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Faculté des Mathématiques et Informatique
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Abstract. Media, image processing, and geometric-based systems and applications
need data structures to model and represent different geometric entities and objects.
These data structures have to be time efficient and compact in term of space. Many
structures in use are proposed to satisfy those constraints. This paper introduces
a novel compact data structure inspired by the XOR-linked lists. The subject of
this paper concerns the triangular data structures. Nevertheless, the underlying
idea could be used for any other geometrical subdivision. The ability of the bit-
wise XOR operator to reduce the number of references is used to model triangle
and vertex references. The use of the XOR combined references needs to define
a context from which the triangle is accessed. The direct access to any triangle is
not possible using only the XOR-linked scheme. To allow the direct access, addi-
tional information are added to the structure. This additional information permits
a constant time access to any element of the triangulation using a local resolution
scheme. This information represents an additional cost to the triangulation, but
the gain is still maintained. This cost is reduced by including this additional in-
formation to a local sub-triangulation and not to each triangle. Sub-triangulations
are calculated implicitly according to the catalog-based structure. This approach
could be easily extended to other representation models, such as vertex-based struc-
tures or edge-based structures. The obtained results are very interesting since the
theoretical gain is estimated to 38 % and the practical gain obtained from sample
benches is about 34 %.

Keywords: XOR operator, XOR-linked list, XOR-based representation, triangular
data structure, catalog-based structure
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1 INTRODUCTION

Triangulations are widely used in almost all of the computer graphic applications.
Several data structures are proposed to represent such subdivisions [1, 2]: vertex-
based structures, edge-based structures, and triangle-based structures. All of these
structures use an explicit indirection scheme to access to their elements. When
dealing with huge triangulations, we need a large time to rearrange the structure in
order to reduce the memory cost.

The trivial way to do this is either to compress the structure, or use an Out-of-
Core structure. However, we need sometimes to still work In-Core in constant time,
with not very huge triangulations, that is why we need compact data structures [3, 4]
to delay as far as possible the swap between the main memory and the hard disk.

In this paper, a compact data structure is proposed that uses the bitwise XOR
Operator to reduce the amount of references in the memory space. This idea is
either applicable on vertex-based structures, edge-based structures, or triangle-based
structures, and can be extended to 3D triangulations or any other subdivision.

1.1 Triangle-Based Representation

To illustrate the XOR-combined references idea, we use the explicit triangle-based
representation (see Figure 1).
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Figure 1. The explicit triangle-based representation. Each triangle maintains three refer-
ences to its vertices and three references to its neighbors.

This representation [5] considers the triangle as the elementary object to rep-
resent the whole structure. Each triangle maintains references to its three vertices,
and to its three neighbors. The whole triangulation is then represented using a ta-
ble of triangles. Each entry in this table contains six references, three of them for
the three triangle vertices, and the other three references indicate the three triangle
neighbors. Since the number of triangles for a triangulation of n vertices is limited
by 2n, the global storage cost of such a triangulation is about 6n references.

The vertices in each triangle are indexed with 0, 1, and 2 in counterclockwise
order. The neighbors are indexed in such a way that the neighbor indexed by i is
opposite to the vertex with the same index.
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For further details in this paper, two functions have to be defined to handle the
item indices: cw(i) and ccw(i) which, given the index of a vertex in a triangle, com-
pute the index of the next vertex of the same face in clockwise or counterclockwise
order. Thus, for example the neighbor cw(i) is the neighbor of the triangle which
is next to neighbor i turning clockwise around the triangle. The triangle neighbor
cw(i) is also the first triangle encountered after the triangle when turning clockwise
around vertex i of the triangle. In other words, the ccw and cw functions allow to
enumerate the indices in cyclic way from 0 to 2 for the first function, and from 2 to
0 for the second function.

The remaining of this paper is organized as follows: Section 3 explains the
major contribution of this paper. The Section 4 details the basic XOR linked date
structure. In Section 5, the resolution scheme used to directly access triangles
is presented. Section 6 presents some ideas to extend the XOR linked model to
other representations. In Section 7, some sample benched results are presented to
demonstrate the practical gain of this structure.

2 STATE OF THE ART

Data structures, and especially geometric data structures are used in many fields
ranging from computer-aided design to finite elements [6].

The basic work has targeted the design of data structures [7] that are robust, fast
and simple, while respecting the requirements of the different types and aims of the
application [1]. This compromise is not always easy to manage, because applications
are not always categorized. The efficiency in terms of execution time is required for
real-time applications where the need to reduce the space used in memory usually
happens in the background, while the economy in terms of memory footprint arises
for handling large models, and induced in most cases a decrease of efficiency and
loss of simplicity.

We will see in this part of the paper a description of the various solutions that
have been proposed for the realization of geometric data structures to meet the
various requirements imposed by the variety of applications ranging from simple
and explicit data structures designed for small data sets, to compact or succinct
data structures. We will also see the outlines of compression algorithms and data
structures proposed for applications using auxiliary memories.

The most used structures in the state of the art are the primitive-based rep-
resentations. Also known as index models or array-based models [8]. Since the
triangulation can be seen as a set of vertices, edges, or faces, we can set these
structures in three categories: edge-based structures, triangle-based structures, and
vertex-based structures.

The first one deals with modes of representation that have been proposed for
polygonal models in general, not just the triangulations. The basic object can be the
edge or the half-edge. These structures have been developed around the modeling
of solids and surfaces [9]. In such structures, the topological information is mainly
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contained in the edges of the object. A very large literature is available for this
set [10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

In this type of representations, the basic concept is the triangle. The basic
structure uses two tables: one for the vertices where the geometric coordinates are
stored, and the second one is for the triangles, where are stored the references of
three vertices that define each triangle. This structure requires at least 6n references
for a triangulation of n points.

This type of representation is widely used in practice [20, 21, 22], as it allows
a minimum storage compared to other strategies, while maintaining a constant time
response to incident requests.

In the vertex-based structures [23], the triangulation is represented as a graph
of incidence between the nodes (vertices) of the triangulation. The structure is
a list of vertices, where each vertex maintains its degree (the number of neighboring
vertices), the list of these neighbors, and a mark indicating if the vertex is a vertex
on the boundary or not. Given that the average degree of a vertex in a triangulation
of n points is equal to 6, the cost of such a structure is 7n references [24, 25].

Compressing meshes (or triangulations) comprises encoding triangulation elimi-
nating maximum redundancy by minimizing the entropy of the structure. The data
structure after compression is unusable, and to be able to manipulate the structure
or access items, you must decompress the entire structure and rebuild the explicit
structure. For a detailed and comprehensive study of mesh compression techniques,
a wide range of publications exists [26, 27, 28, 29, 30, 31, 32, 33].

2.1 Dealing with Huge Triangulations

The treatment of huge meshes of the order of billions of triangles is very limited by
the above cited representations. Indeed, the indirection required to access vertices
from a given face can be very costly when the index is very wide, even impossible
when it exceeds the addressable range in the memory of the machine. Hence the
importance of the Out of Core algorithms.

An intuitive solution is to not list the vertices, and to include directly the coor-
dinates of the vertices in the faces. This solution that is called Triangle Soup would
enable the faces of a mesh independently and avoid the step of indirection. But
vertex update and neighborhood span is not as easy as in the indexed format. This
technique was introduced for several types of applications [34, 35, 36]. The explicit
representation of the parts of this mesh in working memory is usually indexed.

Another type of Out-of-Core approaches is the multi-resolution structures [37,
38, 39, 40, 41]. These structures allow access to the grid by induction on spatial
subdivisions. These structures are also used to adjust the level of detail of the
explicit structures. The involved common basic models are the trees (especially
B-trees and its derivatives [42]).

For a data structure suitable for processing mesh, where this is done sequentially,
Isenburg et al. [43] have proposed an ordered structure that they called Streaming
Mesh. The goal is to have a format that allows switch the flow of mesh in the working
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memory to process it without the need to load the resident parts in the auxiliary
memory. To do this, the vertices and the faces of the mesh are inserted into the
same structure. Gradually, as the faces scrolled in the structure, the vertices are
introduced in the flow, or finalized when they are no longer referenced by any face.
This format was used to compress large meshes [44, 45, 46], for the simplification
of meshes [47], for the construction of the Delaunay triangulation [48]. In [49], this
format is modified to allow direct access to neighboring information.

2.2 Compact Data Structures

Between explicit data structures, and the coding of triangulations, there is a third
set of structures called Compact Data Structures. This type of structure has two
objectives:

• Conceive a structure that is locally accessible: That means that we can access
to its components in constant time.

• At the same time, we have to minimize the space occupied by the structure, so
that it holds in working memory, and consequently to delay as long as possible
the use of the transfer with the auxiliary memory.

The first compact data structure was proposed by Kallmann and Thalmann, they
called it Star Vertices [24]. It is a vertex-based representation: each vertex handles
a list of all of its adjacent vertices (the vertex stores the size of this list), resulting
in 6n references plus n integers (sizes of lists) to represent the whole triangulation.
However, the internal structure has no longer an explicit representation of faces, and
queries cost time is proportional to the degree of the involved vertex.

Blandford et al. [50, 4, 51] proposed a compact data structure for representing
simplicial meshes, requiring in practice 40 bpt 1. The representation does admit an
edge-based or vertex-based representation, providing basic update operations and
standard local navigation between triangles (performing these operations takes O(1)
time for the case of meshes with bounded vertex degree). To gain in memory, dif-
ference vertex labels are used instead of real pointers, and a preprocessing step
consisting of relabelling vertices, for reducing the differences, is needed. This ap-
proach takes advantage of properties of graphs with small separators and require
some assumptions on the input data.

Devillers et al. have proposed an optimal way of representing a triangulation of
n points using 3.24n bits [52, 53], with an additional storage cost which is asymp-
totically negligible (in the case of a triangulation of a topological sphere; for the
triangulation bounded by a polygon of arbitrary size the cost is 2.17 bpt. The idea
is to gather triangles in tiny patches of size between logn

12
and logn

4
, and to introduce

a graph of patches to describe adjacency relations between them. Each patch is
then represented by a reference to a catalog, consisting of all different tiny patches

1 bits per triangle
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of size less than logn
4

. The whole size of all references to the catalog gives the dom-
inant term of 3.24 bpv 2, while the representation of the graph of patches requires
a negligible amount of space.

In [54], the authors proposed some catalogs and evaluate in detail the amount
of storage needed for representing triangulations using this approach. The imple-
mentation showed that the expected improvements are indeed obtained in practice.

In [55], Aleardi et al. proposed a new way of designing compact data structures
which can be dynamically maintained. They described a new class of data struc-
tures, called Editable SQuad (ESQ), offering the same navigational and storage per-
formance as previous works, while supporting local editing in amortized constant
time.

The proposed data structures are simple to implement and provided with an ana-
lysis of worst case storage bounds. The simplest solution uses 6 rpv 3, while support-
ing updates operations in O(1) amortized time: this is obtained with a reordering
of input data which allows to encode the map from triangles to vertices. The most
compact data structure makes use of a grouping strategy between adjacent trian-
gles, and uses only 4.8 rpv, while still supporting efficient navigation and update
operations.

In [56], Gurung et al. proposed a data structure for representing the connectiv-
ity of manifold triangle meshes that they called LR (Laced Ring). This structure
provides the option to store on average either 1.08 rpt 4 or 26.2 bpt. Its construction,
from an input mesh that supports constant-time adjacency queries, has linear space
and time complexity, and involves ordering most vertices along a nearly-Hamiltonian
cycle.

3 CONTRIBUTION

In this paper, we present a novel compact data structure for 2D triangulations based
on the bitwise XOR operator [57].

The underlying idea concerns the indexed structures. The XOR-scheme is used
to reduce the number of explicit references by combining them two by two.

A bitwise operation operates on binary numerals at the level of their individual
bits. It is a fast, primitive action directly supported by the processor, and is used
to manipulate values for comparisons and calculations.

A bitwise XOR takes two bit patterns of equal length and performs the logical
exclusiveOR operation on each pair of corresponding bits. The result in each po-
sition is 1 if only the first bit is 1 or only the second bit is 1, but will be 0 if both
are 0 or both are 1. Otherwise, we perform the comparison of two bits, being 1 if
the two bits are different, and 0 if they are the same.

2 bits per vertex
3 references per vertex
4 references per triangle
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The basic idea of the proposed structure is to combine references in the same
way as the XOR-linked lists.

The XOR-linked list merges the next and the previous references into one sin-
gle field using the bitwise XOR operator (see Figure 2). The access to a given
element in the linked list is only sequential, that means that we access each el-
ement either from its predecessor neighbor, or from its successor neighbor. The
obtained gain by replacing the explicit next and previous references with their
XOR-combined reference is 50 %, since these two references are replaced by only
one reference.

data
Previous

Next

data
Previous

Next

data
Previous

Next

data
Previous

Next

data
Next  x  Previous

data
Next  x  Previous

data
Next  x  Previous

data
Next  x  Previous

a

b
Figure 2. A) The explicit representation of liked list. B) The XOR-linked list: The im-
plicit representation of a linked list using the XOR operator to join the next and previous
pointers.

The resolution of the references (that means retrieving the real previous and next
references) is done on the fly each time we access to an element. Since the access
to the element is sequential, each element is accessed either from its predecessor or
successor in the list. So, in the first case, we retrieve the successor reference from
the predecessor one and the XOR combined references, and in the second time, we
retrieve the predecessor reference from the successor one and the XOR combined
references.

4 THE BASIC XOR-BASED TRIANGULAR STRUCTURE

When walking in a triangulation, we access each triangle from its neighborhood.
This context defines for each accessed triangle at least one of its neighbor references,
and at least two of its three vertex references.

Let us consider the triangle Ti. Where: V0, V1, V2 are its vertices; N0, N1, N2 are
its neighbors.
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The XOR-based representation of the triangle T0 is defined by:

T0


V0 ⊕ V1 ⊕ V2,
N0 ⊕N1,
N0 ⊕N2.

As we can remark, the number of references used to represent each triangle in
this XOR-based representation is only three, instead of six references in the explicit
triangle-based representation. The gain obtained is then equal to 50 %.

When accessing this triangle, coming from a neighbor Ni sharing the two vertices
Vcw(i) and Vccw(i), the above XOR-based representation allows us to retrieve all of
the three vertex references and all of the three neighbor references as follows:

V0 ⊕ V1 ⊕ V2, Vcw(i), Vccw(i)

N0 ⊕N1, Ni

N0 ⊕N2,

 =⇒ Vi, Vcw(i), Vccw(i),
Ni, Ncw(i), Nccw(i).

In order to affect the indices to the vertices and neighbors, a conventional order
can be adopted: The vertices are sorted, and the indices are assigned from 0 to 2 in
the same order for all the triangles of the subdivision.

The main disadvantage that we have here is the lack of direct access to triangles.
The basic scheme presented here needs to have a context each time we access to
a triangle. This context is defined as follows:

• One of its neighbors.

• Two of its three vertices.

If we want to enumerate all of the triangles (or read all of them from the triangle
container for example), we lack this context. The only way to enumerate all of the
triangles is to walk in the triangulation spanning all of its simplices.

5 THE RESOLUTION SCHEME

To be able to directly access to any triangle, we define a Local Resolution Scheme.
The Local Resolution Scheme is an algorithm that can extract all of the triangle
references from a restricted local neighboring sub-triangulation. That means that
we need not to browse the whole triangulation to extract a given triangle references,
just a local restricted neighborhood is sufficient to retrieve these references.

To establish such a scheme, we consider a local neighborhood according to a sub-
division of the triangulation into packages likewise the catalog-based data struc-
ture [54] using only two packages: quadrangles and pentagons. Although we can
go further by defining largest catalogs, the quadrangles and pentagons are widely
sufficient.

As demonstrated in [54], any triangulation can be represented as a decomposition
of sub-triangulations using only these catalog packages.
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The global structure remains triangle-based, and the mentioned subdivision is
only virtual. We need only to associate triangles belonging to packages between
them, to be able to retrieve all of the lacking references.

5.1 Rearranging the Triangulation

In order to minimize additional costs, the triangles of the original triangulation
have to be rearranged in such way that each package has its triangles stored in
a contiguous area in the memory (that means that its triangles have sequential
indices in the triangle container).

If we take the advantage of the memory size word that are at least four aligned
bytes (for a 32 bits machine), we can remark that the two least significant bits are
useless in the reference. We can squat these bits to store the indices of the triangles
into their belonging packages: The triangles of a given quadrangle are indexed 0
and 1, and the triangles of a pentagon are indexed 0, 1, and 2.

Now, all of the triangles are stored in the memory, and all of the package triangles
are stored consequently.

Thus, when we access to each triangle directly in the container, we consult its
index, and by consulting its direct contiguous neighborhood indices, we can easily
determine to which kind of package it belongs, and who are its neighbors in this
package.

5.2 Resolution Scheme into a Quadrangle
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Figure 3. a) Two triangles grouped into one quadrangle patch, b) three triangles grouped
into one pentagon patch

Let us suppose that we need to access to a specified triangle in a given quadran-
gle, the associated resolution scheme of the two triangles has to allow us to calculate
all of the references. Supposing we have the two adjacent triangles T0 and T1 those
belong to the same quadrangle (see Figure 3). The triangle T0 is represented as
follows:

• vertices : V0, V2, V3,

• neighbors : N2, N3, T1.
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The triangle T1 is represented as follows:

• vertices : V0, V1, V2,

• neighbors : N1, T0, N0.

The XOR-schemes of the two triangles are:

T0


V0 ⊕ V2 ⊕ V3,
N2 ⊕N3,
N2 ⊕ T1,

T1


V0 ⊕ V1 ⊕ V2,
N1 ⊕ T0,
N1 ⊕N0.

Since we have the two triangle references T0 and T1, we can resolve all of the
other two triangle references using this scheme system and two additional fields: the
V0 and V2 references. The resolution can be done as follows:

V0 ⊕ V2 ⊕ V3,
V0 ⊕ V1 ⊕ V2,
V0, V2,

 =⇒ V0, V1, V2, V3,

T0, T1,
N2 ⊕N3, N2 ⊕ T1,
N1 ⊕ T0, N1 ⊕N0,

 =⇒ N0, N1, N2, N3.

The indices of the vertices and neighbors in each triangle can be established
by sorting the vertices, and assigning the indices according to the vertex orders as
described in the convention cited in Section 4.

5.3 Resolution Scheme into a Pentagon

Let us suppose now that we need to access to a specified triangle in a given pentagon,
the associated resolution scheme of the three triangles has to allow us to calculate
all of the references. Supposing we have three adjacent triangles T0, T1, and T2

belonging to the same pentagon (see Figure 3), the triangle T0 is represented as
follows:

• vertices : V0, V1, V4,

• neighbors : T1, N4, N0.

The triangle T1 is represented as follows:

• vertices : V1, V2, V4,

• neighbors : T2, T0, N1.
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The triangle T2 is represented as follows:

• vertices : V2, V3, V4,

• neighbors : N3, T1, N2.

The XOR-schemes of the three triangles are the following:

T0


V0 ⊕ V1 ⊕ V4,
T1 ⊕N4,
T1 ⊕N0,

T1


V1 ⊕ V2 ⊕ V4,
T2 ⊕ T0,
T2 ⊕N1,

T1


V2 ⊕ V3 ⊕ V4,
N3 ⊕ T1,
N3 ⊕N2.

Using the same approach, we can retrieve all of the triangle references into
a pentagon, using their XOR schemes and two additional words: the V1 and V4

references. These words that are the middle vertices of the pentagon are considered
as the key gate of the package, that represent the local context allowing us to retrieve
all of the package references. The resolution is as follows:

V0 ⊕ V1 ⊕ V4,
V1 ⊕ V2 ⊕ V4,
V2 ⊕ V3 ⊕ V4,
V1, V4,

 =⇒ V0, V1, V2, V3, V4,

T0, T1, T2,
T1 ⊕N4, T1 ⊕N0,
T2 ⊕ T0, T2 ⊕N1,
N3 ⊕ T1, N3 ⊕N2,

 =⇒ N0, N1, N2, N3, N4.

Using the same convention as in Section 4, the indices of the vertices and faces
in each triangle can be established by sorting the vertices, and assigning the indices
according to the vertex orders.

5.4 The Estimated Gain

The global gain in the case of the basic XOR-based structure is equal to 50 %
since we represent each triangle using three references instead of six. However, in
the proposed XOR-based structure allowing direct access to triangles, the gain is
reduced.
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For each two triangles grouped into a quadrangle, we add two additional refer-
ences and for each three triangles grouped into a pentagon, we add two additional
references.

Theoretically, the maximum gain we can obtain corresponds to the case where
all the triangles are grouped into pentagons. In this case, and for a triangulation of
n vertices, we can obtain 2n triangles, and thus 2n

3
pentagons.

In this configuration, the global cost is equal to 22n
3

references instead of 12n in
the explicit triangle-based original structure. The gain is then equal to 38 %.

The worst gain we can obtain is when all of the triangles are grouped into
quadrangles. In this case, the global cost is equal to 8n. The gain is then equal to
33 %.

6 EXTENSION TO VEREX-BASED AND EDGE-BASED
STRUCTURES
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Figure 4. a) Half-edge-based representation, b) vertex-based representation

The XOR-linked representation is not restricted to triangle-based structures. It
is also applicable to vertex-based and edge-based structures (see Figure 4).

6.1 Vertex-Based Representation

In the vertex-based structure, the triangulation is represented as a set of vertices.
Each vertex is associated to a list of its incident (neighbors) vertices. The whole
triangulation is then a set of lists: Each list corresponds to a vertex, including its
degree (number of its neighbors), and the list of these neighbor references. The
global cost for this representation is equal to 6n (where n is the number of vertices).
Using directly the basic XOR-linked list to implement the vertex lists, the global
gain cost is about 50 %.

6.2 Edge-Based Representation

Let us consider the basic half-edge scheme, where each half-edge stores four refer-
ences:
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• the reference of the target or the departure vertex;

• the reference of the opposite half-edge;

• the reference of the previous half-edge in the same face;

• the reference of the next half-edge in the same face.

This representation is similar to the XOR-linked list, and could be converted to
a XOR-based scheme easily. The next and previous references would be replaced by
the result of their XOR combination (previous⊕ next).

7 EXPERIMENTAL RESULTS

In order to evaluate the practical impact of the proposed structure, the XOR-based
scheme is used to represent a sample Delaunay triangulation in static mode. That
means that the Delaunay triangulation is constructed, and then converted from
the explicit triangle-based representation to the XOR-based representation. The
obtained results are shown in Table 1:

Number of points 100 000 points 1 000 000 points

Number of triangles 199 298 1 997 498

Number of quadrangles 98 764 997 270

Number of pentagons 590 986

Gain in Memory 33.38 % 33.34 %

Browsing time in Explicit Structure 1.661 s 16.476 s

Browsing time in XOR-Based Structure 1.966 s 18.152 s

Loss in Time 15.51 % 9.23 %

Table 1. Number of packages, gain in memory and browsing time for two XOR-based
triangulations

As we can remark, the practical results are close to the theoretical expectations.
We gain a third of the memory space compared to the explicit triangle-based struc-
ture. The loss in execution time is not very significant, since we lose less than 15 %
of time. This execution time is calculated by browsing the whole triangulation and
outputting all of the triangulation elements into an external file.

8 CONCLUSION

This paper has presented a novel approach for geometrical data structures inspired
by the XOR-linked lists. The basic idea is to combine different references using the
XOR operator to reduce by two the number of references. Unfortunately, this ratio
is not reached if we need to maintain a direct access to each element of the structure.
To guarantee the direct access, a local resolution scheme is defined using additional
information. With this additional information, the structure remains beneficial and
useful. The estimated and the obtained practical gain could be improved, if this
method is combined with other compact data structures.
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[9] Mäntylä, M.: An Introduction to Solid Modeling. Computer Science Press, Inc.,
New York, NY, USA, 1987.

[10] Baumgart, B. G.: Winged Edge Polyhedron Representation. Technical report,
Stanford University, Stanford, CA, USA, 1972, doi: 10.21236/AD0755141.

[11] Baumgart, B. G.: Winged-Edge Polyhedron Representation for Computer Vision.
National Computer Conference, May 1975.

[12] Baumgart, B. G.: Geometric Modeling for Computer Vision. Ph.D. thesis, Stanford
University, USA, August 1974.

[13] Preparata, F. P.—Shamos, M. I.: Computational Geometry: An Introduction.
Springer-Verlag New York, Inc., New York, NY, USA, 1985.

https://doi.org/10.1142/S0218195905001580
https://doi.org/10.1016/S0925-7721(01)00054-2
https://doi.org/10.1201/9781420035179
https://doi.org/10.21236/AD0755141


XOR-Based Compact Triangulations 381

[14] Guibas, L. J.—Stolfi, J.: Primitives for the Manipulation of General Subdivisions
and the Computation of Voronoi Diagrams. Proceedings of the Fifteenth Annual ACM
Symposium on Theory of Computing (STOC ’83), ACM Press, New York, NY, USA,
1983, pp. 221–234, doi: 10.1145/800061.808751.

[15] Weiler, K.: Edge-Based Data Structures for Solid Modeling in Curved-Surface
Environments. IEEE Computer Graphics and Applications, Vol. 5, 1985, No. 1,
pp. 21–40, doi: 10.1109/MCG.1985.276271.

[16] Lienhardt, P.: Subdivisions of n-Dimensional Spaces and n-Dimensional Gener-
alized Maps. Proceedings of the Fifth Annual Symposium on Computational Ge-
ometry (SCG ’89), ACM Press, New York, NY, USA, 1989, pp. 228–236, doi:
10.1145/73833.73859.

[17] Halbwachs, Y.—Hjelle, Ø.: Generalized Maps in Geological Modeling: Object-
Oriented Design of Topological Kernels. In: Langtangen, H. P., Bruaset, A. M., Quak,
E. (Eds.): Advances in Software Tools for Scientific Computing. Springer-Verlag,
Lecture Notes in Computational Science and Engineering, Vol. 10, 1999, pp. 339–356.

[18] Hjelle, Ø.—Dæhlen, M.: Triangulations and Applications. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

[19] Campagna, S.—Kobbelt, L.—Seidel, H.-P.: Directed Edges – A Scalable Repre-
sentation for Triangle Meshes. Journal of Graphic Tools, Vol. 3, 1998, No. 4, pp. 1–11,
doi: 10.1080/10867651.1998.10487494.

[20] Shewchuk, J. R.: Triangle: Engineering a 2D Quality Mesh Generator and De-
launay Triangulator. In: Lin, M. C., Manocha, D. (Eds.): Applied Computational
Geometry Towards Geometric Engineering. Springer-Verlag, Lecture Notes in Com-
puter Science, Vol. 1148, 1996, pp. 203–222, doi: 10.1007/BFb0014497.

[21] TRIANGLE: Mesh Generator and Delaunay Triangulator. 2014.

[22] CGAL: Computational Geometry Algorithms Library. www.cgal.org.

[23] Cline, A. K.—Renka, R. J.: A Storage-Efficient Method for Construction of
a Thiessen Triangulation. Rocky Mountain Journal of Mathematics, Vol. 14, 1984,
No. 1, pp. 119–140.

[24] Kallmann, M.—Thalmann, D.: Star Vertices: A Compact Representation for
Planar Meshes with Adjacency Information. Journal of Graphics Tools, Vol. 6, 2001,
No. 1, pp. 7–18, doi: 10.1080/10867651.2001.10487533.

[25] Kallmann, M.: Object Interaction in Real-Time Virtual Environments. Ph.D. the-
sis, Swiss Federal Institute of Technology (EPFL), January 2001, Thesis number
2347.

[26] Alliez, P.—Gotsman, C.: Recent Advances in Compression of 3D Meshes. In:
Dodgson, N. A., Floater, M. S., Sabin, M. A. (Eds.): Advances in Multiresolution for
Geometric Modelling, Mathematics and Visualization. Springer, Berlin, Heidelberg,
2005, pp. 3–26.

[27] Gumhold, S.: Mesh Compression. Ph.D. thesis, University of Tübingen, July 2000.
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