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Abstract. Evaluating the strength of block ciphers against algebraic attacks can
be difficult. The attack methods often use different metrics, and experiments do
not scale well in practice. We propose a methodology that splits the algebraic
attack into a polynomial part (local reduction), and an exponential part (guessing),
respectively. The evaluator uses instances with known solutions to estimate the
complexity of the attacks, and the response to changing parameters of the problem
(e.g. the number of rounds). Although the methodology does not provide a positive
answer (“the cipher is secure”), it can be used to construct a negative test (reject
weak ciphers), or as a tool of qualitative comparison of cipher designs. Potential
applications in other areas of computer science are discussed in the concluding parts
of the article.
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1 INTRODUCTION

The algebraic cryptanalysis is based on the idea of transforming cryptanalytic prob-
lem to a problem of solving a carefully crafted set of equations (with algebraic
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methods). Algebraic attacks can be executed even if the attacker has only a very
small number of P-C pairs. On the other hand, it seems quite difficult to scale the
attacks (using SAT solvers, or Gröbner basis solver), or to correctly compare results
in assessing the strength of cryptographic primitives.

Nowadays, two main approaches are prevalent in the algebraic cryptanalysis:

1. Transform the cryptanalytic problem to CNF form, and apply fast SAT solvers.

2. Find as many linearly independent MQ equations as possible, and apply relin-
earization to find solutions [5], or compute solutions by computing the Gröbner
basis of the ideal generated by these equations [9, 10].

These methods usually terminate in reasonable time only if some number of key
bits is fixed in advance. Moreover, Gröbner basis approach can often fail due to
memory constraints.

A different approach to algebraic cryptanalysis was proposed by Raddum and
Semaev [15]. An encryption process can be described by a sequence of smaller
operations working on some internal state. At the bottom level, the cipher can be
described by a logic circuit, with logic gates, and wires. We can assign a variable for
each internal value transmitted on the wires during the encryption process. Then
each logic gate defines a Boolean equation in its input and output variables. It is
easy to enumerate all possible (partial) solutions for Boolean equations with small
number of variables (sparse equations). If we descend to a reasonably low level
in cipher description, each of these equations is 3-sparse, i.e., it has at most three
variables (two inputs, and one output). It might be more practical to work on higher
level, e.g. on the full S-box level [13]. The equations taken together with a known
P-C pair provide an equation system for the algebraic cryptanalysis. We primarily
want to find the value of key bits, but we can consider all intermediate values as
unknowns in the system.

We represent equation system as algebraic varieties, resp. as a list of points
of these varieties projected to chosen coordinates given by variables the equation
depends on. Our goal is to find the intersection of these varieties. If the point P on
variety does not belong to the intersection of varieties, we can replace the original
variety by a reduced one that does not contain P without influencing the final
solution of the system. In some cases, we can determine the condition “does not
belong to the intersection” in polynomial time, e.g., if it does not belong to the
intersection of 2 varieties, it clearly cannot belong to intersection of all varieties. We
call this process the (polynomial time) local reduction of the equation system [24].
If we can simplify each equation to a single solution, the system is trivially solved
(it suffices to read values of variables from individual equations). In other cases we
can compute the intersection by the (exponentially) difficult Gluing algorithm [14].

Let us suppose that we have a polynomial time local reduction algorithm A,
but we are unable to remove any more partial solutions in the system. We suppose
that the system is still unsolved, i.e., there are (unfixed) variables that can have
both 0 and 1 assigned in each equation they are influencing. Let A be well behaved
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in a sense that it has a higher chance of reducing system, if individual equations
have a lower number of partial solutions. If we take an unfixed variable and guess
its value, we can remove at least one partial solution in each equation influenced by
this variable. This can restart the local reduction. After guessing a finite number
of variable values, we either end with the solved system, or we remove all partial
solutions from some equation(s). The latter case means that the system does not
have a solution compatible with the guesses (a conflict is detected), and we must
backtrack our guessing sequence. The guessing process complexity is exponential in
the number of variables that have to be guessed before the system can be reduced
to a solution/conflict, and thus it dominates the polynomial complexity of A when
we scale the problem. We silently suppose that behavior of A is not negatively
influenced by expanding the system. Although the conditions on the behavior of A,
and the computation of the influence of the system size on the required number of
guesses can be impractical for exact determination of the complexities, it can be
useful in practical experimental assessment of the strength of iterated block ciphers,
and other cryptographic designs that can be scaled in a similar way.

The structure of the article is as follows: In Section 2 we provide preliminary
definitions. In Section 3 we describe generic local reduction scheme, and its use in
solving sparse Boolean equation system. In Section 4 we provide concrete algorithms
that fit into the local reduction scheme. Finally, in Section 5 we focus on the use
of the local reduction in experimental evaluation of the strength of the iterated
ciphers against algebraic cryptanalysis. As an illustration, in Section 5.1 we provide
experimental results from the analysis of the block cipher DES by the method of
syllogisms.

2 PRELIMINARIES

Let F : GF (2)n → GF (2)m : F (x) = (f1(x), . . . , fm(x)) , be a Boolean function
with m component functions fi. Equation F (x) = 0 defines a system of m Boolean
equations fi(x) = 0, for i = 1, . . . ,m in n variables x1, x2, . . . , xn.

Let S be the set of solutions of a system of Boolean equations F (x) = 0, i.e.
S = {x ∈ GF (2)n;F (x) = 0}. We say that the system is inconsistent, iff S = ∅. We
usually suppose, that F is defined in such a way, that there is exactly one solution
to the system, i.e. |S| = 1 (but this is not a necessary condition).

Let Si be the set of solutions of ith equation of the system, i.e. Si = {x ∈
GF (2)n; fi(x) = 0}. If x ∈ S, then it must also be in each Si (the converse is not
true in general), thus S ⊂ Si, and S =

⋂m
i=1 Si.

Definition 1. Let f : GF (2)n → GF (2) be a Boolean function. Let e(i) ∈ GF (2)n,

projj(e
(i)) =

{
1, j = i,
0, j 6= i.

We say that f depends on variable xi iff there exists x such that f(x)⊕f(x⊕e(i)) = 1.
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Let Xi be the set of coordinates on which fi depends. We say, that Boolean
equation system F (x) = 0 is l-sparse, iff |Xi| ≤ l, for each i = 1, . . . ,m.

If fi depends only on a small set of variables, we can represent Si more effectively
by storing only the values of variables on which fi depends – vectors of length |Xi|,
indexed by variables in Xi in the chosen order. We call these vectors partial solutions.
We will denote a set of such vectors Vi. Other variables can take all possible values
for each v ∈ Vi.

1 We will call (Xi, Vi) a symbol representation of the equation
fi(x) = 0, and the set V = {(Xi, Vi); i = 1, . . . ,m} a symbol representation of the
system.

Let F (x) = 0 define an l-sparse m × n Boolean equation system (as defined
above). We can produce a symbol representation of fi(x) = 0 in at most 2l evalua-
tions of the Boolean function fi. Thus it is possible to compute V in at most m2l eval-
uations of simple Boolean functions. In some applications it is possible to compute V
even faster. E.g. in algebraic cryptanalysis, we can describe individual S-boxes with
equations y = S(x) by symbols (Xi, Vi), where Xi = {x1, . . . , xk, y1, . . . , yj}, and Vi

contains 2k vectors in the form (x, S(x)).

The problem of solving Boolean equation system in symbol representation is as
follows: Given V , compute S. We can alternatively have two simpler goals: compute
at least one element of S, or show that S = ∅.

3 SOLVING SPARSE BOOLEAN SYSTEMS BY LOCAL REDUCTION

Let V = {(Xi, Vi)} denote a system of Boolean equations in symbol representation,
and let S denote a set of all solutions of the equation system. Let s ∈ S be a solution,
and let si be its projection to Xi. Clearly si ∈ Vi for i = 1, 2, . . . ,m. We call such
vectors true (partial) solutions.

Let us suppose that there exists v ∈ Vi, which is not a projection of any of
s ∈ S – a false (partial) solution. A false solution is in a conflict with the rest of
the equation system. It is possible to replace the symbol (Xi, Vi) by the symbol
(Xi, Vi \ {v}). The new symbol represents a different Boolean equation f ′

i(x) = 0
(we factor out the part of fi corresponding to the root v), but the new system of
equations has the same solution set S. We say that we have locally reduced the
system. We may remove some partial solutions in such a way that the new equation
does not depend on some x ∈ Xi. In this case, we should also remove x from Xi

(and corresponding coordinates from Vi).

The primary goal of a local reduction method is to remove all false partial
solutions from sets Vi. The reduced system allows us to easily identify a conflict,
or a solution (of the original system). Let us suppose that |S| > 0, and V contains
a symbol with |Vi| = 1. Then exact values of variables from Xi are known to us
without the need to further examine the system. Similarly, if we get some Vi = ∅,
then clearly S = ∅. We say that the equation is solved, if its symbol representation

1 Vi is a projection of variety V (fi) into coordinates given by Xi.
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does not contain any false partial solutions. The system is solved, if every equation
in the system is solved.

Let P denote a finite set of predicates (in practice, we can use any suitable form
of representation). Let us define three basic operations:

1. Apply:

Input: P , (Xi, Vi)

Output: (X ′
i, V

′
i )

Description: Let V ′
i = ∅. For each vector v ∈ Vi, check whether it is in conflict

with P . If not, add it to V ′
i . Finally, construct symbol (X ′

i, V
′
i ) by removing

variables on which the equation no longer depends (if any).

2. Collect:

Input: (Xi, Vi)

Output: Set of predicates P

Description: Computes a set of predicates P that represent (local) information
about the symbol (Xi, Vi).

3. Join:

Input: Sets of predicates P , P
Output: Updated P
Description: Merges (local) information P into (global) P .

Generic local reduction scheme works as follows (with input V , P):

1. Let i = 1, j = 0.

2. Let (X ′
i, V

′
i ) = Apply (P , (Xi, Vi)). If V ′

i = ∅, STOP, return CONFLICT.

3. Let P = Collect(X ′
i, V

′
i ).

4. P ′ = Join(P,P). If P is inconsistent, STOP, return CONFLICT.

5. If (Xi, Vi) = (X ′
i, V

′
i ) and P ′ = P , increment j. Else j = 0.

6. If j = m, STOP, return REDUCED.

7. V = (V \ (Xi, Vi)) ∪ (X ′
i, V

′
i ). Cyclically increment i, and GOTO step 2.

This description is general, and not necessarily optimal. If no information about
the system is known a priori, initial P = ∅. Scheme returns the state (CON-
FLICT/REDUCED), and the final V ,P , respectively.

It is easy to show that the algorithm stops. In each step either we learn some-
thing new about the system, remove a false partial solution, or increment the
counter j. We suppose that possible P is finite. Then there exists a saturation
point, i.e., we cannot learn anything more about the system. There is a limited
number of partial solutions, thus we must stop removing solutions at some point.
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Counter j reaches m, if we were unable to add new information, or remove any
partial solution from each of the equations.

Let m = O(n), and V be l sparse. Let |P|, as well as running times of operations
Apply, Collect, and Join be polynomially bounded in n. Then the running time of
the Local Reduction algorithm is also polynomially bounded in n. This is easy
to see: Each repetition of the algorithm uses 1 application of Apply, Collect, and
Join, so we get O(nk1) complexity of each repetition, where k1 is determined by
the most difficult of the three operations. The number of repetitions is lower than
|P|+m2l +m = O(nk2). The total running time is thus bounded by O(nk1+k2). The
similar holds for the memory requirements. In the remainder of this paper we will
only consider polynomial Local Reduction algorithms.

If the algorithm stops with conflict, we know that the system is inconsistent,
and thus it has no solution. Otherwise, the algorithm stops when nothing more can
be learned about the system by the selected local reduction method. The algorithm
then outputs the reduced system (and optionally also the information about the
system P). In some cases, the system is solved, and thus we can find at least
one solution s ∈ S in polynomial time (the trivially detected case is when each Vi

contains a single solution). Otherwise we can find the solution using guessing and
backtracking:

1. Let G = {p1, p2, . . . , pk} be a set of (mutually exclusive) statements about the
solution of the system V not already contained in P . Furthermore, let G have
a property, that if each of pi is false, then V has no solution.

2. If G = ∅, return CONFLICT.

3. Guess: Choose p ∈ G.

4. Reduce: Let (State,V ′,P ′) = LocalReduction(V ,P ∪ {p}).
5. If State is CONFLICT, remove p from G, GOTO Step 2.

6. Unless solution is found, recursively apply this procedure on (V ′,P ′). If CON-
FLICT is returned, remove p from G, GOTO Step 2.

If there was a polynomial instantiation of Local Reduction scheme which pro-
duces directly (without guessing) a solution for each V , it would mean P = NP.
However, we are skeptical that this is the case. We are more interested in determin-
ing the bounds for polynomially solvable cases, and the resulting global complexity
of the guessing for systems, which are not polynomially solvable.

Due to the recursive nature of the guessing algorithm, its expected complexity
is exponential (it depends on the depth and branching of the search tree). We call
the sequence of sets G in the recursion the guessing strategy. The guessing strategy
significantly influences the final complexity of the attack [21]. We believe that for
each polynomial local reduction method (with fixed sparsity), there can be some
optimal generic strategy, which leads to the lowest possible complexity. However,
we cannot prove this hypothesis.

A typical set of statements G is a choice of a value of a single variable, e.g.
G = {x1 = 0;x1 = 1}. If we use this method for algebraic cryptanalysis, the number
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of values we need to guess (depth of recursion) corresponds to a bit complexity of
the attack.

Another type of G can be constructed from a single symbol as a choice of a partial
solution, e.g. G = {v1 is true solution; v2 is true solution, . . .}. This is especially
useful, if we know a priori that there is exactly one solution of the system. If the
symbol with |Xi| = l variables contains |Vi| = ki partial solutions, we can examine all
possible values of l variables with only ki choices. The bit complexity corresponding
to a single symbol is given by log2 ki, and the bit complexity of the whole attack is
given by

∑
log2 ki, with the sum taken over symbols we use in the attack.

If we want to assess the strength of the cipher against the attack based on
local reduction, we can generate the problem instance with a known solution. In
each step, when we have to guess some value, we can provide the correct answer to
the algorithm, so no backtracking is necessary. We know that finally the process
will converge to a (known) solution. Meanwhile, we keep track of the expected bit
complexity of the (uninformed) attack. To estimate the complexity of the attack
on a random unknown instance, we can randomize the process by trying different
random instances (e.g., for the block cipher testing we can use different plaintexts,
and keys, respectively), and we can also randomize the guessing strategy. Under
the condition that the local reduction method is polynomial, we can expect the
evaluation of the complexity can be relatively fast even for large systems.

4 LOCAL REDUCTION ALGORITHMS

We present a collection of polynomial local reduction algorithms that can be used
in conjunction with guessing to solve equation systems in symbol forms. The list is
not exhaustive, moreover the individual methods can be combined to create a more
efficient version of the algorithm. The method “Spreading of constants” is the
common part of each of the presented methods, otherwise these methods are distinct
(i.e., there are examples of systems that can be solved by one of the methods but
not the others). In our algebraic cryptanalysis experiments we use the method of
syllogisms, for which we have implemented the experimental software solver [20].

4.1 Local Reduction with Linearization

One of the basic local reduction methods is based on the linearization of the symbols.
We try to find linear equations that hold for each partial solution in each symbol
individually, and remove incorrect solutions using global linear algebra.

Let P be represented as a set of linearly independent equations in all n variables.
Maximum cardinality of P is n. We can instantiate the Local reduction procedures
as follows:

1. Apply: For each partial solution v ∈ Vi substitute values of variables from Xi

within equations in P , and check whether the resulting system of linear equations
has at least one solution. If not, v can be removed.
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2. Collect: Find the largest possible set P of independent linear equations in vari-
ables from Xi, such that each v ∈ Vi is in a solution space of P .

3. Join: Add equations from P to P , and remove all linearly dependent equations
(e.g. by triangularization).

Theorem 1. For each symbol (Xi, Vi), with 0 < |Vi| ≤ |Xi| there exists at least
one affine Boolean function a, such that each v ∈ Vi is a solution of a(v) = 0.

Proof. Let (Xi, Vi) be a symbol with |Xi| = l variables, and |Vi| = k partial
solutions, respectively. Let A be l × k matrix with columns corresponding to the
partial solutions. Let I be l × l identity matrix, with columns corresponding to
variables from Xi. Let M = (B|C) be a reduced row echelon form of matrix (A|I).
Each row with all zeros in the first k columns, represents a linear equation that holds
for each solution (if the row is all zero, it is the trivial equation 0 = 0, otherwise
the coefficients are given by the part of the row in C). If B = I, we can construct
affine equation by summing all rows of C (the right-hand side becomes one in each
solution). �

Sometimes it is possible to find linear equations also when |Vi| > |Xi|, but these
cases are rare. However, if we guess value of some variable in the symbol, we expect
that |Vi| is halved (in average). Thus with each guess we are getting higher chance
of finding linear equations, until the system can completely be linearized.

4.2 Spreading of Constants

The spreading of constants can be considered a special case of linearization, when
we limit P to contain only equations in the form xi = ai. Finding the equations in
the individual symbols is very easy. We remark that spreading of constants is also
a special case of the method of syllogisms, and Agreeing, respectively.

4.3 Method of Syllogisms

The method of syllogisms was proposed by [24], and we have further been able to
adapt it for algebraic cryptanalytic purposes [19, 21]. We provide a simple scheme
as follows.

Let P contain logic formulas (implications) in the form (xj = a) ⇒ (xk = b).2

We have |P| = (2n)2.

1. Apply: For each partial solution v ∈ Vi check whether all implications in P are
true. If not, remove v.

2. Collect: For each pair of variables xj, xk ∈ Xi make projection of Vi onto
{xj, xk}. Each missing tuple (from the set {00, 01, 10, 11}) defines two new
implications of the required form.

2 In practice we store these formulas in the form of the implication graph.
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3. Join: Add implications from P to P , and compute the transitive closure of the
corresponding implication graph.

The complexity of operations Collect and Apply is dominated by the number of
partial solutions and variables in the symbol. If we consider system to be l-sparse
with fixed l, this complexity factors becomes “constant” as n grows. The transi-
tive closure of the implication graph can be computed in O(n3) (e.g. by Warshall’s
algorithm). Thus the whole Local reduction based on the method of syllogisms is
polynomial as required.

Let V be an l-sparse equation system with randomly chosen Xi’s. Let each l-
tuple become a partial solutions in Vi with probability p. In [18] we show that if p
is low enough, then the system can be solved by the method of syllogisms without
any guessing with very high probability. The actual threshold depends on l (for
smaller l’s it is higher) but does not seem to depend on n. This means that if the
average number of solutions per symbol in the system falls below some threshold,
the system can be solved with no (more) guessing. If the system cannot be reduced
by the method of syllogisms, with guessing we can remove some partial solutions
(incompatible with the guess), thus lowering the average number of partial solutions
per symbol. We can thus expect that the guessing process will terminate with the
collapse of the system by the method of the syllogisms.

4.4 Agreeing

We can also map the method Agreeing from [14] into the scope of Local reduction
methods. The set P is represented directly by V (can be augmented by more effective
representations).

1. Apply: For each partial solution v ∈ Vi check whether it is possible to find
a matching projection on Xi ∩Xj in Vj, with Xi ∩Xj 6= ∅. If the projection is
missing in some of the connected equations, remove v.

2. Collect: Nothing to be done.

3. Join: Nothing to be done.

In [18] we show that Agreeing has similar behavior as the method of syllogisms
when working with random equation systems, however it tends to be more effective
when the sparsity l is larger (the threshold is at l = 7). We should note that there
are now more efficient realizations of the Agreeing algorithm [17]. However, this
new algorithm already combines basic Agreeing with guessing, and learning new
information during the guessing process, so it is not possible anymore to directly
incorporate it into our local reduction scheme.
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5 EXPERIMENTAL EVALUATION OF THE SECURITY
OF ITERATED CIPHER DESIGNS

The local reduction framework splits the question of the complexity of the algebraic
cryptanalysis into two parts: polynomial local reduction algorithm, and exponential
guessing. The practical realization of the local reduction algorithm can be quite com-
plex, especially in comparison with the speed of the encryption routine. However,
this complexity factor can be omitted when we are scaling the problem (exponen-
tial guessing part dominates the polynomial one). The strength of the cipher is
then given by the minimum number of intermediate bits the attacker needs to guess
before the local reduction method can solve the problem.

Most block ciphers are designed in such a way that it is relatively straightforward
to construct an l-sparse Boolean equation system in symbol representation describing
the encryption process. In the basic form, all input, output and key bits can also be
represented by corresponding unknowns in the system. When analyzing the cipher
we fix the input and output bits according to a known P-C pair.

The goal is to solve the equation system in the remaining unknowns with the
minimum complexity. When we want to evaluate the complexity of the attack,
we can work with instances for which we know the whole solution. We can thus
provide the correct solution for each guess incrementally until the system collapses
into a solved state. We estimate the complexity of the attack by summing expected
bit complexity in each step of the guessing. We measure the final complexity in bits:
If we are guessing directly variables, we count the number of guessed variables. If
we are guessing whole vectors v ∈ Vi (which fixes |Xi| variables at once), we add
log2 |Vi| for each guess (instead of |Xi| > log2 |Vi|).

We remark, that if we “guess” input and key bits, and use the spreading of
constants, the system will collapse into a single solution (spreading of constants
emulates the working of the corresponding encryption logic circuit). Thus the upper
limit for the minimal complexity of the local reduction methods is the key size (in
the single P-C pair scenario).

Let us suppose that we use iterated cipher, and increase the number of rounds
of the evaluated cipher. The size of the system increases with each round (due
to new intermediate variables). The complexity of the local reduction part scales
polynomially (so the experiments are not significantly slower). The bit complexity of
the attack depends on the guessing strategy. If we guess values of randomly chosen
variables (or partial solutions of randomly chosen symbols), we can expect that the
bit complexity will grow with the size of the system. In this case, we simulate
completely uninformed attacker, and the result can be considered the upper bound
on the bit-complexity of the attack. If the attack with random guessing has lower bit-
complexity than the number of key-bits, then the cipher is fundamentally insecure.
It does not make sense to use (or even attack) such a cipher, as even the uninformed
attacker can use the selected local reduction method to break it.

The guessing strategy is suitable for evaluation if it converges to some fixed
upper value as we increase the number of rounds of the evaluated cipher. The
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bound for the secure cipher should be the key size nK . In our experiments the
strategy having this effect is the “maximum impact” strategy, where we guess the
value of variable that occurs in the highest number of equations (or when we guess
the partial solution of the equation, that has the highest total occurrence of variables
in other equations).

Attack on a cipher with r rounds with expected lower average complexity than
nK − 1 can be considered as a shortcut attack. If the complexity of the attack is
higher than nK − 1 for each round above t, we can consider r − t as a security
margin (or (r − t)/r as a relative security margin). The main problem is that the
margin can depend on the chosen local reduction method, and the guessing strategy,
respectively. It does not inform us whether the cipher is secure, only that it is at
most as secure as given by the worst margin from all known attacks.

The evaluation framework can be used to either compare different attacks (de-
fined by the local reduction method and the guessing strategy) using the bit com-
plexity measure. Furthermore, it can provide us with the expected dependency
of the complexity of algebraic attacks on the number of rounds of the selected ci-
pher. Moreover, two ciphers can be compared by the means of their security margin
(computed with the strongest known attack on each of the ciphers).

5.1 Experimental Results

As an illustration of the method, we provide experimental evaluation of the block
cipher DES, and its security against the algebraic attacks based on the method of
syllogisms. The system of equations was constructed from the blocks describing
2 rounds of DES. In each 2-rounds we use 64-bit input and 64-bit output bits of the
round as variables as well as 48-bit input and 32-bit output bits of the S-boxes for
each round. Thus each additional 2-rounds add 2(48+32)+64 new unknowns (inputs
to next 2-rounds are outputs from the previous one). The nonlinear equations for
the S-boxes are 10-sparse (6+4 bits, 26 partial solutions each), the rest of the system
consists of linear equations for the XOR-s of individual bits (Feistel scheme, and key
addition, respectively).

We use the following guessing strategies [23]:

1. RANDOM: Choose random symbol, guess partial solution.

2. MAXINFO: Local strategy, choose symbol with the best ratio k/l (minimal
number of guesses to find the value of the maximum number of variables).

3. IMPACTs: Choose symbol with variables that influence the highest number of
equations (in total).

4. IMPACTv: Choose variable that influences the highest number of equations.

The results are summarized in Figure 1. Random strategy can be used for up-to
6-round DES, for larger number of rounds the bit-complexity is higher than key-
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Figure 1. The bit-security of r-rounds DES against the attack with the method of syllo-
gisms using different guessing strategies. Results are based on 1000 experiments, vertical
lines connect minimum and maximum values, the thicker bars are bounded by the 1st, and
3rd quartile, respectively.

size. The MAXINFO strategy3 that was proposed in [21] is better than uninformed
guessing, but it does not converge to the key-size bound (but grows with the number
of rounds). Both maximum impact strategies converge (statistically) to a key-size
bound. In 8-round DES the attacker only needs to guess in average 50-bits of
information (minimum was 46 bits). Although the brute-force attack might still
be faster in practice, it depends on how fast can we implement the method of
syllogisms in comparison with the DES encryption. Still the 8-round DES should
not be considered secure. The expected complexity for the full DES is higher than
55 bits. We can see, that both “impact” strategies have lower minimum complexity
(53 bits). It might be worth for the attacker to explore the experiments with lower
than 55-bit complexity to construct a more effective attack on DES than brute-force,
but it is usually cheaper to buy 4-times faster hardware.

3 Originally this strategy was named GUESS, which is unfortunately not very descrip-
tive.
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We stress that all our guessing strategies are generic, i.e., they can be used for
any sparse Boolean equation system. There might exist a strategy exploiting some
specific properties of DES that can break more rounds, or provide better attack
complexity for the given number of rounds. Moreover, some attacks on reduced
round ciphers can be extended due to some specific properties of ciphers, as was
demonstrated very recently by Courtois [6] in the case of the cipher GOST.

5.2 A Comparison with SAT Solvers

Although the approach provided in this paper is mostly experimental, it might be
possible base for better understanding of the complexity of the algebraic crypto-
analysis. We believe, that the results obtained by experiments with local reduction
apply (in a qualitative way) to other methods used in algebraic cryptanalysis as well.
To support this hypothesis, we have performed a series of experiments with SAT
solvers. Namely, we compare our results on DES from Section 5.1 with estimated
complexity of solving the (randomly) selected (round-reduced) DES instances with
MiniSat 2.2.0 [7].

We have not run the whole experiments (which are quite costly in computational
power). Instead we have estimated the required complexity in a way similar to [5].
Curtois and Bard provide a time (68 s) required to solve the instance of 6-round
DES, when 20 bits of the key are fixed (and known). Given number of fixed bits g,
and the solution time tg respectively, we can estimate the time to solve the whole
instance as tg2

g. We remark, that this estimate can be misleading. The SAT-solver
in its basic setting will report the solution as soon as it is found, thus if we are
“lucky”, we get a solution “too fast”, and the estimate is significantly skewed. The
expected distribution of running times tg is usually lognormal [4], so it is better to
compute average estimate in logarithmic terms (instead of absolute times).

A different estimate can be obtained by fixing g incorrect bits of the key (ran-
domly chosen), and measure the time to reject the value Tg. A local reduction
method is more likely to reject the incorrect guess sooner (due to collisions) than
confirm a correct one. on the other hand SAT solver is more likely to find the correct
solution sooner than to reject the incorrect one. If we have to check all 2g guesses
of the fixed bits, the expected running time also depend on the architecture of the
experiment. If the guesses are verified in series, we should base the estimate on the
average time of the rejection. If guesses can be verified in parallel, it is possible to
stop the verification of incorrect guesses as soon as the correct solution is found (so
the minimal time applies).

To evaluate the complexity using SAT solvers, we run the local reduction ex-
periment, and after each guess and reduction we store the corresponding (partially)
reduced system. After the solution is found (or rejected), we convert the stored
systems to CNF, and try to solve them with MiniSat. We start from the sys-
tem, which was missing only one bit to be immediately solved by the method of
syllogisms, then continue with the system missing 2 bits, etc. As the parameter g
decreases, the running times tg, Tg of the SAT solver increase. We stop the “unguess-
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ing” after the running times tg, Tg are too long (MiniSat takes more than a day to
complete).

There is a large variance in the number of decisions and the correspoding guess-
ing times, see Table 1. Moreover, the estimated brute-force time (last column) is
not monotone. This behaviour (along with more SAT solver based results that are
out of scope of this paper) is explored in more details in [11].

g Decisions [103] tg [s] tg2g [106 Years]

55 70.0 ± 11.0 0.2 ± 0.1 173.49
54 94.0 ± 12.3 0.2 ± 0.1 121.91
53 154.5 ± 16.0 0.5 ± 0.1 138.24
52 199.3 ± 24.3 0.8 ± 0.3 117.63
51 243.7 ± 23.4 1.4 ± 0.5 101.36
50 294.6 ± 37.6 2.5 ± 1.0 87.69
49 415.5 ± 81.1 6.9 ± 4.0 123.34
48 577.8 ± 165.6 13.5 ± 8.3 120.55
47 800.2 ± 275.5 24.8 ± 14.5 110.67
46 2 511.4 ± 1 444.2 113.9 ± 87.7 253.90
45 6 228.8 ± 4 960.0 371.9 ± 369.4 414.64

Table 1. Number of decisions made by MiniSat 2.2.0, along with running times tg (on
Intel i7-3820, 3.60 GHz) reported when solving CNF’s constructed from 14-round DES
system reduced by the method of syllogisms after g-bits (suggested by IMPACTv strategy)
were guessed. Results are averaged from 100 runs, reported along with the experimental
standard deviation.

The results of our MiniSat experiments are summarized in Figure 2. As ex-
pected, the minimal times to verify the correct guess by MiniSat is significantly
lower than the minimal time to reject incorrect guess. Moreover there is a higher
difference between average and minimal estimates in these cases. Most notably, the
minimal expected complexity to solve the system when using the correct guess is
faster than brute force.4 However, the average expected complexity, as well as the
minimal and average complexity of rejecting incorrect guess is lower than brute-force
complexity.

Figure 3 compares our estimates obtained by using the method of syllogisms (as
implemented in the tool called sylog), and the results obtained by using MiniSat,
respectively. Unlike Figure 1, we took into account also the (polynomial) running
time required for a reduction (a dashed line shows the estimate without considering
the growing cost of reduction). The running time of the sylog tool is inferior to
highly optimized MiniSat. However, the dependence of the expected running times
on the number of rounds for DES is very similar.

4 Two different P-C pairs/keys gave different minimums: 2.5-times faster than brute
force, and 11-times faster than brute-force, respectively. In both of these cases 16 bits of
the key are correctly guessed, guessing 20 bits leads to a higher estimate.



Using Local Reduction for the Experimental Evaluation of the Cipher Security 363

Figure 2. Expected minimal and average times required (on Intel E8200, 2.66 GHz) to
solve round-reduced DES with MiniSat, in case of correct partial guess (solid lines), and
incorrect partial guess (dotted lines). Results are in logarithmic scale with base 0 corre-
sponding to the estimated brute-force effort on the same computer.

6 DISCUSSION AND CONCLUSIONS

In this paper we have examined a methodology that can be used for a fast evalua-
tion of the complexity of generic algebraic attacks against ciphers. We use symbol
representation of the cipher structure, and a polynomial time local reduction algo-

Figure 3. Expected minimal time required (on Intel E8200, 2.66 GHz) to reject a partial
guess for round-reduced DES with MiniSat (dotted line) compared with the expected
running time of the sylog tool (solid line). Dashed line corresponds to the estimated sylog
complexity effort, if we ignore the polynomial factor in the complexity growth. Results
are in logarithmic scale with base 0 corresponding to the estimated brute-force effort on
the same computer.
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rithm combined with informed or uninformed guessing to estimate the dimensions
of the search tree. This allows us to predict the exponential part of the complexity
of the whole algebraic attack, not only when using symbol based algorithms (such
as gluing), but also when using SAT solver based attacks. As such, our method can
be adapted to other applications where SAT solvers are used.

Although the expected complexity of attacks is exponential, there are specific
instances where algebraic cryptanalysis can perform better then brute-force attacks
on ciphers. This is intensified in cases of various experimental lightweight cipher
proposals [8, 2, 3], which try to sacrifice some security margins to the speed or
hardware resource consumption.

Symbol representation can be extended to MRHS form [13], which is especially
suitable to model ciphers with low multiplicative complexity such as recently pro-
posed LowMC [1]. We have proposed a new algorithm that can solve [22] the systems
in MRHS form. The exponent in the complexity of this algorithm depends on the
total number of right-hand sides (RHS) in the system. Some of the local reduction
methods (such as agreeing) can be combined with MRHS representation to reduce
the number of RHS in polynomial time, and thus reduce the complexity exponent for
the whole system. It is an open question, whether any method that can be applied
to symbol representation can be generalised also to MRHS equations. Furthermore,
one can ask for each system what is the lowest possible number of RHS one can get
with any local reduction method.

Finally, we would like to advise of some practical applications of local reduction
methods. Algebraic attacks on ciphers can be mitigated by increasing the key space
or other cipher parameters (such as number of rounds). On the other hand, there are
various side channel attacks such as DPA [16], or fault attacks [12], that can break
ciphers by measuring physical leakage from the cipher implementation. These side-
channel attacks can be improved by combining them with algebraic attacks. Here
symbol representation provides an advantage because we can capture the equation
system as a collection of most probable hypotheses. When the attacker measures the
physical leakage, he can try the attack based on local reduction, or just estimate its
complexity with our methodology. If the attack complexity is too high, he can try
further measurements, otherwise he can find the secret parameters by the algebraic
attack.
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Reduction to Zero (F5). Workshop on Applications of Commutative Algebra, Catania,
Italy, April 3–6, 2002, ACM Press.
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