
Computing and Informatics, Vol. 37, 2018, 165–185, doi: 10.4149/cai 2018 1 165

EXPLORATION OF COMPILER OPTIMIZATION
SEQUENCES USING A HYBRID APPROACH

Tiago Cariolano de Souza Xavier, Anderson Faustino da Silva

Departament of Informatics
State University of Maringá
Maringá, Paraná, Brazil
e-mail: tiago.cariolano@gmail.com, anderson@din.uem.br

Abstract. Finding a program-specific compiler optimization sequence is a chal-
lenge, due to the large number of optimizations provided by optimizing compilers.
As a result, researchers have proposed design-space exploration schemes. This paper
also presents a design-space exploration scheme, which aims to search for a compiler
optimization sequence. Our hybrid approach relies on sequences previously gener-
ated for a set of training programs, with the purpose of finding optimizations and
their order of application. In the first step, a clustering algorithm chooses optimiza-
tions, and in the second step, a metaheuristic algorithm discovers the sequence, in
which the compiler will apply each optimization. We evaluate our approach using
the LLVM compiler, and an I7 processor, respectively. The results show that we
can find optimization sequences that result in target codes that, when executed
on the I7 processor, outperform the standard optimization level O3, by an average
improvement of 8.01 % and 6.07 %, on Polybench and cBench benchmark suites,
respectively. In addition, our approach outperforms the method proposed by Purini
and Jain, Best10, by an average improvement of 24.22 % and 38.81 %, considering
the two benchmarks suites.

Keywords: Compilers, optimizations, sequence, performance

Mathematics Subject Classification 2010: 68-N20

166 T.C. de Souza Xavier, A. F. da Silva

1 INTRODUCTION

Optimizing compilers provide a large number of transformations, known as optimiza-
tions, which are applied during the compilation process [25]. The aim is to create
a target code semantically equal to the source code, but with good performance. Due
to the large number of optimizations and the fact that each optimization interacts
with each other in complex ways, it is a challenge, even for an expert programmer, to
find good optimization sequences. To minimize this challenge, optimizing compilers
offer optimization levels (e.g. O0, O1, O2 and O3 in the case of LLVM), which consist
of specific sequences.

The choice of optimizations and their order of application has a significant im-
pact on performance [19]. In addition, it is program-specific dependent [4, 6, 10, 11,
21, 22].

Exhaustive design-space exploration, although possible, takes a long time to
make it suitable for use in typical iterative compilers. Therefore, researchers engage
in proposing design-space exploration schemes to find a program-specific optimiza-
tion sequence using few evaluations.

In this paper, we propose a hybrid approach to search for good optimization
sequences aiming at performance improvements. First of all, a training stage tries
to choose good sequences. After the deployment stage, which relies on previously
generated sequences, it discovers a program-specific optimization sequence. In our
approach, we employ several strategies: random sampling, genetic algorithm, clus-
tering, metaheuristic, and a reduction scheme.

On one hand, the choice of optimizations is based on the premise that similar
programs react approximately the same way, when they are compiled using the same
sequence. In such manner, a new program can be improved by the optimizations
used on a similar program. However, discovering the order of application is based
on the premise that this problem is similar to the Traveling Salesman Problem.
Therefore, it is possible to develop a reduction algorithm to transform a problem
into another, in order to solve it using an existing solution, and then utilizing such
result as a solution for the previous conflict.

The experimental results show that our approach finds an optimization sequence
that outperforms the standard optimization level O3, besides the approach proposed
by Purini and Jain [24], Best10, considering Polybench and cBench as bench-
marks suites.

2 OUR APPROACH

During compilation, the compiler applies several optimizations, in order to improve
the target code. However, some optimizations can be useful to a specific program,
but not to another. Thus, the most appropriate approach is to choose optimizations
and their order of application, considering that it is program-specific dependent.

In this paper we present a design-space exploration scheme that chooses and
orders optimizations.

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 167

2.1 Overview

It is possible to choose and order optimizations easily, based on the assumption
that two similar programs react in the same manner, when they are compiled using
the same optimizations. Thus, we can compile a new program by applying the
optimizations utilized on a similar and previously-compiled program. In addition,
based on the assumption that a problem can be transformed into another, we can
convert the problem of discovering the order of application into the well-known
Traveling Salesman Problem (TSP) [2], and use a well-known solution to solve the
TSP.

Our approach can be outlined as:

1. Training stage

(a) Generate the training data

i Extract the feature vector f , using compiler level O0
ii Record the feature vector f

iii Record the benchmark running time, using compiler level O3

(b) Generate the training data for O3

i Instrument each training program
ii For each training program

A Select a set of optimizations and apply them
B Record the running time

2. Deployment stage

(a) Choose the optimizations

i Collect feature vector f1 from each training program, using compiler
level O0

ii Extract feature vector f2 from the test program, using compiler level O0
iii Reduce f1 and f2 to the most significant components using the Principal

Component Analysis PCA

iv Cluster the new feature vectors f1′ and f2′ into N clusters
v Extract the best set of optimizations from each training program, which

belongs to the same cluster of the test program

(b) Discover the order of application

i For each set of optimizations selected

A Reduce the problem of discovering the order of application into the
TSP

B Solve the TSP

C Transform the solution into an optimization sequence

(c) Return the optimizations and their order of application

168 T.C. de Souza Xavier, A. F. da Silva

2.2 Training Stage

The training stage aims to collect pieces of information about several training pro-
grams. As a result, this stage provides a small knowledge base (KB).

The KB can be viewed as a table composed by several entries, where each entry
consists in four fields, namely:

1. Program name;

2. Runtime for the program, when it is compiled using optimization level O3;

3. Feature vector, when the program is compiled using optimization level O0; and

4. Compiler optimization sequences and their runtime.

2.2.1 Generating the Feature Vector

The feature vector is composed of dynamic information, which is collected during
program execution. This means that such vector characterizes the dynamic behavior
of the program. We use performance counters as feature vectors.

Performance counters are dynamic information that consists of performance data
such as the number of issued instructions, completed instructions, cache accesses,
cache hits, cache misses, mispredicted branches, and others. They are traditionally
used for hardware performance analysis [3, 8, 14, 16].

The work of Cavazos et al. [4] was the first to propose the use of performance
counters to characterize programs and measure their similarities. A recent work [7]
also demonstrated that performance counters is a good strategy to measure the
similarity between two programs. In this paper, we characterize programs in the
same manner.

The use of performance counters is attractive, because they do not limit the
program class, which the system is able to handle. As a result, our system (strategy)
can find a good compiler optimization sequence for any program.

Table 1 presents the features used in our approach.

Type Features

L1 ICM L1 DCM L1 STM L1 TCM L1 LDM L2 DCR L2 TCA
L2 DCW L2 STM L2 TCM L2 TCR L2 DCA L2 TCW L2 ICR

Cache L2 DCH L2 DCM L2 ICA L2 ICM L2 ICH L3 DCR L3 TCA
L3 DCW L3 TCM L3 TCR L3 DCA L3 TCW L3 ICR L3 ICA

Branch BR PRC BR UCN BR NTK BR INS BR MSP BR TKN BR CN

SIMD VEC SP VEC DP

Floating Point FDV INS FP INS DP OPS FP OPS SP OPS

TLB TLB DM TLB IM

Cycles REF CYC TOT CYC STL ICY STL ICY

Insts TOT INS

Table 1. Features

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 169

In order to standardize the feature vectors of training and test programs, we nor-
malize each feature by TOT INS. To collect these features, we use the tools PAPI [18]
and PerfSuite [12].

2.2.2 Generating Training Data for Optimization Level O3

The optimizations used to generate training data belong to the optimization level O3.
They are presented in Table 2.

inline prune-eh scalar-evolution

argpromotion inline-cost indvars

gvn functionattrs loop-idiom

slp-vectorizer sroa loop-deletion

globaldce domtree loop-unroll

constmerge early-cse memdep

targetlibinfo lazy-value-info memcpyopt

no-aa jump-threading sccp

tbaa loop-unswitch dse

tailcallelim adce notti

ipsccp loop-simplify block-freq

instcombine loop-rotate loop-vectorize

verify licm simplifycfg

globalopt loops branch-prob

deadargelim lcssa basicaa

reassociate barrier basiccg

correlated-propagation strip-dead-prototypes

Table 2. Optimizations

The process of creating compiler optimization sequences is guided by the follow-
ing criteria:

• Every optimization appears only once;

• Every optimization can appear in any position;

• Every optimization has to address the compilation infrastructure rules; and

• All sequences, in KB, have 40 optimizations.

The first criterion indicates that we do not explore the use of an optimization
several times, even though this occurs in all optimization levels, in the case of LLVM.
The second one indicates that there are no restrictions when a specific optimization
should be applied. The third one indicates that a new sequence cannot violate the
safety of the LLVM. In the fourth criterion, the creation process tries to give the same
characteristic to every sequence.

Several strategies can be used to build a base of sequences. We use the strategy
proposed by Purini and Jain [24], which consists in using random and genetic al-
gorithms to create effective sets of optimizations. The random algorithm generates

170 T.C. de Souza Xavier, A. F. da Silva

sets utilizing a uniform and random sampling of the search space. While, the genetic
algorithms use a sophisticated way to build sets, and explore the search space. The
algorithms are described as follows.

Random Algorithm. This iterative algorithm randomly generates 500 sequences.

Genetic Algorithm with Rank Selector. This algorithm generates sets using
a genetic process, such as crossover and mutation. A simple genetic algorithm
consists in randomly generating an initial population, which will result in an it-
erative evolution process. Such procedure of evolving a population (or a genera-
tion) involves choosing the parents; applying genetic operators; evaluating new
individuals; and finally a reinsertion operation deciding which individuals will
compose the new generation. This iterative process is performed until a stopping
criterion is reached. The first generation is composed of individuals that are gen-
erated by a uniform sampling of the optimization space. Evolving a population
includes the application of two genetic operators: crossover, and mutation. The
first operator has a probability of 90 % for creating a new individual. The sec-
ond operator, mutation, has a probability of 2 % for transforming an individual.
Two types of mutation procedures were proposed:

1. to exchange two optimizations from random points; and

2. to change one optimization in a random point.

Both operators have the same probability of occurrence, though only one mu-
tation is applied over the individual selected to be transformed. This iterative
process uses elitism, which maintains the best individual in the next genera-
tion. Furthermore, it runs over 100 generations and 60 individuals, and finishes
whether the standard deviation of the current fitness score is less than 0.01, or
the best fitness score does not change in three consecutive generations.

Genetic Algorithm with Tournament Selector. It is similar to the previous
strategy, but instead of using a rank selector it uses a tournament selector
(Tour = 5).

Each strategy creates two sequences in each round. The first sequence is created
utilizing the specific scheme (random or genetic), and the second one is the first
sequence modified by human knowledge.

The LLVM’s manual suggests that some optimizations should precede and/or
succeed a specific optimization for its effectiveness, so that the first sequence is
updated to reflect this knowledge. This update follows the criteria:

• loops should appear before the first loop optimization;

• inline-cost should appear before inline and always-inline; and

• verify should be the last optimization.

After generating several sequences, we select the two best sequences for each
training program; one is the best sequence generated by each algorithm, and the
other is the best updated sequence.

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 171

Each sequence can contain optimizations that do not contribute to the pro-
gram speedup or have a negative impact on the program. Therefore, the next
step is to eliminate these unnecessary optimizations using the Sequence Reduction

Algorithm, also proposed by Purini and Jain [24].
As the training stage uses 61 training programs, our KB has 366 sequences.

2.2.3 Training Benchmarks

The training programs are composed of microkernels, which were taken from LLVM’s
test-suite. These are programs composed of a single source code, and have short
running times. Table 3 shows the training programs.

ackermann flops-6 matrix

ary3 flops-7 methcall

bubblesort flops-8 misr

chomp flops n-body

dry fp-convert nestedloop

dt hash nsieve-bits

fannkuch heapsort objinst

fbench himenobmtxpa oourafft

ffbench huffbench oscar

fib2 intmm partialsums

fldry lists perlin

flops-1 lowercase perm

flops-2 lpbench pi

flops-3 mandel-2 puzzle

flops-4 mandel puzzle-stanford

flops-5 queens queens-mcgill

quicksort random realmm

recursive reedsolomon richards bench

salsa20 sieve spectral-norm

strcat towers treesort

whetstone

Table 3. Microkernels

2.3 Deployment

The deployment stage performs seven steps in order to choose optimizations and
their order of application, namely:

1. Extract the feature vector f from the test program, using compiler level O0;

2. Cluster the training and test programs, based on their feature vectors;

3. Extract from each training program, which belongs to the same cluster of the
test program, their sequences;

172 T.C. de Souza Xavier, A. F. da Silva

4. Reduce the problem of choosing the order of applying compiler optimizations
into the TSP;

5. Solve the TSP;

6. Transform the TSP’s result into a solution to choose and order optimizations;
and

7. Return the best target code.

2.3.1 Choosing Optimizations

The choice of optimizations is based on the premise that we can find similar patterns
among programs, which give important insights for determining potential optimiza-
tions.

Based on the premise that similar programs react approximately the same way,
when they are compiled using the same optimizations, we choose the optimizations
that will be enabled during the compilation of the test program from a similar
training program. In such manner, each program is represented by a feature vector
forming points in a multidimensional space, and a clustering algorithm that operates
in this space trying to group points that are proximate.

The task of the clustering algorithm is to group a set of programs, in such a way
that programs in the same group (cluster) are more similar to each other than to
those that belong to other clusters [28].

Finding similar programs is a task performed in two steps. First, we extract the
feature vectors from the training and test programs. Second, the clustering algo-
rithm reduces the feature vectors to the most significant components using PCA [28],
and clusters the programs. In this moment, we know which programs are similar.

After clustering the programs, we extract from each training program, which
belongs to the same cluster (C) of the test program, their sequences.

Even though the word sequence indicates order, in this point the extracted
sequences only indicate the optimizations that will be enabled during the compilation
of the test program. As ordering optimization is also a program-specific problem,
we need to analyze the test program. In our strategy, ordering optimization is
based on the insights given by the sequences, which achieve performance on training
programs.

In a nutshell, each specific optimization that appears in the extracted sequences
forms the set of optimizations that will be enabled by the compiler. In addition,
these sequences give insights on when the compiler should apply each optimization.

2.3.2 Discovering the Order of Application

After choosing the optimizations, the next step is to discover the order of application.
Such process is performed by extracting knowledge from KB, which is associated with
the training programs (their sequences) that belong to C.

This knowledge is obtained by analyzing pairs of optimizations, in order to find
patterns that are meaningful to the test program. In fact, these patterns determine

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 173

how we will join the pairs to form a new sequence. Therefore, based on these patterns
we modify the order of application.

If we consider that optimizations are vertices, and that there is a cost of apply-
ing oi before oj, and vice-versa, the problem of choosing the order of application can
be reduced into the well-known Asymmetric Traveling Salesman Problem (ATSP) [2].

It is important to note that the asymmetric version is the appropriate algorithm,
because the performance of applying the optimization oi before oj can be different
from applying oj before oi.

The performance of a pair of optimizations can be viewed as a cost. If after
analyzing the previously-generated sequences, we consider that applying the opti-
mization oi before oj will reduce the performance of the test program, therefore, we
provide a high cost to the pair (oi, oj) in order to reflect this behavior.

The cost of a pair of optimizations is based on the frequency of all pairs. Given
a set of optimizations S, we analyze the sequences previously generated in order to
find how often all possible pairs formed with S optimizations occur in the sequences
that belong to C. As the sequences previously generated can provide speedup to
the training programs, our approach is guided by the assumption that pairs with
high frequency are a potential order.

Reducing Our Problem into ATSP. To reduce the problem of discovering the
order of application into ATSP, we perform three steps:

1. Create a complete digraph;

2. Map optimizations to vertices; and

3. Weigh the edges.

The first two steps are trivial. To perform the third, we need to infer the cost
of the pair (oi, oj), which is based on the frequency that oi appears before oj in the
sequences that belong to the cluster C and is defined as:

Freq Prog(p, oi, oj) = {s ∈ Dom(ES(p)) | (oi ∧ oj ∈ s) ∧ oi ≺ oj} .

As a result of using Freq Prog, the function Freq that returns how often oi
appears before oj is defined as:

Freq(oi, oj) =
∑
p∈C

Freq Prog(p, oi, oj). (1)

If Freq(oi, oj) < Freq(oj, oi), our approach considers that the application of
(oj, oi) is the best choice. This means that the higher Freq(oj, oi) is (implying
in a low value of Freq(oi, oj)), the higher the cost of (oi, oj) will be. Therefore,
the cost of applying the pair (oi, oj) is given by the inverse frequency of that pair,
Cost(oi, oj) = Freq(oj, oi).

174 T.C. de Souza Xavier, A. F. da Silva

Not all pairs of optimizations appear in all C sequences, as a result a high
variation occurrence between two different pairs is possible, on their frequencies. To
solve this problem, the cost is normalized as follows:

Cost(oi, oj) =
Freq(oj, oi)

Freq(oi, oj) + Freq(oj, oi)
. (2)

With this standardization, Cost(oi, oj) will always range from 0 to 1. In addition,
if there are only (oj, oi) occurrences, thus Cost(oi, oj) = 1, which is the highest
possible cost.

Solving the ATSP. The algorithm that solves the ATSP is based on Ant Colony
Optimization (ACO) [9].

ACO is a metaheuristic of combinatorial optimization, which is based on the
behavior of real ants. A metaheuristic is “a set of algorithmic concepts that can be
used to define heuristic methods applicable to a wide set of different problems” [9].
This metaheuristic was well exploited and firstly applied to the Traveling Salesman
Problem (TSP) [2, 9].

The execution of an ACO algorithm is composed of cycles. Each ant is usually
a constructive method and its behavior can be noted when, in order to choose the
next vertex to where the ant must go, a probability is used which is calculated based
on two factors: pheromone trail and heuristic information [27, 1]. Once the solutions
are constructed by the ants, they are used to update the pheromone trail.

In our ACO-based algorithm, each ant constructs a solution S, choosing vertices
to move to an iterative process. The choice of a vertex v, which was not visited, is
based on the probability p, as follows:

pkij =

{
[τij]

α[ηi]
β∑

k/∈Visitedk
[τij]α[ηij]β

if j /∈ Visitedk,

0 otherwise,
(3)

where τij is the pheromone on edge (i, j), ηij = 1/dij is the visibility of the vertex j
by ant k positioned on i, dij is the distance between i and j, Visitedk is the set of
vertices visited by the ant k, α is the importance of the pheromone and β is the
importance of the visibility (heuristic information).

After all ants construct their solutions, the algorithm updates the pheromone
trails. This, stored on matrix P|V |×|V |, is initialized with 1 for each edge between
non-adjacent vertices and with 0 for each edge between adjacent vertices. Updating
the pheromone trail involves the persistence of the current trail by a τ factor, and
the evaporation that is based on a ρ factor. The evaporation (Equation (4)), and
the general form of depositing pheromone (Equation (5)) are as follows:

Pij = ρPij, ∀i, j ∈ V, (4)

Pij = Pij + ∆τ kij, ∆τ kij =
Q

Tk
(5)

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 175

where Q is an empirical parameter and Tk is the length of the tour found by the
ant k.

These steps are repeated until the algorithm reaches 100 cycles.

2.3.3 Returning the Best Target Code

After choosing optimizations and their order of application, there are L∗2 sequences;
L sequences extracted from the KB, and new L sequences, in which the order of
the optimizations was modified. To find the best optimizations and their order,
we measure the performance of each target code using each sequence. After this
evaluation, we return the best target code.

3 EXPERIMENTAL SETUP AND METHODOLOGY

This section describes the experimental setup and the steps taken to ensure mea-
surement accuracy, besides outlining the methodology used in the experiments.

Platform. The experiments were conducted on a machine with an Intel processor
Core I7-3779, 8 MB of cache, and 8 GB of RAM. The operating system is Ubuntu
14.04, with kernel 3.13.0-37-generic.

Compiler. Our technique was implemented on top of LLVM 3.5 [13, 15]. The choice
of LLVM is based on the fact that it allows full control over the optimizations.
This means that it is possible to enable a list of optimizations through the
command line. In addition, the position of each optimization indicates its order.
Neither GCC nor ICC provides these features, thus, we need to use LLVM to show
the results of our strategy.

Benchmark Suites. The experiments use the Polybench suite [23] with a large
dataset, and the cBench suite [5] with dataset 1, as test programs.

Measurement. The results are based on the arithmetic average of five executions.
In the experiments, the machine workload was as minimal as possible. In other
words, each instance was executed sequentially. In addition, the machine did
not have an external interference, and the running time variance was close to
zero.

Baseline. The baseline is the LLVM’s highest compiler optimization level, O3. In
terms of running time, the optimization levels O2 and O3 have similar perfor-
mance, on several programs. Therefore, we choose the highest compiler opti-
mization level, O3.

Cross-Validation, Clustering, and ACO. The experiments use two distinct
groups of programs, separating one group for training and the other for testing.
Therefore, the experiments perform a holdout cross-validation. The clustering
algorithm used was Farthest First, which is implemented on Weka [28]. In fact,
we evaluate Expectation Maximization, Kmeans, and Farthest First, and the

176 T.C. de Souza Xavier, A. F. da Silva

latter obtained the best results. We use ACO to solve ATSP because it was ex-
tensively studied on the TSP. In addition, its way of choosing the next vertex is
helpful for our purpose.

Parameters. The parameters used are:

• Clustering: [10, 15], and [30, 35]. It indicates that the clustering-based algo-
rithm will try to find at least 10 centroids, and at most 15; or at least 30, and
at most 35, respectively. The former tries to gather the training programs,
while the latter tries to scatter the training programs.

• ACO: α = 1; β = 5; ρ = 0.99; and Q = 100.

Metrics. The evaluation uses three metrics to analyze the results, namely:

1. Average Percentage Improvement (API): indicates how much our strategy
outperforms the compiler optimization level O3;

2. Average Percentage Improvement Excluding (APIE) Programs: indicates how
much our strategy outperforms the compiler optimization level O3, consid-
ering only the programs whose performance outperforms the compiler opti-
mization level O3’s performance; and,

3. Number of Programs Achieving Improvement (NBI): indicates the number of
programs whose performance, obtained with our strategy, was better than
using the compiler optimization level O3.

The improvement is calculated as follows:

Speedup = baseline running time/new running time,

Improvement = (Speedup− 1) ∗ 100.

Training and Deployment Cost. The training, which builds sequences, is a high
time-consuming phase. It took several days, which is a significant amount
of time. However, it is important to note that it is performed only once,
besides performed at the factory. The deployment cost is calculated as fol-
lows:

Deploymentcost = Ctime +Otime +

Sequences∗2∑
S=0

(
Comptime +

5∑
N=0

Runtime

)

where Ctime is the time spent to choose optimizations; Otime is the time spent to
order optimizations; Comptime is the time spent to compile the program using
a specific sequence; and Runtime is the program running time.

Choosing and ordering optimizations takes only 20 % of the system response
time in our experiments. It is directly proportional to the size of the ATSP, be-
sides the size of the KB. The other portion of the system response time (80 %)
is caused by the need of compiling and running a program several times, in

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 177

order to evaluate a sequence and ensure measurement accuracy. In our exper-
iments, choosing and ordering optimizations took from 0.015 (adi) to 6.755
(gramschmidt) seconds, while evaluating sequences took from 0.06 to 9 460.5
seconds.

Best10. In order to evaluate the effectiveness of our approach, we compare it with
the one proposed by Purini and Jain [24]. They proposed an approach that
extracts the best 10 optimization sequences, from a small search space, and use
these sets to compile all programs. They argue that it is possible to outperform
the optimization levels using only 10 sets.

Briefly, the approach used to select the best 10 sequences can be summarized in
five steps:

1. Generate training data to N programs;

2. Extract the best sequence from each training program;

3. Remove the duplicate sequences;

4. Remove from each sequence the optimizations that do not contribute to re-
duce the running time; and finally

5. Extract from the search space the best 10 sequences.

4 RESULTS

This section evaluates our hybrid approach that searches for good optimizations
and their order, aiming at performance improvements. In other words, this section
evaluates our approach that searches for sequences that outperform the optimization
level O3 in terms of running time.

Tables 4 and 5 present the results. In these tables OT.15 means our approach
created at most 15 centroids, OT.35 our approach produced at most 35 centroids,
Best10 is the algorithm proposed by Purini and Jain, and BestAll means the
maximum improvement available for compiling the test program with all sequences
on KB.

Overview. Our approach is able to find sequences that outperform the well-engi-
neered compiler optimization level O3, besides Best10. Only in five benchmarks
(Polybench.adi, Polybench.ludcmp, cBench.lame, cBench.patricia,
and cBench.sha) Best10 outperforms our approach. In some cases the two
approaches have similar performance to BestAll. Our approach achieves the
maximum available improvement on 26 programs, while Best10 on 23 bench-
marks. In addition, our hybrid approach outperforms BestAll on 5 programs:
Polybench.jacobi-2d, Polybench.lu, Polybench.reg detect,
cBench.tiff2bw, and cBench.pgp e.

Metrics. API means that the gap between our approach and BestAll is less than
the gap between Best10 and BestAll. This gap is 16.82 %, 41.33 %, and 37.38 %,
respectively for OT.15, OT.35 and Best10, on Polybench; and 26.42 %, 39.03 %

178 T.C. de Souza Xavier, A. F. da Silva

Benchmark OT.15 OT.35 Best10 BestAll

2mm 11.72 1.72 11.71 11.75

3mm 12.47 12.47 12.46 12.48

adi 0.002 −18.14 3.75 3.75

atax 6.72 2.58 6.36 7.44

bicg 0.97 0.97 0.97 0.97

cholesky 14.22 14.21 14.26 33.24

correlation 12.42 12.36 12.33 12.44

covariance 12.45 12.44 12.44 12.47

doitgen 12.27 12.27 11.67 12.55

durbin 0.75 0.00 −3.28 3.51

dynprog 12.28 0.00 11.99 12.28

fdtd-2d 6.29 −19.87 −4.89 6.30

fdtd-apml 3.42 0.00 3.58 8.00

floyd-warshall 0.00 0.00 0.00 0.01

gemm 11.04 11.07 0.01 11.09

gemver 1.59 −1.93 −3.76 3.02

gesummv 0.003 −4.74 0.00 1.26

gramschmidt 6.23 6.23 0.01 6.24

jacobi-1d 4.72 0.00 0.00 7.26

jacobi-2d 9.99 15.77 3.96 3.96

ludcmp 0.01 0.01 22.07 22.13

lu 22.13 22.12 0.03 7.03

mvt 1.90 1.90 0.00 1.90

reg detect 12.35 28.25 12.33 12.44

seidel-2d 41.67 41.75 41.33 41.69

symm 7.14 7.12 7.12 15.3

syr2k 0.00 0.00 0.00 0.01

syrk 0.00 0.00 0.02 0.02

trisolv 4.39 1.59 4.40 7.34

trmm 11.09 0.01 0.01 11.12

API 8.01 5.65 6.03 9.63

APIE 8.29 11.31 7.14 9.63

NBI 30 26 27 30

Table 4. The improvements on Polybench

and 55.27 %, on cBench. It means that in general, these gaps are 21.18 %,
40.36 % and 45.37 %, respectively. APIE also indicates that our approach out-
performs Best10. However, NBI indicates that the two approaches and Best10

have a similar performance.

Benchmarks. The general results, mainly API, show that our approach and Best10

perform better on Polybench. It can be explained by the fact that Poly-
bench is composed of kernels, while cBench of complete programs. However,

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 179

Benchmark OT.15 OT.35 Best10 BestAll

bitcount −46.45 −46.45 −45.75 −10.77

qsort1 10.45 10.45 6.71 10.45

susan c 30.88 30.88 27.04 32.48

susan e 5.75 6.29 1.86 6.88

susan s 1.06 0.97 0.78 1.06

bzip2d 49.25 49.25 39.97 49.26

bzip2e 5.73 5.50 4.39 7.03

lame 3.22 6.16 8.75 8.75

mad 2.45 1.99 1.30 2.19

tiff2bw 17.04 14.94 7.45 13.32

tiff2rgba 15.45 15.07 7.49 15.11

tiffdither 2.06 −0.77 0.12 1.13

tiffmedian 25.89 22.14 23.05 26.02

dijkstra 0.59 0.14 0.43 0.64

patricia 0.00 −1.08 0.56 0.56

rsynth 0.46 −1.83 0.38 0.46

stringsearch1 −15.92 −28.91 −18.24 −0.36

blowfish d 4.12 4.18 4.12 4.18

blowfish e 4.10 4.10 3.94 4.16

pgp d 5.13 4.97 1.91 6.51

pgp e 4.72 0.96 0.59 3.49

rijndael d 1.97 3.25 0.003 3.54

rijndael e −0.32 −2.24 −2.21 −0.32

sha 6.95 6.95 7.605 7.66

adpcm c 13.12 12.98 5.83 15.05

adpcm d 16.46 15.08 11.18 16.58

CRC32 2.13 2.13 2.13 2.13

gsm 3.85 3.63 1.97 3.88

API 6.07 5.03 3.69 8.25

APIE 9.70 10.09 6.78 9.70

NBI 25 22 25 25

Table 5. The improvements on cBench

the performance loss on cBench is due to the three programs that BestAll

does not outperform with optimization level O3, namely: cBench.bitcount,
cBench.stringsearch1 and cBench.rijndael e. If we remove these three
benchmarks, the scenario changes. In this case, API is 9.31 %, 8.73 %, 6.78 %
and 9.70 %, respectively for OT.15, OT.35, Best10 and BestAll. The gap de-
creases from BestAll, and also reinforces that using a hybrid approach is the
best choice.

180 T.C. de Souza Xavier, A. F. da Silva

Best10. It is important to remember that our approach and Best10 have dif-
ferent premises. The former argues that it is necessary to handle individ-
ual programs, which means that the choice of optimizations and their order
is program-specific dependent. The latter argues that it is possible to cover
several sets of programs using the same sequences. The results indicate that
handling individual programs tends to decrease the gap between the strategy
and the maximum available improvement, consequently enhancing the perfor-
mance.

Evaluations. Using a strategy that creates several centroids ([30, 35]) outperforms
Best10, however it increases the distance from the maximum available improve-
ment. Although, creating few centroids ([10, 15]) increases the performance, this
strategy expands the response time. The problem is that this strategy creates
less centroids, grouping more programs on the same cluster. As a result, more
sequences will be evaluated. Best10 needs to evaluate only 10 sequences. The
strategy that creates about 35 centroids needs to evaluate at most 20 ∗ 2 se-
quences (20 programs in the same cluster plus 20 new sequences after changing
their order), while that one that creates about 15 centroids needs to evaluate at
most 30 ∗ 2. This means that in terms of evaluations, Best10 is better than our
hybrid approach.

5 RELATED WORK

Cavazos et al. [4] proposed a machine learning strategy to find compiler optimiza-
tions for a specific program. This work was the first to use performance counters to
measure the similarity between two programs. A machine learning strategy creates
a prediction model in a training stage, based on the behavior of several training
programs, and the prediction model, in a deployment (or test) stage, predicts the
set of optimizations that will be enabled to compile the unseen program. In a train-
ing stage, Cavazos’s strategy randomly creates several compiler optimization sets
for a group of training programs. After the creation of several sets, their strategy
collects the performance counters of each training programs. Based on these two
pieces of information, a model based on a logistic regression scheme is created, which
will predict the set of optimizations. The deployment stage collects the performance
counters of the test program, invokes the prediction model, and finally returns the
best target code.

They demonstrated that a machine learning strategy is able to outperform the
compiler optimization levels. Furthermore, they also demonstrated that the use
of performance counters is a good strategy to measure the similarity between two
programs. Our strategy is similar to such method, because we also use a machine
learning scheme and measure the similarity between two programs in the same man-
ner. However, while Cavazos et al. tried to find optimizations, our work is one step
further due to its searches and optimization orders.

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 181

De Lima et al. [7] proposed the use of a case-based reasoning strategy to find
compiler optimizations for a specific program. They argue that it is possible to find
good compiler optimizations, from previous compilations, for an unseen program.
This strategy creates several compiler optimization sets in a training stage. After-
wards, in the deployment stage, the strategy infers a good compiler optimization
set for a new program. This step is based on the similarity between two programs.
De Lima et al. proposed several models to measure similarity, also based on feature
vectors, which is composed by performance counters. They demonstrated that it is
possible to infer a good compiler optimization set that achieves multiple goals; for
example, runtime and energy. The limitation of this work is that it does not handle
the problem of ordering optimizations.

Purini and Jain [24] proposed a strategy to find good compiler optimization
sets, which are able to cover several programs. This means that they do not han-
dle this problem as program-dependent. The strategy to find several sets consists
in using random and genetic algorithms to create effective sets of optimizations.
After creating several sets, they eliminate the optimizations, from each set, that
does not contribute to the performance. Finally, they proposed an algorithm that
analyzes all sets, and extracts the best 10 sets. As a result, each test program is
compiled using 10 sets, and the best target code is returned. They demonstrated
that it is possible to find a small group of sets that are able to cover several pro-
grams.

Our strategy uses Purini’s and Jain’s strategy to provide a knowledge base of
good compiler optimizations sets; however, we handle the problem of finding good
optimizations as a program-dependent problem.

Tartara and Crespi [26] proposed a long-term strategy, the goal of which is
to eliminate the training stage. In their strategy, the compiler is able to learn,
during every compilation, how to generate good target code. In fact, they pro-
posed the use of a genetic algorithm that creates several heuristics based on the
static characteristics of the test program [20]. Basically, this strategy performs two
tasks. First, it extracts the characteristics of the test program. Secondly, the ge-
netic algorithm creates heuristics inferring which optimizations should be enabled.
They demonstrated that it is possible to eliminate the training stage, using long-
term learning. While Tartara’s and Crespi’s work does not need a training stage,
our work does; however, we handle two problems concerning compiler optimiza-
tions.

Martins et al. [17] proposed a clustering strategy in order to find good compiler
optimizations sets. In fact, they proposed algorithms to find good optimizations,
besides algorithms to order optimizations. The strategy used by Martins et al. is
similar to Purini’s and Jain’s, both use random and genetic algorithms. This means
that their strategy can be considered as an iterative compilation, where the test
program is compiled with different sets of optimizations, and the best version is
chosen. Our strategy is classified as a machine learning strategy, which tries to
reduce the number of times that a test program needs to be evaluated.

182 T.C. de Souza Xavier, A. F. da Silva

6 CONCLUDING REMARKS

The selection of compiler optimizations and their order of application has a signifi-
cant impact on performance. In addition, we need to remember that this problem is
program-specific dependent. Therefore, a good approach is to propose a design-space
exploration scheme to find the program-specific optimization sequence.

In this paper we proposed a design-space exploration scheme, which aims to
find good compiler optimization sequences. Our approach employs several strate-
gies, namely: random sampling, genetic algorithm, clustering, metaheuristic, and
a reduction scheme.

We implemented a hybrid approach on top of the LLVM compiler, and the experi-
ment results show that it finds optimization sequences that outperform the standard
optimization level O3, besides the approach proposed by Purini and Jain, Best10.

The deficiency of our approach is the system response time, due to the number
of evaluations. In a future work we will investigate a strategy to decrease the system
response time. In addition, as programs are composed by several subroutines and
each one will probably be best-optimized by a specific sequence, another future work
will be to handle each subroutine.

REFERENCES

[1] Abdelbar, A. M.—Wunsch, D. C.: Improving the Performance of MAX-MIN Ant
System on the TSP Using Stubborn Ants. Proceedings of the 14th Annual Conference
Companion on Genetic and Evolutionary Computation (GECCO ’12), New York, NY,
USA, ACM, 2012, pp. 1395–1396, doi: 10.1145/2330784.2330949.

[2] Applegate, D. L.—Bixby, R. E.—Chvátal, V.—Cook, W. J.: The Traveling
Salesman Problem: A Computational Study. Princeton University Press, 2007.

[3] Bertran, R.—Gonzalez, M.—Martorell, X.—Navarro, N.—Ayguade,
E.: Decomposable and Responsive Power Models for Multicore Processors Using
Performance Counters. Proceedings of the 24th ACM International Conference on
Supercomputing (ICS ’10), New York, NY, USA, ACM, 2010, pp. 147–158, doi:
10.1145/1810085.1810108.

[4] Cavazos, J.—Fursin, G.—Agakov, F.—Bonilla, E.—O’Boyle, M. F. P.—
Temam, O.: Rapidly Selecting Good Compiler Optimizations Using Performance
Counters. Proceedings of the International Symposium on Code Generation and
Optimization (CGO ’07), Washington, DC, USA, IEEE Computer Society, 2007,
pp. 185–197, doi: 10.1109/CGO.2007.32.

[5] The Collective Benchmarks, 2014, http://ctuning.org/wiki/index.php/CTools:
CBench. Access: January 20, 2016.

[6] Chabbi, M. M.—Mellor-Crummey, J. M.—Cooper, K. D.: Efficiently Explor-
ing Compiler Optimization Sequences with Pairwise Pruning. Proceedings of the 1st

International Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop
Era, New York, NY, USA, ACM, 2011, pp. 34–45, doi: 10.1145/2000417.2000421.

https://doi.org/10.1145/2330784.2330949
https://doi.org/10.1145/1810085.1810108
https://doi.org/10.1109/CGO.2007.32
http://ctuning.org/wiki/index.php/CTools:CBench
http://ctuning.org/wiki/index.php/CTools:CBench
https://doi.org/10.1145/2000417.2000421

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 183

[7] de Lima, E. D.—de Souza Xavier, T. C.—da Silva, A. F.—Ruiz, L. B.: Com-
piling for Performance and Power Efficiency. 23rd International Workshop on Power
and Timing Modeling, Optimization and Simulation (PATMOS), 2013, pp. 142–149.

[8] Dongarra, J.—London, K.—Moore, S.—Mucci, P.—Terpstra, D.: Using
PAPI for Hardware Performance Monitoring on Linux Systems. Proccedings of the
Conference on Linux Clusters: The HPC Revolution, Linux Clusters Institute, 2001.

[9] Dorigo, M.—Stützle, T.: Ant Colony Optimization. Bradford Books, MIT Press,
Cambridge, Massachusetts, 2004.

[10] Fang, S.—Xu, W.—Chen, Y.—Eeckhout, L.—Temam, O.—Chen, Y.—
Wu, C.—Feng, X.: Practical Iterative Optimization for the Data Center. ACM
Transactions on Architecture and Code Optimization (TACO), Vol. 12, 2015, No. 2,
pp. 15:1–15:26.

[11] Foleiss, J. H.—da Silva, A. F.—Ruiz, L. B.: An Experimental Evaluation of
Compiler Optimizations on Code Size. Proceedings of the Brazilian Symposium on
Programming Languages, São Paulo, Brazil, EACH USP, 2011, pp. 1–15.

[12] Kufrin, R.: PerfSuite: An Accessible, Open Source Performance Analysis Environ-
ment for Linux. Proceedings of the Linux Cluster Conference, Chapel, 2005.

[13] Lattner, C.—Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. Proceedings of the International Symposium on Code
Generation and Optimization (CGO 2004), Palo Alto, California, March 2004, doi:
10.1109/CGO.2004.1281665.

[14] Lim, M. Y.—Porterfield, A.—Fowler, R.: SoftPower: Fine-Grain Power Es-
timations Using Performance Counters. Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing (HPDC ’10), New York,
NY, USA, ACM, 2010, pp. 308–311, doi: 10.1145/1851476.1851517.

[15] LLVM Team. The LLVM Compiler Infrastructure, 2016, http://llvm.org. Access:
January 20, 2016.

[16] Malone, C.—Zahran, M.—Karri, R.: Are Hardware Performance Counters
a Cost Effective Way for Integrity Checking of Programs? Proceedings of the Sixth
ACM Workshop on Scalable Trusted Computing (STC ’11), New York, NY, USA,
ACM, 2011, pp. 71–76, doi: 10.1145/2046582.2046596.

[17] Martins, L. G. A.—Nobre, R.—Cardoso, J. A. M. P.—Delbem, A. C. B.—
Marques, E.: Clustering-Based Selection for the Exploration of Compiler Optimiza-
tion Sequences. ACM Transactions on Architecture and Code Optimization (TACO),
Vol. 13, 2016, No. 1, pp. 8:1–8:28, doi: 10.1145/2883614.

[18] Mucci, P. J.—Browne, S.—Deane, C.—Ho, G.: PAPI: A Portable Interface to
Hardware Performance Counters. Proceedings of the Department of Defense HPCMP
Users Group Conference, 1999, pp. 7–10.

[19] Muchnick, S. S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1997.

[20] Namolaru, M.—Cohen, A.—Fursin, G.—Zaks, A.—Freund, A.: Practi-
cal Aggregation of Semantical Program Properties for Machine Learning Based
Optimization. International Conference on Compilers Architectures and Synthe-

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1851476.1851517
http://llvm.org
https://doi.org/10.1145/2046582.2046596
https://doi.org/10.1145/2883614

184 T.C. de Souza Xavier, A. F. da Silva

sis for Embedded Systems (CASES ’10), Scottsdale, United States, 2010, doi:
10.1145/1878921.1878951.

[21] Park, E.—Cavazos, J.—Alvarez, M. A.: Using Graph-Based Program Charac-
terization for Predictive Modeling. Proceedings of the Tenth International Symposium
on Code Generation and Optimization (CGO ’12), New York, NY, USA, ACM, 2012,
pp. 196–206, doi: 10.1145/2259016.2259042.

[22] Park, E.—Kulkarni, S.—Cavazos, J.: An Evaluation of Different Modeling
Techniques for Iterative Compilation. Proceedings of the 14th International Confer-
ence on Compilers, Architectures and Synthesis for Embedded Systems, New York,
NY, USA, ACM, 2011, pp. 65–74.

[23] Polybench. The Polyhedral Benchmark Suite. Access: March 2, 2014.

[24] Purini, S.—Jain, L.: Finding Good Optimization Sequences Covering Program
Space. ACM Transactions on Architecture and Code Optimization (TACO), Vol. 9,
2013, No. 4, pp. 56:1–56:23, doi: 10.1145/2400682.2400715.

[25] Srikant, Y. N.—Shankar, P.: The Compiler Design Handbook: Optimizations
and Machine Code Generation. 2nd ed., CRC Press, Inc., Boca Raton, FL, USA,
2007.

[26] Tartara, M.—Crespi Reghizzi, S.: Continuous Learning of Compiler Heuristics.
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 9, 2013,
No. 4, pp. 46:1–46:25, doi: 10.1145/2400682.2400705.

[27] Tavares, J.—Pereira, F. B.: Towards the Development of Self-Ant Systems. Pro-
ceedings of the 13th Annual Conference on Genetic and Evolutionary Computation
(GECCO ’11), New York, NY, USA, ACM, 2011, pp. 1947–1954.

[28] Witten, I. H.—Frank, E.: Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

https://doi.org/10.1145/1878921.1878951
https://doi.org/10.1145/2259016.2259042
https://doi.org/10.1145/2400682.2400715
https://doi.org/10.1145/2400682.2400705

Exploration of Compiler Optimization Sequences Using a Hybrid Approach 185

Tiago Cariolano de Souza Xavier got his B.Sc. and M.Sc.
degrees in computer science from the State University of Mar-
ingá, Brazil, in 2012 and 2014, respectively. Nowadays, he is
a Ph.D. student in computer science at the Federal University of
Rio de Janeiro, Brazil. His research interest is in compilers and
mobile systems.

Anderson Faustino da Silva is Professor in the Department
of Informatics, State University of Maringá, Brazil, where he has
been teaching since 2008. He received his B.Sc. degree in com-
puter science from the State University of West Paraná, Brazil,
in 2000, and his M.Sc. and Ph.D. degrees also in computer scien-
ce from the Federal University of Rio de Janeiro, Brazil, in 2003
and 2006, respectively. His research interest is in compilers and
parallel and distributed computing.

