
camera image plane. Let f represent the focal length of the (right) camera and d
the distance from the focal point of the camera to the point P ′(xr, yr).

Let us first denote with ` the width of a single pixel (on the camera image
plane). As illustrated in Figure 4 b), ` also represents the length of a line segment
that lies on the line going through both the point P ′(xr, yr) and the center of the
image plane. This shift of the length ` towards the edge of the camera image plane
has a corresponding shift in the plane R, and let us denote it with L.

Variables f , d, ` and L can be expressed either in number of pixels or in standard
units of measurement. Therefore, before proceeding, let us make some remarks
concerning notation: from now on, all variables indexed with (·)p will be associated
with distance expressed in number of pixels, while the variables indexed with (·)m
will be associated with distance expressed in standard units of measurement (in this
case meters). Our goal is to find the value of Lm that we will use to estimate the
size of the physical space visible inside a single pixel.

Focal length is a parameter that is often provided by the manufacturers of the
used equipment, but can also be retrieved by camera calibration. If given in number
of pixels, it can easily be converted to standard units of measurement:

fm =
fp · ccdm
wp

(12)

where ccdm represents the CCD width expressed in standard units of measurement
(often millimeters) and wp represents the width of the image expressed in number
of pixels.

It can be shown that the value of dm representing the distance from the focal
point of the camera to the point P ′(xr, yr) can be calculated as follows:

dm =
fm
fp
·
√
x2r + y2r + f 2

p . (13)

Please recall, the stereo vision system provides us with the value of Dm, therefore
we can calculate the value of the shift Lm as follows:

Lm =
fm
fp
· Dm

dm
. (14)
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Finally, the length of the shift Lm on the plane R that corresponds to the shift of
one pixel on the camera image plane, expressed in standard units of measurement,
is given by Equation (15).

Lm =
Dm√

x2r + y2r + f 2
p

. (15)

Let us make the assumption that the pixels are square, then L2
m represents the

area of the projected space onto the plane R that is parallel to the camera image
plane. In other words, L2

m represents the size of the space visible in a single pixel
positioned at coordinates (xr, yr) in the image plane. From now on, let us denote
L2
m as a pixel coverage area.

From Equation (15) it can easily be seen that the pixel coverage area and the
distance from the camera are directly proportional, meaning that the distant objects
will appear smaller in the image. Using pixel coverage areas of all the pixels repre-
senting the detected phenomena, we can estimate it’s overall physical size. However,
stereo vision system does require some non-negligible amount of time to calculate the
distance Dm. Hence, for practical reasons, we calculate the pixel coverage area only
for one pixel positioned at the center of the detected region. The overall physical
size can, therefore, be approximated as the pixel coverage area of the chosen pixel
multiplied by the overall number of pixels representing the detected phenomena. In
this manner, we do not slow down significantly the actual smoke detection method,
since distance estimation using stereo vision is performed only once for each detected
region in the image.

Now that we can calculate the pixel coverage area for a pixel in the center
of the region, we can estimate the actual area of the detected objects in the real
world. The detection method holds the information about the number of pixels in
the candidate region, and by using the pixel coverage area of the central pixel we
can estimate the area of the entire region. This area refers to the the area in the
plane parallel to the image plane intersecting the actual object in physical space as
depicted in Figure 4 a).

4.1 Filtering of the Candidate Regions Based on the Estimated Size

The information about the smoke area can now be used in the detection phases
described earlier. The candidate regions detected as smoke in the region analysis
phase can be further analyzed based on their real-world sizes. The candidate regions
that are below the minimum size are eliminated from the detection process. The
main reason for doing this is to reduce the number of false alarms. In fact, one of
the major causes of noise, and therefore false alarms, is a movement of small objects
visible in the scene. One example could be the uncontrolled movement of vegetation
(such as grass or tree branches) in the close vicinity to the camera. Although these
objects often share some similar characteristics with the smoke, they could be easily
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dismissed as false alarms if their size is accurately approximated using the method
described above.

In our case, we use the minimal size threshold of 5 m2 based on offline measure-
ments and analysis. We believe that the most of the movement caused by smaller
objects in the scene can be eliminated using this threshold, whereas, given the nature
of the smoke, actual smoke regions will relatively quickly exceed this threshold.

Nevertheless, one important factor in the estimation of actual smoke size is the
possible error due to the different error sources described in Section 3.2. When
dealing with large distances, the discretization error becomes predominant due to
the quadratic term of Equation (6). Therefore, Figure 5 shows the pixel coverage
area for one pixel with regard to the distance from the camera. The figure also shows
the pixel coverage area with the maximum positive and negative discretization errors
(when the estimated distance is actually larger or smaller than the real distance of
the object due to discretization). Recall, the maximum positive discretization error
is larger then the maximum negative error as stated in Equation (6) (for the positive
error, the second term in the denominator has a negative prefix).

From Figure 5 it is obvious that the area estimation becomes unreliable at larger
distances, so it is important to ensure that valid region candidates are not rejected
in this process. As already explained, this phase is used to reject candidates that
are smaller than the predefined threshold (5 m2). Please note that the positive
discretization error results in larger pixel coverage area, so in this case the valid
candidate regions are not rejected. However, the positive discretization error re-
sults in a non-rejection of noise regions that are estimated to have a size above the
threshold due to this error. On the other hand, the negative discretization error
may result in the rejection of valid candidate regions due to the negative error in
size estimation.

We propose reducing the predefined minimal size threshold from initial 5 m2

to only 1 m2 if the estimated distance of the candidate region is beyond a certain
distance Dmax after which the area estimation becomes unreliable. In other words,
Dmax is a distance after which we cannot properly estimate the real-world size of
the candidate region due to the discretization error. By doing this, we maintain the
accuracy of the original smoke detection method at distances larger than Dmax (for
the same level of detection sensitivity), while at shorter distances we achieve the
elimination of false alarms induced by the phenomena located in the vicinity of the
camera. The value for Dmax can be arbitrarily set based on the level of precision
required from the system. For this purpose, we introduce a user defined limit errϑ
defined as the maximum allowable percentage error of smoke area inside a single
pixel. The percentage error (err) can be calculated as follows:

err =
estimated area− real area

real area
∗ 100. (16)

As an example, for B = 2 m, f = 4.655 mm and xpix = 0.0022 mm and a cho-
sen value for the maximum allowable error errϑ = 21%, based on Equations (6),
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Figure 5. Pixel coverage area (m 2) for one pixel with regard to the distance from the
camera (blue solid line), pixel coverage area with maximum positive discretization error
for the given distance (red dashed line), and pixel coverage area with maximum negative
discretization error for the given distance (black dotted line). The selected pixel has
coordinates (100, 100) referent to the center of the image, with B = 2 m, f = 4.655 mm
and xpix = 0.0022 mm.

(15) and (16), it is possible to calculate the value for the maximum distance with
allowable error in front of the camera Dmax = 385 m.

In this way, the reliability of the pixel coverage estimation could be adjusted
based on the needs of the specific detection method or system. If the percentage
error increases over the user defined threshold, the minimum size threshold reduces
to 1 m2 in order to compensate for the possible discretization error. It is important
to emphasize that the detection method is still capable of detecting smoke beyond
the distance specified by Dmax with the same accuracy as the original version. The
reduction of minimum size threshold is to ensure that real smoke plumes are not
discarded based on size due to discretization error. This implies that the detection
of smoke is sill accurate, but the benefit gained by rejection of potential false alarms
based on size reduces with distance.

Another phase where information about pixel coverage area can be useful for
reducing false alarm rate and improving the reliability of the detection process is
the dynamics analysis phase. The dynamics analysis phase is used to eliminate
regions that do not exhibit smoke-like behavior. Smoke behavior is rather difficult
to define or simulate since it depends on many different factors as described earlier
in this section. However, overall smoke dynamics adhere to certain rules regarding
the rate of spread. The measurements published in [30] show that the average smoke
area rate of spread (µ) in the image plane is 16.04 m2/s with standard deviation (σ)
76.33 m2/s in the first 3 minutes after the occurrence. It is also stated that by fitting
the data with t location-scale distribution it can be calculated that over 99 percent
of smoke area change observations fall into the interval defined by (µ− 6σ, µ+ 6σ).

Using this information, and the information about the area of the candidate
regions calculated using the pixel coverage area, it is now possible to reject those
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regions with grow or shrink rates outside the allowed range. This consequently
results in higher reliability and accuracy of the detection method or system.

As already mentioned, by reducing the false alarms rate of the existing smoke
detection methods, it is possible to increase detection sensitivity, allowing the in-
crease of both correct detections rate and the coverage area where the system can
detect wildfires. In the following section we will present the evaluation process and
methodology as well as the obtained results.

5 EVALUATION

a) b)

Figure 6. An example of stereo images captured simultaneously by both cameras. Input
image taken by: a) the left stereo camera, b) the right stereo camera.

The proposed improvement based on stereo vision was implemented into three
existing smoke detection methods. Every method was tested with and without this
improvement on a database consisting of 18 856 images. Since all the video sequences
were recorded using stereo cameras, the database actually consisted of altogether
37 712 images. These images were extracted from video sequences every 1 s, meaning
that the total time span of the footage is approximately 5 hours and 15 minutes. In
9 198 images (approximately 2 hours and 30 minutes) smoke is visible in the image in
its various forms. The remaining 9 658 images include various other phenomena that
could induce false alarms (e.g., vegetation movement caused by wind, shadowing by
clouds, changes in lightning conditions during sunrise or sunset). For a quality
evaluation of the proposed improvement based on stereo vision, it is important to
use both types of images in order to properly examine all the quality measures of
the system. In Figure 6 we show a pair of stereo images that are a part of our
database.

Video sequences were recorded on various locations and under different weather
conditions to ensure diversity of the scenes. Smoke phenomena captured on video
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were located at different distances from the cameras to ensure that the evaluation
takes into account possible errors of the stereo vision system (discretization and
camera alignment errors).

Videos were recorded using two “Elphel NC353L” video cameras that were mu-
tually synchronized using external synchronization cable (GPIO). This enabled the
synchronization precision up to 1µ s and simultaneous capturing of the images on
both cameras. The focal length of the left camera was 4.657 mm, while the focal
length of the right camera was 4.778 mm. In order to be able to use Equation (3) for
our calculations, we first had to compensate this difference in focal lengths (as well
as differences in principal point coordinates and skew and distortion parameters) by
normalizing the pixel coordinates used as the input for the aforementioned equa-
tion. The images were captured in various resolutions. Both cameras were securely
mounted on the ends of a wide bar, making the length of the baseline precisely 2 m.
The maximum allowable percentage error of smoke area inside a pixel for the stereo
system is set to errϑ = 21 %. In Figure 7 a) we can see a close-up of the built stereo
vision system, while in Figure 7 b) we show the system operating in the natural
environment with predominant vegetation.

a) b)

Figure 7. The stereo system used for evaluation, a) in laboratory environment, and b) in
natural environment

As mentioned above, three existing smoke detection methods were used for the
evaluation. First, each method was tested without any stereo modifications on all
18 856 images taken by the right camera. Second, improved methods were tested
on the images of both cameras. In the following, we give a brief explanation of the
methods used for evaluation.

We have implemented Method 1 presented in [5], which is a wavelet based real-
time smoke detection method. The method consists of several detection phases. In
the first phase, the moving pixels in the image are detected using a background
estimation method. In the next step, the high frequency content of the image
is analyzed in order to detect blurring due to the possible occurrence of smoke.
Appearance of smoke gradually reduces the sharpness of the edges in the region until
the region is completely covered by smoke. The region is analyzed in order to detect
a decrease in local wavelet energy which would suggest presence of smoke. In the
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following phase, the regions are checked for decrease in the U and V channels. The
appearance of smoke in the region results in the decrease in the chrominance level
when compared to the estimated background. The next phase of the algorithm deals
with analysis of the flickering effect that appears on the edges of the smoke contour.
The analysis is carried out using temporal wavelet transforms. It is important to
emphasize that this effect is noticeable in the short range smoke detection, and is
not significant when the smoke is located at larger distances from the camera. The
final phase of the algorithm examines the shape of the detected region in order to
determine its convexity since general wildfire smoke tends to have a rather convex
shape. In the case when the criteria from all the phases are satisfied, the algorithm
raises an alarm.

The second method that we have implemented is the method presented in [18]
denoted as Method 2. This method does not operate on the whole captured image,
but the image is rather divided into blocks, or bins, which represent the smallest
units for the detection process. The blue channel of each bin is observed over time
and compared against the signal range, i.e. the difference between the maximum
and the minimum bin value. The blue channel is selected since it exhibits greater
sensitivity to smoke appearance then the other channels. In the case the difference
between the current bin value and the referent bin value exceeds the percentage
threshold based on signal range, the bins are considered as the candidate bins. The
algorithm tracks the bins over a certain period of time in order to confirm the
potential detection before raising an alarm. To produce the final alarm, there has
to be a certain minimal number of candidate regions present over a set time period.
Additionally smoke has to make a gradual appearance on the scene, so the regions
that exhibit growth between two consecutive captured images that is larger than
the maximum permitted growth are dismissed. Another possible filter for rejection
of false alarms is the maximum permitted number of 8-connected components in the
image. In the case all the conditions are satisfied over a predefined period of time,
the system consequently raises an alarm.

The third method is the method presented in [31] denoted as Method 3. This
method consists of several different phases or stages of detection. The first phase is
the image segmentation and classification phase where the different classes such as
water and sky are used for the elimination of possible false alarms. Next, a motion
detection phase is used to detect only the moving regions in the image, and thus
reducing the amount of data that requires further processing. The following phase
performs chromatic analysis where the current chromatic values are compared to
the referent smoke-color values. The next step is the texture analysis phase where
the regions are analyzed based on wavelet information. In the case of smoke ap-
pearance in the scene the region texture should change and there should be a loss
in the high frequency range due to the blurring caused by smoke. In the following
phase, the dynamic aspect of the candidate regions is examined. The regions that
do not exhibit smoke-like behavior over a predefined time period are eliminated
from the detection process. Finally, in case the candidate regions are confirmed in
each detection phase, they are considered to be smoke, and the alarm is raised by
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the algorithm. The example detection images for all methods are shown in Fig-
ure 8.

a) b)

c) d)

Figure 8. a) Input image with visible smoke, taken by the right stereo camera, b) image
with smoke detected by Method 1, c) image with smoke detected by Method 2, d) image
with smoke detected by Method 3

For each method, a stereo version was implemented based on the features pre-
sented in previous sections (the minimum size and overall dynamics of the candidate
regions are examined to verify that they exhibit characteristic features of smoke).
Here, we shall discuss the evaluation of each method and compare the results with
the improved versions. We will use the evaluation measures for visual smoke detec-
tion systems presented in [32]. The evaluation is divided into two main evaluation
aspects, global and local evaluation. Global measures evaluate algorithm perfor-
mance based on the results where the elemental evaluation units are images. The
evaluation is based on the algorithm output, where the algorithm decides whether
smoke is present in the image. We can use four measures describing different aspect
of detection quality: measure correct detections, also known as recall or true positive
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rate (TPR), specificity or true negative rate (TNR), false positive rate (FPR) and
false negative rate (FNR). The measures are defined as:

TPR =
TP

TP + FN
, (17)

TNR =
TN

TN + FP
, (18)

FPR =
FP

TN + FP
, (19)

FNR =
FN

TP + FN
(20)

where TP denotes the number of true positive detections, FN represents the number
of false negative detections, TN represents the number of true negative detections,
and FP represents the number of false positive detections.

The results for global measures for all methods are presented in Table 1.

TPR TNR FPR FNR

Method 1 – standard 0.6601 0.8701 0.1299 0.3399

Method 1 – stereo 0.6677 0.9622 0.0378 0.3323

Method 2 – standard 0.4322 0.9994 0.0006 0.5678

Method 2 – stereo 0.4240 0.9996 0.0004 0.5760

Method 3 – standard 0.6954 0.8884 0.1116 0.3046

Method 3 – stereo 0.7024 0.9358 0.0642 0.2976

Table 1. Results for global measures for all methods

The results are obtained from all evaluation sequences. The stereo versions of
the evaluated methods show a general improvement for most evaluation measures,
especially a decrease in false alarms with similar or improved correct detections. The
decrease in false alarms is a result of region size estimation based on the stereo dis-
tance calculation. Majority of false alarm sources are eliminated with this process,
such as movements of the vegetation or similar phenomena in the close proximity of
the camera. Most of the smoke detection methods have a set of tunable parameters
which define the sensitivity of detection with respect to the dynamics in the envi-
ronment. Increase in the algorithm sensitivity results in a more prompt and precise
detection of actual smoke in the scene, however, it also results in a general increase in
false alarms. Reducing the sensitivity of the algorithm, on the other hand, decreases
false alarm rate, but increases the risk of missed detections. In the case when a tool
for elimination of false alarms is introduced, such as stereo distance estimation, it is
possible to increase the sensitivity of the algorithm. The possible increase in false
alarms is in this case compensated with the false alarms elimination process. That
is the reason why some of the results also show the increase in correct detections
(recall), as it is the case with Method 1 and Method 3. The exception is a slight
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decrease in correct detections for Method 2 due to the fact that the standard version
has a very low false alarm rate to begin with. Please note that by increasing the
detection sensitivity we also increase the coverage area, i.e., the maximal distance
at which the method can detect wildfire.
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Figure 9. Observer quality graphs for TPRlc measure: a) Method 1, b) Method 2, and c)
Method 3

Another type of evaluation is performed using local measures. Local measures
are based on the results where the smallest units of detection are individual pixels.
Global measures are focused on whether the smoke is detected in the image or
not, while the local measures are focused on whether the location of the smoke in
the image is correct or not. Generally, when evaluating smoke detection systems,
the most important fact is that the alarm is raised with the occurrence of smoke,
with as low as possible false alarm rate. The location of the smoke in the image
is also important, however, the global performance is the primary criterion. We
have performed the evaluation on the local scale for measures described earlier, for
all detection methods. The results are presented in the form of observer quality
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Figure 10. Observer quality graphs for TNRlc measure: a) Method 1, b) Method 2, and
c) Method 3

graphs introduced in [32]. The graphs show the value of the specific measure for all
the images in the collection, sorted according to the increasing measure values. In
the graphs, the y axis represents the value of the specific measure, while the x axis
represents the ordinal number of the image in the sorted sequence, or the image
rank. Figures 9–12 show the observer quality graphs for local measures of correct
detections or true positive rate (TPRlc), true negative rate (TNRlc), false positive
rate (FPRlc) and false negative rate (FNRlc), respectively.

The local correct detections measure (TPRlc) deals with correctly detected
smoke pixels within the images in the collection. The stereo versions of the detection
methods show same or better local accuracy of correct detections when compared
to the standard variants as seen in Figure 9. When comparing the results for local
specificity measures (TNRlc), all of the stereo methods exhibit an increase in valid
local rejections when compared to the standard versions as shown in Figure 10.
This effect is the result of elimination of certain categories of false alarms based
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Figure 11. Observer quality graphs for FPRlc measure: a) Method 1, b) Method 2, and
c) Method 3

on stereo distance estimation. Similarly, this also affects the results concerning lo-
cal false alarms where all stereo methods exhibit a drop in local false alarms as
shown in Figure 11. Finally, the measure for local false negative rate (FNRlc) for
stereo versions remains the same or exhibits a drop in missed detections as shown
in Figure 12.

Another measure that can be applied to the evaluation of smoke detection algo-
rithms on the local scale is the Matthews correlation coefficient [33]. The Matthews
correlation coefficient (mcc) is defined by:

mcc =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(21)

and is generally used as a quality measure for binary classifications. This measure
takes into account all the detection cases (TP, TN, FP, FN) in a balanced manner
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Figure 12. Observer quality graphs for FNRlc measure: a) Method 1, b) Method 2, and
c) Method 3

so it can be used even when the classes are of very different sizes. The results for
the mcc measure for all methods are shown in Figure 13.

The mcc measure result values are in the interval [−1, 1]. The results for the
stereo versions of the detection methods show the same or increased value when
compared to the standard versions, which indicates an improvement in the overall
local detection quality.

6 CONCLUSIONS

In this paper we proposed a novel approach to smoke detection by introducing stereo
vision to the detection process. Standard smoke detection techniques available in
literature, can be extended in a way to include stereo vision techniques allowing us
to estimate the real world sizes of the detected regions and express them in standard
units of measurement.

This provides the detection system with additional information that could be
used to improve the reliability of the detection process. Using this information, the
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Figure 13. Observer quality graphs for mcclc measure: a) Method 1, b) Method 2, and
c) Method 3

minimum size and overall dynamics of the candidate regions are examined to verify
that they exhibit characteristic features of smoke. In this way, it is possible to deter-
mine the phenomena that cause false alarms due to their resemblance to smoke and
eliminate them from the detection based on size and dynamics constraints. As an ex-
ample, minimum size constraint is used for the elimination of false alarms induced
by movement of small objects in the scene (such as movement of branches and grass
in the close vicinity of the camera). Additionally, smoke dynamics are analyzed to
verify that regions adhere to certain rules regarding the rate of spread, leading to the
elimination of false alarms induced by phenomena that have significantly different
dynamics characteristics (such as shadowing by clouds).

Since smoke detection implies estimating relatively large distances, we have pro-
posed a wide-baseline stereo vision system. We have analyzed possible errors that
might affect the accuracy of the stereo system as well as their impact on the ac-
tual depth estimation. These errors include discretization error, that is a result of
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an approximation due to the discrete nature of the imaging system, and camera
alignment errors, more specifically the errors due to roll, pitch and yaw of one of
the stereo cameras.

We have evaluated three existing smoke detection methods and compared them
to the newly implemented stereo versions. The results based on global and local
evaluation measures have shown improved overall performance, especially in false
alarms for all tested methods. Moreover, by increasing the detection sensitivity we
not only achieved a lower false alarms rate, but also either maintained or increased
the number of correct detections and the coverage area of the existing methods.
This shows that this improvement based on stereo vision could be used as a welcome
addition to the standard detection methods in terms of system reliability and could
also be taken into account when designing future smoke detection systems, especially
if intended for areas with a high risk of wildfires.
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