
Computing and Informatics, Vol. 37, 2018, 269–290, doi: 10.4149/cai 2018 2 269

META-PROGRAMMING AND POLICY-BASED
DESIGN AS A TECHNIQUE OF ARCHITECTING
MODULAR AND EFFICIENT DSP ALGORITHM
IMPLEMENTATIONS

Ireneusz Gawlik

Department of Electronics, AGH University of Science and Technology
Kraków, Poland
e-mail: igawlik@agh.edu.pl

Szymon Pa lka, Tomasz Pȩdzima̧ż, Bartosz Zió lko

Department of Electronics, AGH University of Science and Technology
Kraków, Poland
&
Techmo, Kraków, Poland
e-mail: {pszymon, pedzimaz, bziolko}@agh.edu.pl

Abstract. Meta-programming paradigm and policy-based design are less known
programming techniques in Digital Signal Processing (DSP) community, used to
coding in pure C or assembly language. Major software components, like C++
STL, have proven usefulness of such paradigms in providing top performance of
highly optimised native code, along with abstraction and modularity necessary in
complex software projects. This paper describes composition of DSP code using
these techniques, bringing as an example implementation of Feedback Delay Net-
work (FDN) artificial reverberation algorithm. The proposed approach was proven
to be practical, especially in case of prototyping computationally intense algorithms.
To provide further performance insight, we discuss the techniques in context of other
optimisation methods, like Single Instruction Multiple Data (SIMD) instruction sets
usage and exploitation of superscalar architecture capabilities.

Keywords: C++, low level optimisations, policy-based design, template meta-
programming, SIMD, FDN

270 I. Gawlik, S. Pa lka, T. Pȩdzima̧ż, B. Zió lko

1 INTRODUCTION

Adjusting signal processing algorithms to achieve desired results, while conforming
to strict performance restrictions, is a challenge of many DSP designers. We have
faced similar issues during our work on acoustical signal processing code, that had
to satisfy both top performance requirement (real-time processing of hundreds of
audio streams using consumer grade hardware) and high level of subjective sound
quality [11].

Most of the high performance DSP programming is done in assembly or C lan-
guage (especially in the embedded/low-energy systems). Along with project size,
using procedural paradigm leads to unmanageable code, which lacks composability
and is error prone. While code complexity problem is mostly addressed by compos-
ing program structure in object oriented manner (using languages like C++, C#,
Java, etc.), such solution may lead to severe performance impact, particularly in
case of abstracting small, loosely-coupled code blocks. In some cases of DSP code,
it means only few arithmetic operations per function call. Similarly, architecting
modular code in C language involves function pointer management, that, in fact, is
similar to what happens behind the scenes during virtual method calls in the ob-
ject oriented languages like C++ or Java. Negative performance impact of virtual
method calls is directly connected to the modern pipelined CPU architectures [12],
memory access bottleneck [15] and function call overhead [6] (that cannot be inlined
by compiler).

Common approaches to DSP programming may be divided into following classes:

• Assembly programming, usually targeted for dedicated DSP processors.

• C/C++ programming, with the use of popular DSP libraries [8, 27].

• Dedicated, usually functional domain specific languages (DSL), such as
Faust [19], SuperCollider [16], ChucK [33, 32] or Kronos [18]. These languages
are usually targeted for audio processing and sound synthesis.

As domain specific languages are not targeted for general purpose DSP pro-
gramming, and assembly coding is error prone, nonportable, and unsuitable for
complex problems, we focus on comparing our approach to the traditional C/C++
programming with use of optimised DSP libraries.

High performance DSP libraries, like Intel IPP [27] or FFTW [8] are widely
available. Most of them provide implementations for some of the frequently used
DSP building blocks, like discrete transforms, Finite Impulse Response (FIR) and
Infinite Impulse Response (IIR) filtering, etc. There are also a specialised solutions,
developed to automatically generate highly optimised machine code for many in-
tegral transforms [22]. While such primitives cover plethora of applications, not
all problems may be solved efficiently using these functionalities, as shown in the
following sections.

In this paper, we propose an approach to solve the problem of contradictory
requirements, namely code performance and composability. Both of these require-

Meta-Programming and Policy-Based Design – DSP Implementations 271

ments can be efficiently satisfied using template based meta-programming, imple-
mented in C++ language. We also address readability, which is often a concern in
the case of template meta-programming. This work is organised as follows: Sec-
tion 2 provides an introduction to programming concepts used in proposed solution,
namely template-metaprogramming and policy-based design. Section 3 motivates
the use of proposed technique in DSP programming, describes general concepts and
provides examples of simple algorithm implementations, along with considerations
about SIMD instruction set usage. Section 4 describes an example of the modu-
lar implementation of a complex algorithm on the case of Feedback Delay Network
reverberator. Discussed implementation has been applied in beam-tracing audio
engine for computer games [35], proving its applicability in a real world multime-
dia problems. Section 5 reviews related work and possible further enhancements.
Section 6 concludes.

Although all examples shown in this paper were tested on current x86-64 pro-
cessor architectures [12], described concepts apply to any processor architecture,
including specialised DSP cores and GPGPU units [5].

2 BACKGROUND

2.1 Template Metaprogramming

As C++ language evolved [28, 20], the standard committee introduced generic pro-
gramming mechanisms to allow creating efficient and reusable code in fully type-safe
manner. The C++ template system has been proven to be Turing-complete [31].
Therefore, any computation, that is computable in principle, may be expressed in
form of templates and executed during compile time [1].

Template metaprogramming techniques have been presented in numerous pub-
lications [1, 3, 30, 26]. When used properly, they become very powerful tools
for highly optimised code generation during compile time [30]. As an example,
we present an implementation of fast Walsh-Hadamard transform based on meta-
programming. Typically, highly optimised transform libraries like FFTW provide
dedicated, assembly coded routines for small transform sizes [9]. As many fast trans-
form algorithms express a recursive nature, they are fairly easy to implement using
template meta-programming, which results in assembly closely matching optimised
code written by a skilled programmer.

template<s i z e t s t r i d e ,
s i z e t o f f s e t ,
typename value type ,
s i z e t order>

inl ine typename
std : : e n a b l e i f <s t r i d e != 0 , void> : : type

fwht (std : : array<value type , order>& vector)
{

272 I. Gawlik, S. Pa lka, T. Pȩdzima̧ż, B. Zió lko

for (s i z e t i = 0 ; i < s t r i d e ; ++i)
b u t t e r f l y (vec to r [o f f s e t + i] ,

vec to r [o f f s e t + i + s t r i d e]) ;
fwht<s t r i d e / 2 , o f f s e t , va lue type ,

order >(vec to r) ;
fwht<s t r i d e / 2 , o f f s e t + s t r i d e , va lue type ,

order >(vec to r) ;
}

template<s i z e t s t r i d e ,
s i z e t o f f s e t ,
typename value type ,
s i z e t order>

inl ine typename
std : : e n a b l e i f <s t r i d e == 0 , void> : : type

fwht (std : : array<value type , order>& vector)
{} // terminate temp la te r e c u r s i o n

Listing 1. Template meta-programming based FWHT implementation

Code listing 1 presents template meta-programming based implementation of
fast Walsh-Hadamard transform [2]. Algorithm is implemented in straightforward,
recursive manner, using divide and conquer methodology. Such approach results
in highly expressive code, that is readable despite meta-programming specific code
parts. The advantage of meta-programming implementation lies in fact, that com-
piler is able to inline all recursive calls, because the recursion depth is known at
compile time. There is no need to apply more complex, loop based solutions. The
compiler is also able to unroll for loop inside fwht template instances, as the num-
ber of iterations is also defined at compile time. As this example shows, guiding
the compiler to generate efficient code is as simple as providing appropriate param-
eters in template class instantiation. Presented technique is applicable whenever
transform size can be determined during compile time (which is usually the case).

Loop unrolling may be also defined explicitly using meta-programming, as shown
in code listing 2. Depending on compiler used, such technique may yield better
results. However, its usefulness needs to be validated by measuring execution time,
as latest code optimisations manuals point out that loop unrolling may lead to micro-
op cache issues [7]. In such case, partial unrolling (e.g. groups of 2 or 4 consecutive
iterations) may be applied.

template < s i z e t index ,
s i z e t o f f s e t ,
s i z e t s t r i d e ,
typename value type ,
s i z e t order>

inl ine typename

Meta-Programming and Policy-Based Design – DSP Implementations 273

std : : e n a b l e i f <index != 0 , void> : : type
u n r o l l (s td : : array<value type , order>& vector)
{

unro l l<index − 1 , o f f s e t , s t r i d e ,
va lue type , order >(vec to r) ;

b u t t e r f l y (vec to r [o f f s e t + index − 1] ,
vec to r [o f f s e t + index − 1 + s t r i d e]) ;

}

template < s i z e t index ,
s i z e t o f f s e t ,
s i z e t s t r i d e ,
typename value type ,
s i z e t order>

inl ine typename
std : : e n a b l e i f <index == 0 , void> : : type

u n r o l l (s td : : array<value type , order>& vector)
{} // terminate u n r o l l i n g

Listing 2. Template meta-programming based loop unrolling

In presented implementation, coupled with explicit loop unrolling, single call of
specialised fwht function results in assembly code free of any function calls as well
as jump instructions.

Code listing 3 shows assembly for 4-point fast Walsh-Hadamard assembly code,
generated by MSVC 11.0 (Microsoft Visual Studio 2012 Update 4) from discussed
function templates. Such implementation may leverage superscalar capabilities
through Out Of Order (OOO) execution, present in all modern processors.

vmovss xmm1, dword ptr [rbx]
vaddss xmm0,xmm1, dword ptr [rbx +8]
vmovss dword ptr [rbx] ,xmm0
vsubss xmm1,xmm1, dword ptr [rbx +8]
vmovss dword ptr [rbx +8] ,xmm1
vmovss xmm2, dword ptr [rbx +4]
vaddss xmm0,xmm2, dword ptr [rbx+0Ch]
vmovss dword ptr [rbx +4] ,xmm0
vsubss xmm1,xmm2, dword ptr [rbx+0Ch]
vmovss dword ptr [rbx+0Ch] ,xmm1
vmovss xmm3, dword ptr [rbx]
vaddss xmm0,xmm3, dword ptr [rbx +4]
vmovss dword ptr [rbx] ,xmm0
vsubss xmm1,xmm3, dword ptr [rbx +4]
vmovss dword ptr [rbx +4] ,xmm1
vmovss xmm2, dword ptr [rbx +8]
vaddss xmm0,xmm2, dword ptr [rbx+0Ch]

274 I. Gawlik, S. Pa lka, T. Pȩdzima̧ż, B. Zió lko

vmovss dword ptr [rbx +8] ,xmm0
vsubss xmm1,xmm2, dword ptr [rbx+0Ch]
vmovss dword ptr [rbx+0Ch] ,xmm1

Listing 3. Generated 4-point FWHT machine code

2 4 8 16 32 64 128

103

104

105

Transformation size

E
x
ec

u
ti

on
ti

m
e

(1
m

ln
it

er
.)

[µ
s]

Intel IPP
Meta impl.

Meta impl. SSE
Meta impl. AVX

Figure 1. Comparison of fast Walsh-Hadamard transform execution time, depending on
implementation used. Meta-programming based implementation is described in code list-
ing 1. All compiler optimisations were enabled, including general optimisation (02 flag),
inlining all suitable functions (Ob2 flag) and favouring fast code over code size (Ot flag).
Test was performed on hardware featuring Intel Core i7-3770K 3.5 GHz processor.

As shown in Figure 1, code presented in listing 2 provides performance which is
on a par with optimised Intel IPP routines in case of AVX vectorised implementation
(IPP also uses AVX instruction set). In fact, proposed solution exhibits smaller
execution overhead per each FWHT iteration.

2.2 Policy-Based Design

Policy-based design is a programming paradigm introduced by Andrei Alexandrescu
in [3]. Its goal is to mimic the behaviour of the strategy design pattern [10], but using
only static, compile time meta-programming techniques. That means that the only
restriction added to strategy pattern requirements, is the need to fully determine the
behaviour of the configurable component at compile time. This requirement enables
policies to be an effective method of class customisation, as long as behaviour of this
class may be defined at compile time.

The use of policy-based design involves providing a set of policies by passing
them to the class template as template arguments. Such policies may provide static
methods, type definitions or be a super-classes of the specialised class template.

Meta-Programming and Policy-Based Design – DSP Implementations 275

Policy-based design, however, may require some experience to be implemented cor-
rectly. Most importantly, all of the policies need to be designed mutually orthogo-
nal, so that replacing one does not affect behaviour of any of the others. Moreover,
the designer may be unable to use template specialisations with different policies
interchangeably (without any user code modifications), as policy-based design may
involve class interface changes, i.e., when the specialised template class inherits from
the policy class.

3 ENCODING DSP BLOCK DIAGRAMS
USING POLICY BASED DESIGN

This section explains how metaprogramming techniques and policy-based design can
be employed to aid DSP programming. We describe how to encode algorithms based
on block diagrams with predefined components, using specific examples.

3.1 Motivation

Ease of experimentation with different DSP designs is the primary motivation to ap-
ply policy-based design and meta-programming methods. Because code generated
using these techniques can be highly optimised during compilation phase, program-
mers are enabled to test both correctness and performance of the given design.

Modular design involves decomposition of the DSP diagrams into small, inter-
changeable components, thus embracing code reusability. As mentioned in previous
sections, typical object oriented design entails virtual method calls. Such methods,
when used frequently, can have negative performance impact. This is visible partic-
ularly in case of functions that contain only a few numerical operations. In contrast
to classical object oriented desing, C++ template based approach allows to achieve
similar level of modularity, if only polymorphic behaviour may be determined during
compile time. Static polymorphism allows for code decomposition into small, indi-
vidual pieces, with negligible performance impact, because compiler has much more
freedom to perform code optimisations. Therefore, DSP applications, that usually
struggle for top performance, benefit from the proposed approach.

3.2 General Concepts

Code composition based on DSP diagrams requires direct mapping of block elements
and connections between them into template classes. Primarily, consistent naming
convention needs to be enforced, as appropriate naming acts as an interface between
all elements in DSP diagram. For example, in languages like C++, that allow for
operator overloading, DSP blocks may be represented as functors (listing 4).

template<typename input b lock>
class p r o c e s s i n g b l o c k

276 I. Gawlik, S. Pa lka, T. Pȩdzima̧ż, B. Zió lko

{
public :

output type operator () (void)
{

output type out = input () ;
// s i g n a l p r o c e s s i n g code
return out ;

}
private :

i nput b l ock input ;
} ;

Listing 4. Static variant of decorator pattern applied in DSP processing block

Each DSP block may perform on different pairs of input/output types. There-
fore, heterogenic fixed-point/floating-point processing is enabled and various nu-
merical precision representations may be used. Also, arrays of samples may be
processed, if only it is necessary. Ability of combining arbitrary signal processing
primitives, as long as connections between blocks match the input/output type pair,
is the key feature that makes the proposed technique suitable for encoding DSP di-
agrams. Moreover, type-safety checks performed during compilation help to ensure
correctness of built processing pipelines.

3.2.1 Sequential/Parallel DSP Blocks as Heterogenic Containers

As each DSP block needs to be represented in form of separate type, collections of
blocks (connected either sequentially or in parallel) may be represented in following
ways:

• Pairs of blocks, analogous to pair containers in most languages.

• Lists of blocks, implemented similarly to tuples.

• Type policy based containers, discussed later in this section.

Representing connections by pairs provides the same level of expressiveness as
other solutions. Motivation to provide other ways of connecting blocks lies strictly
in ease of programming and readability.

All DSP block connectors need to exhibit consistent interface in order to act itself
as DSP building block (e.g. need to be implemented as functors). Code listing 5
provides example implementations of pair connectors, both for serial and parallel
sum connection.

template<class f i r s t b l o c k , class second block>
class p a r a l l e l s u m p a i r
{
public :
output t operator () (i n p u t t input)

Meta-Programming and Policy-Based Design – DSP Implementations 277

{
return f i r s t (input) + second (input) ;

}
private :

f i r s t b l o c k f i r s t ;
s econd b lock second ;

} ;

template<class f i r s t b l o c k , class second block>
class s equence pa i r
{
public :

output t operator () (i n p u t t input)
{

return second (f i r s t (input)) ;
}

private :
f i r s t b l o c k f i r s t ;
s econd b lock second ;

} ;

Listing 5. Parallel and sequential block connectors

Larger structures could become unreadable when using nested pair connectors.
Solution based on statically defined, heterogeneous container is more readable and
easier to use alternative.

In the case of fixed number of blocks, instead of nested pair connectors, it is
simpler to use variadic templates provided by modern revision of C++ or D language
standard. Typelists [3] can be used as an alternative for compilers that lack support
for this language feature.

If there is a need to scale number of connected elements, or the type of each
block needs to be chosen algorithmically, type policies are a suitable solution. Type
of each block may be determined by an index in the sequence. Such template
class, passed as a template template parameter to heterogeneous container, guide
compiler in memory offsetting and choosing methods that need to be applied. Logic,
that determines the type for the given index needs to be defined in meta-code and
evaluated during compile time. Here, template meta-programming acts as a solution.
If supported, C++11 constexpr language feature may be used to simplify syntax.
An example of type policy is provided in code listing 6.

template<s i z e t index>
class d s p b l o c k p o l i c y
{
public :

typedef s e q u e n t i a l p a i r <

278 I. Gawlik, S. Pa lka, T. Pȩdzima̧ż, B. Zió lko

b locks : : d e l a y l i n e <100 ∗ index /∗ d e l a y in samples ∗/>,
b l ocks : : i i r f i l t e r <2 /∗ p o l e s ∗/ , 1/∗ z e r o s ∗/>> type

}

Listing 6. Example of type policy. With use of static conditional statements and meta-
programming, highly complex type choosing logic can be implemented.

As usage of such policy may not be clear, we propose a generic (not limited to
DSP applications) implementation of heterogeneous container (code listing 7) that
supports algorithmically defined block types. Container based on variadic template
may be implemented in similar way. Having implementation of such container on
hand, any type of connector can be created in a straightforward manner.

template<
s i z e t s i z e ,
template <s i z e t > class t y p e s p o l i c y

> class meta conta iner
{

// make roo t e lement a c c e s s o r s a f r i e n d s
template<s i z e t index> friend class get ;
template<

template <s i z e t > class t y p e s p o l i c y ,
s i z e t s i z e ,
typename f unc to r

> friend void f o r e a c h (meta container<s i z e ,
t y p e s p o l i c y>& conta iner , func to r& func to r) ;

public :
MetaContainer ()
{

s t a t i c a s s e r t (
s i z e != 0 ,
” meta conta iner o f s i z e 0 i s not a l lowed . ”

) ;
}

private :
meta node<t y p e s p o l i c y , 0 , s i z e> r o o t ;

} ;

template<
template <s i z e t > class t y p e s p o l i c y ,
s i z e t idx ,
s i z e t s i z e

> class meta node
{

Meta-Programming and Policy-Based Design – DSP Implementations 279

public :
typedef std : : i n t e g r a l c o n s t a n t <s i z e t , idx> index ;

// type o f e lement o f t h i s node
typedef typename t y p e s p o l i c y<idx > : : type head ;
// t a i l node type
typedef typename std : : c ond i t i ona l<

(s i z e − 1 > idx) ,
meta node<t y p e s p o l i c y , idx + 1 , s i z e >,
n u l l t y p e

> : : type t a i l ;

public :
head value ;
t a i l next ;

} ;

Listing 7. Heterogenous container implementation, with type definitions provided by type
policy. Instance of such container is contiguous in memory, despite linked-list like imple-
mentation, as iteration over elements takes place during compile time.

template<s i z e t index>
class get node
{
public :

template<
template <s i z e t > class t y p e s p o l i c y ,
s i z e t index ,
s i z e t s i z e

> stat ic inl ine
typename t y p e s p o l i c y<index + typeIndex > : : type&
from (meta node<t y p e s p o l i c y , typeIndex , s i z e>& conta ine r)
{

return get node<index − 1> : : from (conta ine r . next) ;
}

} ;

// terminates temp la te r e c u r s i o n
template<>
class get node<0>
{
public :

template<
template <s i z e t > class t y p e s p o l i c y ,
s i z e t index ,

280 I. Gawlik, S. Pa lka, T. Pȩdzima̧ż, B. Zió lko

s i z e t s i z e
> stat ic inl ine
typename t y p e s p o l i c y<index > : : type&
from (meta node<t y p e s p o l i c y , index , s i z e>& conta ine r)
{

return conta ine r . va lue ;
}

} ;

Listing 8. Accessor method of meta-programming based container. Friend get class of
meta container delegates iteration to get node classes shown in this listing, starting at the
root element. Iteration is analogous to iterating over linked-lists, yet is performed during
compile time. Foreach iteration has been implemented similarly to loop-unrolling code
presented in listing 2 in Section 2, therefore we omit its implementation.

In the provided implementation, we can see that heterogeneous containers, such
as tuples, are metaprogramming equivalent of linked-lists. Because iterating over
elements is performed during compile time, there is no overhead of pointer derefer-
encing and cache issues typical to regular linked-list implementation. Also, type of
each element is inferred by accessor methods, and many errors that would normally
raise an exception in object oriented implementations occur as compilation errors,
not runtime errors.

3.2.2 Composing Signal Flow via Template-Based Variant
of Decorator Pattern

Template metaprogramming is enabled by duck-typing (naming based) paradigm
enabled by template system [29], which still keeps the benefit of a fully type-safe
language (types are still validated during compile time, in contrast to typical duck-
typing languages like Python and Ruby). This behaviour is considered to be a case
of static polymorphism [4]. Therefore, many design patterns can be mapped directly
into their static equivalents [3].

In the object oriented approach, the usage of decorator pattern is considered
to be an out of the box solution for pipelining computations. Templates allow to
achieve the same effect without the need of using dynamic polymorphism. Therefore,
in cases of sequential signal flow, simpler solution, that is based on metaprogramming
implementation of decorator pattern, may be applied.

Single processing block may be defined as shown in listing 9. Such blocks com-
positions mimic the semantics of decorator pattern and allow to build processing
pipelines.

template<typename prev block>
class s eq dsp b l o ck
{
public :

Meta-Programming and Policy-Based Design – DSP Implementations 281

s i g n a l t y p e operator () (s i g n a l t y p e input)
{

s i g n a l t y p e out = prev (input) ;
// s i g n a l p r o c e s s i n g code
return out ;

}
private :

p r ev b lock prev ;
} ;

Listing 9. Static variant of decorator pattern applied in DSP processing block

3.3 Example of Schroeder Reverberator Implementation

As an example, we show how proposed techniques are useful in implementation
of one of the first and simplest artificial reverberation algorithms, the Schroeder
reverberator. Its structure is shown in Figure 2.

x[n]

Comb

Comb

Comb

Comb

Allpass Allpass
y[n]

Figure 2. Schroeder reverberator block diagram

Having implementations of comb and allpass filters provided, Schroeder rever-
berator may be expressed as appears in code listing 10. In the provided example,
blocks act as signal processing policies, defining specific behavior of generic structure
(in this case, parallel and sequential groups). Since unified interface is defined as
input/output type pairs, instantiated structure may act as building block for further
composition, providing high level of modularity.

typedef sequence<
para l l e l sum<

comb<delay<unsigned int>>,
comb<delay<unsigned int>>,
comb<delay<unsigned int>>,
comb<delay<unsigned int>>

>,
a l l p a s s <delay<unsigned int>>,
a l l p a s s <delay<unsigned int>>

282 I. Gawlik, S. Pa lka, T. Pȩdzima̧ż, B. Zió lko

> s c h r o e d e r r e v ;

Listing 10. Schroeder reverberator implementation

x[n] y[n]

g
z−d

Figure 3. Comb filter block diagram

g

x[n]
z−d

y[n]

−g

Figure 4. All-pass filter block diagram

Building blocks of Schroeder reverberator, namely comb (Figure 3) and all-
pass (Figure 4) filters are simple forms of recursive structures, that due to their
specifics (substantial delay of few thousand samples in typical applications) could
benefit from custom implementation. Idea of block diagram decomposition may be
developed further - as an example we present code listing 11, showing comb filter
implementation.

typedef r e c u r s i v e<
t ransparent , // forward
sequence<s ca l e , delay<unsigned int>> // r e c u r s i v e

> comb ;

Listing 11. Comb filter implementation

Even though such level of decomposition is possible with no impact of perfor-
mance, it is generally better to provide predefined block implementations at this
level of granularity.

3.4 Implementing Singe Instruction, Multiple Data (SIMD)
Optimised DSP Components

SIMD instruction set usage is necessary to maximise performance of all current
CPU architectures. Code vectorisation is not always a trivial task, mostly because

Meta-Programming and Policy-Based Design – DSP Implementations 283

of data dependencies and the requirement of properly aligned memory. Even though
all current compilers offer auto-vectorisation feature, non-trivial cases must still be
vectorised by a skilled programmer. Fortunately, as mentioned in the beginning of
this section, approach described in this paper allows for heterogenous structure com-
position. The same principle, that allows for mixing floating/fixed point arithmetic,
enables consistent SIMD processing.

Implementing DSP blocks with use of Streaming SIMD Extensions (SSE), Ad-
vanced Vector Extensions (AVX) or Advanced SIMD (NEON) instruction sets have
been a subject of many studies [17, 14, 18, 23, 25]. Even vectorisation of, recursive
in nature, infinite impulse response (IIR) filtration has been tacked by some [23].
For example, ITU G729C codec post processing formula transforms IIR difference
equation for the samples vector (consisting of 4 or 8 consecutive samples) into the
form of matrix multiplication. Techniques of DSP code vectorisation are not in
scope of this paper. We focus mainly on SIMD vectorisation in context of proposed
metaprogramming based implementations.

In order to create vectorised structures, each DSP block needs to operate on
SIMD vector types, such as m128 or m256 keeping concise and elegant interface
via propagation of the given type throughout series of connected blocks. The only
limitation that constrains usage of SIMD instructions, results from recursive connec-
tions with delay lines shorter than number of samples processed on operational type
used (e.g. 3 samples of delay when using SSE with single precision arithmetic). To
avoid runtime errors, delay introduced by delay line should be fixed with statically
defined value (via template parameter). Moreover, static assert keyword should be
used in order to detect errors during compilation (e.g. listing 12).

template < s i z e t delay>
class de l ay l i n e SSE
{

de l ay l i n e SSE ()
{

s t a t i c a s s e r t (
de lay >= 4 ,
” de l ay l i n e SSE : de lay parameter needs to be >=4.”

) ;
}

inl ine m128 operator () (m128)
{

// d e l a y l i n e l o g i c
}

} ;

Listing 12. Using static asserts to detect errors during compilation

284 I. Gawlik, S. Pa lka, T. Pȩdzima̧ż, B. Zió lko

4 COMPLEX USE CASE: FEEDBACK DELAY
NETWORK IMPLEMENTATION

Feedback Delay Network (FDN), being one of the most naturally sounding artificial
reverberators [13, 24], became widely implemented in many sound processing soft-
ware products. Although FDN is a very potent tool, achieving proper perceptual
quality of acoustic simulation demands additional modifications to its structure.
This applies to each of processing lines, as well as to the input/output filters. FDN
needs to be fine-tuned to achieve proper acoustic properties, but having quite com-
plex structure it demands proper level of implementation configurability. Implemen-
tation described in this section presents benefits of proposed technique, providing
high level of code composability while retaining high efficiency via elimination of
unnecessary polymorphic calls, heap memory allocations, SIMD vectorisation and
other low level optimisations.

4.1 Brief Description FDN Reverberator Structure

The structure of FDN consists of N delay lines DLm = z(−m), each resulting in
a signal being delayed by ti = mi

fs
seconds, where fs is the sampling frequency.

Output of these lines acts as an input to the orthogonal diffusion matrix producing
output signals as well as the feedback mixed into input signal.

x[n]
E(z)

y[n]

d

Diffusion matrix

b1
z−M1 H1(z)

c1

g1

b2
z−M2 H2(z)

c2

g2

b3
z−M3 H3(z)

c3

g3

b4
z−M4 H4(z)

c4

g4

Figure 5. Feedback delay network block diagram

In the FDN block diagram (pictured in Figure 5), we can see various blocks that
shall be abstracted, namely blocks within processing lines and diffusion matrix.

Meta-Programming and Policy-Based Design – DSP Implementations 285

More advanced implementations introduce elements such as IIR filters and tone
correction filters in addition to delay lines.

FDN aims to approximate acoustical environments, which may be modelled as
a complex audio system with thousands of poles and zeros. Real time simulation
of such system would be unacceptable in terms of computational complexity. Even
though FDN is less computationally expensive, higher order networks still consume
considerable amount of CPU time [13].

4.2 Achieving Modularity of FDN Implementation via Metaprogramming
and Policy-Based Design

Primary motivation to use policy-based design in FDN implementation was the
need to efficiently experiment with different configurations of DSP blocks within
each of the processing lines, while being still able to match, and therefore assess,
performance of highly optimised system. Application of object oriented design would
have severe runtime impact, mostly due to virtual method calls. All the primitives
described in previous section allow us to encode DSP diagram in form of nested
templates. Proposed implementation is described in code listing 13.

template < s i z e t index>
class l i n e p o l i c y
{
public :

typedef s equen t i a l<
nth prime<unsigned int /∗ s t a r t a f t e r ∗/ ,

index ∗ 10 /∗ t a ke each prime in s t r i d o f 10 ∗/ > : : value ,
i i r f i l t e r <3 /∗ p o l e s ∗/ , 2/∗ z e r o s ∗/>,
modulator<unsigned int>> type ;

}

typedef para l l e l sum<
s ca l e , // d s c a l i n g f a c t o r
sequence<

sum<
p a r a l l e l v e c t o r <

s c a l e v e c t o r , // b s c a l i n g f a c t o r s
r e c u r s i v e v e c t o r <

v e c t o r o f<
l i n e p o l i c y ,
4

>, // forward
sequence vector<

fwht<4>, // d i f f u s i o n matrix
s c a l e v e c t o r , // g s c a l i n g f a c t o r s

> // backward

286 I. Gawlik, S. Pa lka, T. Pȩdzima̧ż, B. Zió lko

>,
s c a l e v e c t o r , // c s c a l i n g f a c t o r s

>,
4

>,
i i r f i l t e r <3/∗ p o l e s ∗/ ,2 /∗ z e r o s ∗/>

>> f dn rev ;

Listing 13. Encoded FDN diagram, according to previously discussed techniques. Notice
vector processing blocks, that allow for recursive mixing of signals by the diffusion matrix
(here implemented in form of fast Walsh-Hadamard transform).

5 RELATED WORK AND FURTHER DEVELOPMENT

Common DSP optimisations have been described by authors of widely used libraries.
Frigo et al. [8] provided optimisation guidelines for FFT, also applicable to other
divide and conquer derived methods. Authors focused on widely available CPU
features, including OOO, super-scalar capabilities and SIMD instruction sets. SPI-
RAL software, described by Puschel at al. [22] addresses transforms code generation,
including FFT, DWT and other.

Our approach, being more generic, is applicable to broader range of DSP algo-
rithms. Although some authors consider the idea of DSP diagrams based automatic
code generation [21, 34], we have not managed to find any recent publications that
stay up to date with advancements in processor architectures.

Proposed technique efficiently solves the problem of providing fast, yet config-
urable DSP algorithm implementations. When used with simplified, easy to under-
stand API, which hides the complexities of template metaprogramming, proposed
techniques create a powerful framework for signal processing applications. Regard-
less of an exact use case, programmers can easily take an advantage of all the
optimisations provided by current, highly advanced compilers.

The proposed solution may be applied in:

• Automatic translation of DSP diagrams into C++ code that is ready to compile.

• Functional paradigm domain specific languages, that are translated directly to
C++.

• Visual tools, that allow for easy implementation and validation of DSP designs,
allowing for measuring performance that is close to the upper limit available on
the given hardware.

6 CONCLUSIONS

The solutions proposed in this paper, in spite of its unconventional characteris-
tics, were proven to be practical in software that needs to deal with fine grained,

Meta-Programming and Policy-Based Design – DSP Implementations 287

computationally intense problems. High performance, code readability and config-
urability were achieved with statically defined modular architecture. Disassembly
of generated software confirms that usage of metaprogramming methods leads to
highly optimised machine code, that indeed looks like it has been hand tweaked by
experienced assembly programmer. Moreover, being able to easily switch between
SIMD implementations makes it easy to test performance on different architectures,
keeping code organised and readable.

Acknowledgments

This work was supported by MNiSW resources for science as statutory activity.

REFERENCES

[1] Abrahams, D.—Gurtovoy, A.: C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond. Pearson Education, 2004.

[2] Ahmed, N.—Rao, K. R.: Walsh-Hadamard Transform. Orthogonal Transforms for
Digital Signal Processing. Chapter 6. Springer, 1975, pp. 99–152, doi: 10.1007/978-
3-642-45450-9 6.

[3] Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Pat-
terns Applied. Addison-Wesley, 2001.

[4] Burrus, N.—Duret-Lutz, A.—Géraud, T.—Lesage, D.—Poss, R.: A Static
C++ Object-Oriented Programming (SCOOP) Paradigm Mixing Benefits of Tradi-
tional OOP and Generic Programming. Proceedings of the Workshop on Multiple
Paradigm with OO Languages (MPOOL ’03), Anaheim, CA, USA, 2003.

[5] Chen, J.—Joo, B.—Watson, W.—Edwards, R.: Automatic Offloading C++
Expression Templates to CUDA Enabled GPUs. 2012 IEEE 26th International Paral-
lel and Distributed Processing Symposium Workshops and Ph.D. Forum (IPDPSW),
2012, pp. 2359–2368, doi: 10.1109/IPDPSW.2012.293.

[6] Driesen, K.—Hölzle, U.: The Direct Cost of Virtual Function Calls
in C++. ACM Sigplan Notices, Vol. 31, 1996, No. 10, pp. 306–323, doi:
10.1145/236337.236369.

[7] Fog, A.: Optimizing Software in C++: An Optimization Guide for Windows, Linux
and Mac Platforms, 2004.

[8] Frigo, M.—Johnson, S. G.: FFTW: An Adaptive Software Architecture for
the FFT. Proceedings of the 1998 IEEE International Conference on Acous-
tics, Speech and Signal Processing, 1998, Vol. 3, pp. 1381–1384, doi: 10.1109/I-
CASSP.1998.681704.

[9] Frigo, M.—Johnson, S. G.: The Design and Implementation of
FFTW3. Proceedings of the IEEE, Vol. 93, 2005, No. 2, pp. 216–231, doi:
10.1109/JPROC.2004.840301.

[10] Gamma, E.—Helm, R.—Johnson, R.—Vlissides, J.: Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Pearson Education, 1994.

https://doi.org/10.1007/978-3-642-45450-9_6
https://doi.org/10.1007/978-3-642-45450-9_6
https://doi.org/10.1109/IPDPSW.2012.293
https://doi.org/10.1145/236337.236369
https://doi.org/10.1109/ICASSP.1998.681704
https://doi.org/10.1109/ICASSP.1998.681704
https://doi.org/10.1109/JPROC.2004.840301

288 I. Gawlik, S. Pa lka, T. Pȩdzima̧ż, B. Zió lko

[11] Gawlik, I.—Pȩdzima̧ż, T.—Pa lka, S.—Zió lko, B.: Efficient Vectorized Archi-
tecture for Feedback Delay Network Reverberator with Policy Based Design. Signal
Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poz-
nan, 2015, pp. 124–127.

[12] Hammarlund, P.—Martinez, A. J.—Bajwa, A. A.—Hill, D. L.—Hal-
lnor, E. et al.: Haswell: The Fourth-Generation Intel Core Processor. IEEE Micro,
Vol. 34, 2014, No. 2, pp. 6–20, doi: 10.1109/MM.2014.10.

[13] Jot, J.-M.—Chaigne, A.: Digital Delay Networks for Designing Artificial Rever-
berators. Audio Engineering Society Convention, AES, Vol. 90, 1991, Art. No. 3030.

[14] Lee, J.—Moon, S.—Sung, W.: H.264 Decoder Optimization Exploiting SIMD
Instructions. Proceedings of the 2004 IEEE Asia-Pacific Conference on Circuits and
Systems (APCCAS), 2004, Vol. 2, pp. 1149–1152.

[15] Mahapatra, N. R.—Venkatrao, B.: The Processor-Memory Bottleneck: Prob-
lems and Solutions. Crossroads – Computer Architecture, Vol. 5, 1999, No. 3es,
Art. No. 2.

[16] McCartney, J.: Rethinking the Computer Music Language: SuperCol-
lider. Computer Music Journal, Vol. 26, 2002, No. 4, pp. 61–68, doi:
10.1162/014892602320991383.

[17] Nguyen, H.—John, L. K.: Exploiting SIMD Parallelism in DSP and Multi-
media Algorithms Using the AltiVec Technology. Proceedings of the 13th Inter-
national Conference on Supercomputing (ICS ’99), ACM, 1999, pp. 11–20, doi:
10.1145/305138.305150.

[18] Norilo, V.—Laurson, M.: Kronos – A Vectorizing Compiler for Music DSP.
Proceedings of the 12th International Conference on Digital Audio Effects (DAFx-
09), 2009.

[19] Orlarey, Y.—Fober, D.—Letz, S.: FAUST: An Efficient Functional Approach
to DSP Programming. In: Assayag, G., Gerzso, A. (Eds.): New Computational
Paradigms for Computer Music. IRCAM, 2009.

[20] Plauger, P. J.—Stepanov, A. A.—Lee, M.—Musser, D.: C++ Standard Tem-
plate Library. Prentice Hall PTR, 2000.

[21] Powell, D. B.—Lee, E. A.—Newman, W. C.: Direct Synthesis of Optimized
DSP Assembly Code from Signal Flow Block Diagrams. 1992 IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP-92), Vol. 5, 1992,
pp. 553–556, doi: 10.1109/ICASSP.1992.226560.

[22] Puschel, M.—Moura, J. M.—Johnson, J. R.—Padua, D.—Veloso, M. M.—
Singer, B. W.—Xiong, J.—Franchetti, F.—Gacic, A.—Voronenko, Y.—
Chen, K.—Johnson, R. W.—Rizzolo, N.: SPIRAL: Code Generation for DSP
Transforms. Proceedings of the IEEE, Vol. 93, 2005, No. 2, pp. 232–275, doi:
10.1109/JPROC.2004.840306.

[23] Robelly, J. P.—Cichon, G.—Seidel, H.—Fettweis, G.: Implementation of
Recursive Digital Filters into Vector SIMD DSP Architectures. IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP ’04), 2004, Vol. 5,
pp. 165–168, doi: 10.1109/ICASSP.2004.1327073.

https://doi.org/10.1109/MM.2014.10
https://doi.org/10.1162/014892602320991383
https://doi.org/10.1145/305138.305150
https://doi.org/10.1109/ICASSP.1992.226560
https://doi.org/10.1109/JPROC.2004.840306
https://doi.org/10.1109/ICASSP.2004.1327073

Meta-Programming and Policy-Based Design – DSP Implementations 289

[24] Rocchesso, D.—Smith, J. O.: Circulant and Elliptic Feedback Delay Networks for
Artificial Reverberation. IEEE Transactions on Speech and Audio Processing, Vol. 5,
1997, No. 1, pp. 51–63, doi: 10.1109/89.554269.

[25] Shahbahrami, A.—Juurlink, B.—Vassiliadis, S.: Efficient Vectorization of the
FIR Filter. Proceedings of the 16th Annual Workshop on Circuits, Systems and Signal
Processing (ProRISC), 2005, pp. 432–437.

[26] Sipos, Á.—Porkoláb, Z.—Pataki, N.—Zsók, V.: Meta〈Fun〉 – Towards a Fun-
ctional-Style Interface for C++ Template Metaprograms. Proceedings of 19th Interna-
tional Symposium of Implementation and Application of Functional Languages (IFL
2007), 2007, pp. 489–502.

[27] Stewart, T.: Intel Integrated Performance Primitives: How to Optimize Software
Applications Using Intel IPP. Intel Press, 2004.

[28] Stroustrup, B.: The Design and Evolution of C++. Pearson Education India,
1994.

[29] Stroustrup, B.: Foundations of C++. In: Seidl, H. (Ed.): Programming Languages
and Systems (ESOP 2012). Springer, Lecture Notes in Computer Science, Vol. 7211,
2012, pp. 1–25, doi: 10.1007/978-3-642-28869-2 1.

[30] Veldhuizen, T.: Expression Templates. C++ Report, Vol. 7, 1995, No. 5, pp. 26–31.

[31] Veldhuizen, T. L.: C++ Templates Are Turing Complete. Available at
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3670&

rep=rep1&type=pdf, 2003.

[32] Wang, G.: The Chuck Audio Programming Language. A Strongly-Timed and On-
the-Fly Environ/Mentality. Ph.D. dissertation, Princeton University, 2008.

[33] Wang, G.—Cook, P. R.: ChucK: A Concurrent, On-the-Fly, Audio Programming
Language. Proceedings of the 2003 International Computer Music Conference, 2003,
pp. 219–226.

[34] Wess, B.—Kreuzer, W.: Optimized DSP Assembly Code Generation Start-
ing from Homogeneous Atomic Data Flow Graphs. Proceedings of the 38th Mid-
west Symposium on Circuits and Systems, 1995, Vol. 2, IEEE, pp. 1268–1271, doi:
10.1109/MWSCAS.1995.510327.

[35] Zió lko, B.—Pȩdzima̧ż, T.—Pa lka, S.—Gawlik, I.—Miga, B.—Bugiel, P.:
Real-Time 3D Audio Simulation in Video Games with RAYAV. Making Games,
Vol. 1, 2015.

Ireneusz Gawlik received his M.Sc. degree in acoustical engi-
neering and B.Sc. in computer science from the AGH University
of Science and Technology in Kraków, Poland. Currently he
is working toward his Ph.D. degree in computer science at the
AGH UST. His research is focused on creating models of acoustic
phenomena and development of audio processing algorithms. He
is also working on development of machine learning algorithms,
machine learning in BigData setups, recommender systems and
learning to rank.

https://doi.org/10.1109/89.554269
https://doi.org/10.1007/978-3-642-28869-2_1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3670&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3670&rep=rep1&type=pdf
https://doi.org/10.1109/MWSCAS.1995.510327

290 I. Gawlik, S. Pa lka, T. Pȩdzima̧ż, B. Zió lko

Szymon Pa lka received his M.Sc. degree in computer science
from the AGH University of Science and Technology in Kraków,
Poland. Currently he is working toward his Ph.D. degree in
computer science at the AGH UST. His research is focused on
optimization of geometric techniques for 3D scene analysis for
spatial audio processing. He is a co-author of a patent applica-
tion and scientific papers regarding simulation of sound propa-
gation and speech processing. He teaches “Computer Graphics”
class at the AGH University.

Tomasz Pe�dzima� _z received his M.Sc. degree in computer scien-
ce from the AGH University of Science and Technology in Kra-
ków, Poland. Currently he is working toward his Ph.D. degree in
computer science at the AGH UST. He is an author or co-author
of 10 scientific papers and 2 patent applications, with one patent
granted. He has participated in several national and European
research projects. His research is focused on natural language
processing regarding speech recognitions language models. He
teaches “Computer Graphics” class at the AGH University.

Bartosz Zi�o lko studied electronics and telecommunications at
the AGH University of Science and Technology in Krakow. Next
he did his Ph.D. in computer science at the University of York.
He is an author or co-author of over 100 scientific papers and of
3 patent applications, with two patents granted. He is the main
author of book “Przetwarzanie mowy” (Eng. Speech Processing).
His research interests include automatic speech recognition, nat-
ural language modeling, speaker recognition and soundtracing.
He is CEO and a co-founder of Techmo – an AGH spin-off com-
pany and Assistant Professor at AGH University of Science and

Technology. He has participated in several national and European research projects. He
was also engaged as external consultant in speech technologies for companies. His R & D
activity resulted in a few products licensed to companies, universities and Court. He is
also governmental technology expert. He was trained in research commercialization by
Stanford and in Science Infrastructure Management by IBM and Fraunhofer Institute.

