Computing and Informatics, Vol. 37, 2018, doi: 10.4149/cai 20181

TOWARDS A FORMALIZATION OF A FRAMEWORK
TO EXPRESS AND REASON ABOUT SOFTWARE
ENGINEERING METHODS

Miguel MORALES-TRUJILLO*

Facultad de Ingenieria, Universidad Nacional Auténoma de México
Mezxico Clity, Mexico
e-mail: migmor@ciencias.unam.mx

Hanna OKTABA, Francisco HERNANDEZ-QUIROZ

Facultad de Cliencias, Universidad Nacional Auténoma de México
Mezico Clity, Mexico
e-mail: {hanna.oktaba, fhq}@ciencias.unam.mx

Boris ESCALANTE-RAMIREZ

Facultad de Ingenieria, Universidad Nacional Auténoma de Mézico
Mezico Clity, Mexico
e-mail: boris@servidor.unam.mx

Abstract. Software Engineering is considered a knowledge-intensive discipline, in
which knowledge creation, collection and sharing is an uninterrupted process. How-
ever, a large part of this knowledge exists in a tacit form and depends on practition-
ers. Therefore defining a mechanism to transform tacit knowledge into explicit one
is of upmost importance. This paper presents a formalization approach to represent
Software Engineering practitioners’ tacit knowledge, which is related to their ways
of working, as a set of explicit statements. The formalization is based on KUALI-
BEH, which is a normative kernel extension of ESSENCE formal specification, and
consists of three parts: an ontology to share a common representation of knowledge

* corresponding author

110 M. Morales-Trujillo, H. Oktaba, F. Hernandez-Quiroz, B. Escalante-Ramirez

as a set of concepts; a Situational Method Engineering based algebra that represents
well-defined method properties and operations; and a knowledge representation of
the ontology and algebra using Description Logics. The main objectives of this
initial formalization are to improve communication among humans and machines,
computational inference and reuse of knowledge.

Keywords: Software engineering, situational method engineering, ontology, de-
scription logics, ESSENCE, KUALI-BEH

Mathematics Subject Classification 2010: 68-N30

1 INTRODUCTION

Precisely specifying the process by which a Software Engineering activity takes place
is a challenging task [I]. Every aspect of software development, particularly in large
systems, demands a great deal of knowledge and understanding of the software
practitioner [2].

Moreover, according to [3] and [4], creating software is one of the most know-
ledgeintensive professions. Software Engineering community has been motivated
to collect all the knowledge that practitioners possess; the activity of knowledge
gathering has become a relevant research line for the discipline.

Since knowledge creation is an uninterrupted process, it is true about its col-
lection as well, thus we need a process to manage it. In [5] it is established that
knowledge management process should address all of the following tasks:

1. to acquire new knowledge;

2. to transform the knowledge from tacit or implicit into explicit knowledge;
3. to systematically store, disseminate, and evaluate knowledge; and

4. to apply knowledge in new situations.

Providing Software Engineering with a knowledge-based approach allows us to
create models and reason about them. At this point the wide scope of the discipline
becomes an obstacle. Presentation and integration of the knowledge-based approach
into the everyday working world of software engineers is a critical challenge for the
Knowledge-Based Software Engineering (KBSE) community [4].

In 1992 [4] identified three crucial questions to give Software Engineering a know-
ledge-based focus:

1. What part of the software process is targeted?

2. What knowledge is applicable and how can it be represented, acquired, and
maintained?

Towards a Formalization of KUALI-BEH an ESSENCE Extension 111

3. How can we present the knowledge to developers, teams, and managers to im-
prove the quality, cost, and timeliness of software development?

By finding answers to these questions, that are still valid, researchers will be
able to create a model to represent the knowledge of a targeted software process.
Once the model of a process is precisely defined in a formal manner, process analysis
techniques can be applied to such a model to identify problematic and erroneous
steps, or to leverage efficiency improvements [IJ.

The objective of this paper is to present a formalization, which was created as
a way of improvement of the communication among humans and machines, and
of reasoning about the tacit knowledge possessed by Software Engineering practi-
tioners. In particular, the paper is focused on the practitioners’ ways of working
during software projects. The proposed formalization is built on KUALI-BEH [d],
a Normative Annex of ESSENCE — Kernel and Language for Software Engineering
Methods [7], which is an Object Management Group (OMG) formal specification.
The proposal uses three types of formalization: an ontology to share a common
representation of knowledge as a set of concepts; an algebra based on Situational
Method Engineering (SME) to represent well-defined method properties and opera-
tions; and a knowledge representation of the ontology and algebra using Description
Logics (DL).

The motivation behind creating a formalization based on an ESSENCE Kernel
extension is the lack of reasoning mechanisms in metamodels, like SPEM [g], or
standards like ESSENCE itself. Moreover, the main reason that motivated the
formalization was to provide Software Engineering practitioners with a mechanism
to reason about the knowledge they possess. As [9] stated, there is a need to provide
“a simple specification language to describe any type of activity in a company, in
a concurrent and modular fashion”, which is also useful for software engineers.

This paper is organized as follows: the background is presented in Section [
Section 3| demonstrates the proposed formalization, Section] describes its validation,
Section [p| mentions the intended usage of the formalization, and conclusions and
future work are discussed in the final section.

2 BACKGROUND

This section presents KUALI-BEH as the object to be formalized, and the following
formalization approaches: Ontologies, SME and DL.

2.1 ESSENCE — Kernel and Language for Software Engineering Methods

In 2011 OMG initiated a standard project, the outcome of which was ESSENCE:
a four layer approach that defines a kernel, a language and permits the construction
of software engineering methods, see Figure [1| (left side).

The ESSENCE kernel is a set of universal components involved in software
engineering efforts, which are expressed in a language by the syntax and semantics

112 M. Morales-Trujillo, H. Oktaba, F. Hernandez-Quiroz, B. Escalante-Ramirez

rules. The path that guided the definition of ESSENCE was the separation of
concerns, and it therefore defines three areas of concern: Customer, Solution and
Endeavor. Another relevant concept is activity space, which according to [7], is
the representation of the essential things to do; it describes the challenges a team
faces when developing, maintaining, and supporting software systems. Within each
area of concern an activity space is provided, in which practitioners can model the
state of a particular software project with the help of a previously defined set of
Abstract-Level Project Health Attributes (ALPHAS), see Figure [1] (right side).

/x.
g = . identifies o
— Methods v g "\ _— A
S g L, HE J
s = o Py, = t
’ = > o 2 g
i $ <7 < £
Practices —l S [m— tutis 1 sotware £
o = Ny /) ystem g
v 33 FH S E |
33 WS s
— The Kernel =]
4 performs and plans.
—_— Team

Endeavor

&
%, Uy

G The Language
Way of
Working

Figure 1. ESSENCE architecture and its areas of concern [7]

The Endeavor area of concern contains everything to do with team members and
the way in which they approach their work [7]. Two ALPHASs are associated with the
Endeavor: Work and Way-of-Working. In the context of software engineering, work
is everything that the team does to meet the goals of producing a software system.
The work is guided by the practices that make up the team’s way-of-working. The
Way-of-Working is the tailored set of practices and tools used by a team to guide
and support their work, which evolves according to specific working contexts [7].

In particular, although the Endeavor area of concern addresses the practitioners’
practical knowledge, it does not indicate how to express it nor how to reason about
it. This lack of expressive mechanisms stimulated the extension of ESSENCE in the
form of KUALI-BEH as an alternative to allow practitioners to transform their tacit
knowledge into explicit knowledge. KUALI-BEH covers the top two layers of the
ESSENCE architecture, which are Methods and Practices, and offers mechanisms
to identify, express, agree, execute, optimize and consolidate ways of working. Con-
sequently, KUALI-BEH became an extension of the ESSENCE Kernel, presented as
a Normative Annex of the formal specification.

2.2 KUALI-BEH

KUALI-BEH is based on a set of common concepts involved in software projects and
provides a framework for authoring Software Engineering Methods. KUALI-BEH is
composed of two views: static and operational.

Towards a Formalization of KUALI-BEH an ESSENCE Extension 113

The static view defines the common concepts needed for the definition of the
practitioners’ diverse ways of working (see Figure [2)), and arranges them into meth-
ods composed of practices. This knowledge creates an infrastructure of methods
and practices that is built and used by practitioners.

MPI

+stores

Software Project | 0. 1.*| Method Software Product

1. I

C————{+isenacted in +DllfDUSE 1.%

0% - 1% :

) +stores
+invokes
+is assigned to
0.* 1 +is composed of +Hits
= +ulfills
Stakeholder
I I
——— 1
1+ L 1%
Verification Criteria | +I5 verified using | Practice [condition| _[Project Conditi Work Product
s « | +objective I | T | +status
1 0 [] I 1
+is conformed of {) 14
13 : 1x
+provyces +ulfills e
NS

Result | 1.* Stakeholder Needs
+has

+possesses

Knowledge and Skills| 1. 0.* |Acti\rity Iés decomposed in | Task

E=— +requies

+is carried out using

Figure 2. KUALI-BEH concepts and their relationships and attributes

The operational view is related to the software project execution. It provides
work teams with mechanisms how to enact a method and adapt its practices to
a specific context and stakeholder needs.

The KUALI-BEH static view target audience represents Software Engineering
practitioners, who will be able to express their actual ways of working using KUALI-
BEH to author methods and practices. The knowledge produced by practitioners
should be validated and approved before being accumulated and shared, both inside
and outside the organization.

During the process of authoring of methods and practices KUALI-BEH advises
practitioners with regard to certain attributes. The set of practices that comprise
a method should preserve the properties of coherency, consistency and sufficiency [6],
which are formally defined in Section [3.2.3]

114 M. Morales-Trujillo, H. Oktaba, F. Hernandez-Quiroz, B. Escalante-Ramirez

Having expressed methods and practices, practitioners can identify the method
to be followed during software project execution. Due to the fact that every project
is different, the work team will need to adapt the selected method, for which KUALI-
BEH defines the following adaptations operations [6]:

1. substitution,

2. concatenation,
3. combination and
4

. splitting.

These operations are explained in Section [3:2.4]

To carry out a formalization process of the software project common concepts,
method properties and adaptation operations presented in KUALI-BEH, we used
ontologies for the definition of common concepts, SME and Set Theory to state
method properties and adaptation operations and DL for knowledge representation.
They are described in more detail in the next subsections.

2.3 Ontologies

According to [10] an important challenge faced by current communities of researchers
and practitioners in the field of Software Engineering and Technology is the lack of
explicit knowledge shared among members of a group/project, with other groups
and with other stakeholders.

The ambiguity of natural language implies potential mistakes and nonproduc-
tive efforts. Ontologies can mitigate these problems and, furthermore, some authors
have intended to use ontologies as the back-bone of software tools and environ-
ments [10].

An ontology, defined by [5], is a data model that represents a set of concepts
within a domain and relationships between those concepts, and it is used to reason
about objects within that domain.

In [TT] the main usages of ontologies in Software Engineering are

1. to clarify the knowledge structure,
2. to reduce conceptual and terminological ambiguity, and

3. to allow the sharing of knowledge.

Ontologies are meant to conceptualize; in the words of [I1], conceptualization
is understood to be “an abstract and simplified version of the world to be rep-
resented: a representation of knowledge based on objects, concepts and entities
existing within the studied area, as well as the relationships existing among them”.
In [I2] the authors have also considered it important to enrich this definition with
the requirements of being formalized so that a machine can process it, and be-
ing shared, where the acquired knowledge is the consensus of a community of ex-
perts.

Towards a Formalization of KUALI-BEH an ESSENCE Extension 115
Using ontologies brings the following benefits:

1. they can be checked for inconsistencies;

2. reasoning can help to detect derived relationships or implicit class member-
ships;
3. errors can be removed, thus improving the quality of a knowledge base;

4. ontologies can be imported and shared [5].

Implementation of ontologies in Software Engineering in order to understand
a specific field of knowledge is quite broad. For example, engineering of the on-
tology for the Software Engineering Body of Knowledge [13], software development
methodologies and endeavours [I4], software maintenance ontology [I5], software
measurement [I6], an ontological approach to the SQL:2003 [I7].

As we mentioned before, ontologies represent knowledge items in the form of con-
cepts, relationships and attributes, which must be expressed as statements. There
are different formats and languages to represent statements, e.g. Resource Descrip-
tion Framework (RDF) [I8] or Web Ontology Language (OWL) [19].

RDF is a general-purpose language for representing and referencing information
on the Web, and is intended for situations in which this information needs to be
processed by applications rather than be presented to people directly [5]. RDF
represents simple statements as a graph of resources, their properties and values.
Based on [5] an RDF statement is composed of three elements:

1. Subject that is someone or something considered as a resource, it may be any
person or item represented by a Uniform Resource Identifier (URI);

2. Predicate that indicates the subject’s relation to another concept or the subject’s
activity; and

3. Object that defines what the subject is related to or what the subject is doing.

As for OWL, it is a markup language built on RDF and is used to publish and
share ontologies on the web [5].

The usage of standardized languages like RDF and OWL helps to define and
share ontologies. However, an important part of ontologies is the possibility of
generating new knowledge, which is called reasoning. A tool that supports applying
logic, querying and reasoning with ontologies is called a reasoner. Examples of
reasoners are RACER[] Hermi TP FaCT++f]

It is important to mention that most of the tools that support management
of ontologies comprise more than one module, one of which is a reasoner. For the
purposes of this formalization HermiT was chosen as a reasoner.

! http://www.ifis.uni-luebeck.de/~moeller/racer/
2 http://hermit-reasoner.com/
3 http://owl.man.ac.uk/factplusplus/

http://www.ifis.uni-luebeck.de/~moeller/racer/
http://hermit-reasoner.com/
http://owl.man.ac.uk/factplusplus/

116 M. Morales-Trujillo, H. Oktaba, F. Hernandez-Quiroz, B. Escalante-Ramirez
2.4 Situational Method Engineering

SME focuses on configuration of system development methods tuned to the situation
of a project at hand [20]. SME aims to support software engineering by providing
means for appropriate method engineering. That includes all aspects of creating,
using and adapting a software development method based on local conditions, it is
focused on formalising the use of methods for systems development [21]. Any coher-
ent product, activity, or tool being part of an existing generic or situational method
is a method fragment [20]. In other words, method fragments are building blocks of
a situational method. It is important to mention that, in SME, a formalized method
is usually an ideal type created as an abstraction of existing ‘good practices’ [22].

According to [23], SME contributes to reach the requirements of flexibility, ex-
perience accumulation, integration and communication, and quality. By flexibility
it is assumed that the method to be used in a certain development project is situ-
ational, that is, completely tuned to the project situation at hand. The controlled
adaptability of the method allows for the addition and accumulation of the project
experience. All methods are based on one common repository, in which the building
blocks of methods are also stored; this contributes to integration and communica-
tion. The fact that flexibility should be controlled guarantees that the constructed
situational method meets the same quality requirements as standard methods.

The relevance of these requirements is present in the current research; in a recent
study [21] discusses issues like tailoring a constructed method in order to apply it to
a particular context (see flexibility), comparing chunks, fragments and components,
and creating a methodology from them. Besides, the author addresses such questions
as how to consider methods as action knowledge (see experience accumulation), and
how to assess the quality of the method parts, the constructed method and its
effectiveness in practice (see quality).

An initial formalization of method fragments is developed by [23] and organized
in four groups: Sets, Predicates, Functions and Rules. This particular approach was
used to formalize KUALI-BEH.

2.5 Description Logics

DL [24] is a family of knowledge representation (KR) formalisms that represents
the knowledge of an application domain [25]. It is a popular formalism for ontolo-
gies and is regarded as the foundation of some ontology languages due to the fact
that ontologies contain knowledge about a domain in a precise and unambiguous
manner [I].

DL has been shown as common language for ontologies appearing in a Software
Engineering process that needs support from Knowledge Engineering and is the
natural successor in terms of evolution of UML [26]. The basic DL family is the
AL-languages [27], and it follows the syntax rule of:

C,D—>A|T|L|-~A|CND|VRC|3RT.

Towards a Formalization of KUALI-BEH an ESSENCE Extension 117

It is possible to create statements and build a knowledge base using this lan-
guage. A knowledge base in DL comprises two areas: the Terminological Knowledge
(TBox) and the Assertional Knowledge (ABox).

The TBox is a collection of concepts and roles. Concepts represent the entities
of a “universe”, while Roles denote the relations (properties or associations) be-
tween these concepts. In other words, the TBox introduces vocabulary of a specific
domain. The basic form of a declaration in a TBox is a concept definition, that
is, the definition of a new concept in terms of other previously defined concepts.
For example, in the context of KUALI-BEH we can define a Practitioner as a Per-
son who is also a Software Engineer, so in DL this concept acquires the following
representation:

Practitioner = Person M SoftwareEngineer.

On the other hand, the ABox contains assertions about named individuals in
terms of this vocabulary, that is, it contains extensional knowledge about the domain
of interest. For example:

Person(“Miguel”) M SoftwareEngineer.

It states that the individual “Miguel” is a Person and also a Software Engi-
neer. Given the above example of a Thox, we obtain the assertion that Miguel is
a Practitioner, which now belongs to the ABox.

There are some restrictions when working with DL and according to [25] the
most important are that:

1. only one definition for a concept name is allowed, and

2. definitions are acyclic in the sense that concepts are neither defined in terms of
themselves nor in terms of other concepts that indirectly refer to them.

At this point we can observe that Person and Software Engineer are atomic
concepts, but DL offers the possibility of building complex descriptions inductively
using concept constructors [25]. By adding more constructors to AL we obtain more
expressive languages. Table [[shows the spectrum of AL families.

Family Added Constructor Expression
u Union cubD
& Full existential quantification dR.C
N At most and at least restrictions <n R, >n R
C Negation -C
O One of al,...,0ay
T Inverse relation PQ,R—R™
Q Qualified number restriction <nR.C,>nR.C
R Complex role inclusion PoQCR

Table 1. DL family of languages, adapted from [26]

118 M. Morales-Trujillo, H. Oktaba, F. Hernandez-Quiroz, B. Escalante-Ramirez

Due to the fact that DL belongs to a KR formalism and to the assumption that
a KR system always answers user’s queries in a reasonable time, the reasoning and
decision procedures of DL are its strength [25]. Besides, a knowledge representation
system based on DL and derived from a KR formalism assures four main elements:
the TBox and the ABox, together with a reasoner (Inference System) and a user
interface (Interface), see Figure

Observations Protégé

Knowledge Base

—» Answers

Information to
the outside world

Information from
the outside world TBox

>

.
o
-
o
©

ABox

=
g
i
[l
o
]
g

—» Actions

Queries

Figure 3. Architecture of a system based on DL, adapted from [I] and [2]

3 KUALI-BEH FORMALIZATION

This section presents the KUALI-BEH formalization, which is divided into three
parts: the ontology of common concepts; the representation of method proper-
ties and adaptation operations using SME; and the representation of the ontology
through DL.

3.1 KUALI-BEH Language

KUALI-BEH language is an initial approach to share a common representation of
knowledge as a set of concepts, attributes and relationships of a domain in the form
of ontology, abbreviated as KB-O. This ontology offers method engineers the means
how to describe, analyze and reason about software projects and information related
to them.

Due to its simplicity and the fact that it was created specifically for Software
Engineering, Representation Formalism for Software Engineering Ontologies (REF-
SENO) [28] was chosen to define the KB-O ontology. REFSENO provides constructs
to define concepts with their attributes and relationships between them. The con-
struction of REFSENO ontologies is based on three tables that use text and, op-
tionally, diagrams and contain a glossary of concepts, attributes and relationships,
respectively. REFSENO allows definition of cardinalities for the relationships and
value ranges for the attributes.

The specification of an ontology should contain the modeled domain, the purpose
of the ontology, the scope, and administrative information like the authors and
knowledge sources [28]. Tabledisplays the KB-O requirements specification. Below

Towards a Formalization of KUALI-BEH an ESSENCE Extension 119

is the KB-O definition based on the general background and the KB-O requirements
specification mentioned above.

Domain Software Projects
Last modified date January 14, 2016 (updated)
Conceptualized by KUALI-KAANS Research Group
Purpose To describe the common concepts involved
in software projects and their relationships
Level of formality Semi-formal (UML Diagrams, text
and REFSENO tables)

Table 2. KB-O requirements specification

3.1.1 Definition of KB-O

After establishing the KB-O requirements specification, we carried on with the de-
velopment of the ontology itself, using the suggested by REFSENO process model
and a Unified Modeling Language (UML) [29] Class diagram. Note that for the pur-
pose of this paper, a reduced version of REFSENO is presented in order to maintain
it readable and easy to assimilate.

The resulting ontology consists of a graphical representation, a UML class di-
agram, and a textual semi-formal representation of knowledge using REFSENO.
Figure [2 shows the corresponding UML class diagram.

3.1.2 Concepts Glossary

The concepts glossary lists alphabetically all the concepts of the ontology. One
row of the concepts glossary corresponds to one concept. The columns are labeled
Name, Definition and Example, denoting the respective components of the concept
definition. REFSENO requires an extra column named References; however, in this
case it was omitted and, instead, a reference list with all the sources considered to
create the respective concept definition is reported in [6].

Table |3 displays a fragment of the glossary from the KUALI-BEH ontologyEl,
showing the specific concepts used in this paper in order to illustrate the proposed
formalization. The full version can be consulted in [6].

3.1.3 Relationships

Relationships model the way in which a particular software engineering entity is
related to other software engineering entities and are labeled as follows: Name, Con-

4 This definitions were created in the context of ESSENCE standardization process.
ISO/IEC 24744:2007 (now 2014) was not considered because of important differences be-
tween both efforts, for example in the clabject and powertype concepts. As future work
we consider to make a comparison between the concepts of both standards.

120 M. Morales-Trujillo, H. Oktaba, F. Hernandez-Quiroz, B. Escalante-Ramirez
Name Definition Example
Method A method is a composition of a coherent, Software

consistent and sufficient set of practices, with Implementation
a specific purpose that fulfills the stakeholder
needs under specific conditions.

MPI The methods and practices infrastructure (MPI) Organizational
is a set of methods and practices learned by the Base
organization members by experience, abstraction of Knowledge
or apprehension. This base of knowledge is
continuously expanded and modified by the
practitioners.

Practice A practice is work guidance, with a specific Software
objective, that advises how to produce a result Requirements
originated from an input. This guide provides Analysis
a systematic and repeatable set of activities
focused on the achievement of the practice
objective and result.

Practitioner A practitioner is a professional in Software Miguel

Engineering that is actively engaged in the
discipline. The practitioner should have the
ability to make a judgment based on his or her
experience and knowledge.

Table 3. KB-O concepts glossary

cepts (cardinality) and Description. The relationships of this ontology are equivalent
to the non-terminal concept attributes defined in REFSENO. Table [shows a subset
of the 29 relationships of KB-O.

Name

Concepts (Cardinality)

Description

Consumes

Practice (*) — Input (*)

A practice consumes
an input.

Is assigned to

Work Team (*) — Software
Project (*)

A work team is assigned
to a software project.

Is composed of

Method (*) — Practice (*)

A method is composed
of practices.

Is formed of

Work Team (*) —
Practitioners (*)

A work team is formed
of practitioners.

Produces

Practice (*) — Result (*)

A practice produces
a result.

Table 4. KB-O relationships

Towards a Formalization of KUALI-BEH an ESSENCE Extension 121

3.1.4 Attributes

An attribute is represented using the concept attribute table, which is concept-
specific and contains one row for every attribute. The columns are labeled as fol-
lows: Name, Description, Mandatory and Type. The attributes of this ontology are
equivalent to the terminal concept attributes defined in REFSENO. Table [f] presents
the attributes of KB-O.

Attribute Description Mandatory Type

(of Concept)

Objective (Practice) Description of the goal that Yes Text
a practice pursues.

Purpose (Method) Description of the goal that Yes Text
a method pursues.

Status (Work Description of the actual state No Text

Product) or situation of a work product.

Table 5. KB-O attributes

3.2 KUALI-BEH Algebra

Based on the ideas outlined in [20] and [23], we defined KUALI-BEH algebra (KB-A),
which is a set of axioms, predicates, functions and operations to represent the
KUALI-BEH method properties and operations. KB-A is defined in the next sub-
sections.

3.2.1 KB-A Axioms and Definitions

The methods and practices infrastructure (MPI) contains all the elements that are
built using the common concepts. Therefore, it is the first axiom of KB-A.

Axiom 1. Let MPZ be all the things that can be created using KUALI-BEH.
MPI={MaePasTeWaC}

where

M = {m | mis a method},

P = {p | p is a practice},

J = {j | jis a software project},
W = {w | w is a work product},

C = {c| cis a condition}.
Axiom 2. W and C are disjoint sets.

WwWnce =0.

122 M. Morales-Trujillo, H. Oktaba, F. Hernandez-Quiroz, B. Escalante-Ramirez

Definition 1. Let py,...,p, be practices, a method m composed of this set of
practices can be expressed as m = {p1,...,pn}

Definition 2. The definition of any element of the KUALI-BEH static view is a con-

[Pk

ceptual definition and is denoted by the letter “c” as super-index. For example,
a conceptual definition of a work product w is denoted as w®, which is related to its
characteristics.

Definition 3. The definition of any element of the KUALI-BEH operational view
is a technical definition and is denoted by the letter “t” as super-index. For example,
a technical definition of a work product w is denoted as w’, which is its instance.

Definition 4. The practitioners are the only individuals who can determine whe-
ther:

1. similarity between inputs and results is held;
2. the method purpose is fully achieved; and

3. the objective of a practice supports a method purpose.
This ability corresponds to the practitioner’s judgment.
3.2.2 KB-A Functions and Predicates

In this section we discuss the functions defined in the KB-A.
The objective of a practice p is obtained through the function objective applied
to the conceptual definition of the practice.

objective : P — Text.

In a similar way, the purpose of a method m is obtained through the function
purpose applied to the conceptual definition of the method.

purpose : M — Text.

In the same way, the status of a work product w is obtained through the function
status applied to the technical definition of the work product.

status : W — Text.

In order to decide whether the purpose of a method is fully achieved, the function
fully_achieved is defined.

fully_achieved : M — B.

The function similarity is defined in order to decide whether a work product
or condition fits the characteristics required by an input or result. Comparing the

Towards a Formalization of KUALI-BEH an ESSENCE Extension 123

technical definition against the conceptual definition of a work product or condition,
practitioners can decide on their similarity.

similarity : WU C) x W'UC') — B.

Likewise, the functions input and result are defined for methods and practices.
These functions receive a practice or a method and return a set of work products
and/or conditions.

input : MUP — WUC,
result : MUP — WUC.

The KUALI-BEH predicates are expressed in the following way:
e produces(p;, r) denotes that a practice p; produces a result r:

produces : P x (WUC),

e consumes(p;,) denotes that a practice p; consumes an input ¢:

consumes : P x (WUC),

e precedes(p;, p;) denotes that a practice p; precedes a practice p;:

precedes : P x P,

o follows(p;, px) denotes that a practice p; follows a practice py:

follows : P x P,

e supports(p, m) denotes that the objective of a practice p supports the purpose
of a method m:

supports : P¢ x M°.

3.2.3 KB-A Method Properties

In order to represent method properties, as stated in Definition 1, let us define
a method m € M as a set:

m={p|p €P}.

The coherency, consistency and sufficiency properties of a method are defined
below.

124 M. Morales-Trujillo, H. Oktaba, F. Hernandez-Quiroz, B. Escalante-Ramirez

Coherency. Let us define a function named coherency, which receives a method
and returns true if it is coherent or false if it is not.

coherency : M — B.
This function coherency(m) is evaluated as follows:

true if for all practices p; of a method m, the objective

coherency(m) = of p; supports the purpose of m,

false otherwise.
In other words we have:
if Vp € m, supports(objective(p®), purpose(m®)) = true.
Consistency. Let us define the function consistency, which receives a method and
returns true if it is consistent or false if it is not.
consistency : M — B.
This function consistency(m) is evaluated as follows:

true if all the practice inputs are produced and all
] the practice results are consumed, except for
consistency (m) = the method input and result;

false otherwise.
In other words we have:
if Vp1 € m Ipe, p3 € m(produces(p, r) — consumes(ps, r) V result(m®) = r)
A (consumes(ps, i) — produces(ps, i) V input(m®) = 7).
Sufficiency. Let us define the function sufficiency, which receives a method and
returns true if it is sufficient or false if it is not.
sufficiency : M — B.
This function sufficiency(m) is evaluated as follows:

true if the method m is coherent, consistent and its

sufficiency(m) = purpose is fully achieved, (3)

false otherwise.
In other words we have:

if coherency(m) A consistency(m) A fully_achieved(m) = true.

Towards a Formalization of KUALI-BEH an ESSENCE Extension 125
3.2.4 KB-A Adaptation Operations

In order to express the operations of adaptation, let us define a practice P as a triple
formed by an Input (1), an Objective (O) and a Result (R)

P=(I,0,R).

The operations of substitution, concatenation, combination and splitting are
defined below.

Substitution. The substitution of practices consists in replacing a practice by
another equivalent practice.

Let P, = (I1,01, Ry) and P, = (I3, 04, Ry) be practices.
Py can be substituted by Ps if and only if
Pl = Pg.

Notice that similarity is recognized and dictated by the practitioner’s judgment.
After applying the adaptation operation the original properties of a method are
preserved, since the new practice holds an objective, input and result similar to the
substituted practice.

Concatenation. If one practice has a result similar to the input of another prac-
tice, both can be integrated into one practice, applying the concatenation operation,
which is defined as follows:

Let P, = (I1,01, Ry) and P, = (I3, 09, Ry) be practices and R; is similar to Io.
A practice P; is a correct concatenation of the practices P, and P, if
Py = (11,01 A O, Ry).

Combination. A combination of practices consists of bringing two different prac-
tices into one and is defined as follows:

Let P, = (I1,04, Ry) and P = (I3, 04, R3) be practices.
P =(I,0,R) is a correct combination of P; and Py if
I is similar to I; U I, and
R is similar to R; U Ry and
O =01 N Os.

Splitting. A splitting of practices consists in the partition of the original practice
into two different practices preserving the original objective and similar inputs and
results. Formally, the splitting operation is defined as follows:

126 M. Morales-Trujillo, H. Oktaba, F. Hernandez-Quiroz, B. Escalante-Ramirez

Let P, = (I1,01, Ry) and P, = (I3, Oq, Ry) be practices.
P, and P, are a correct split of P = (1,0, R) if
I, U I, is similar to I and
R1 U Ry is similar to R and
O, N0y = 0.

Strictly following these rules while applying the adaptation operations to prac-
tices assures the preservation of the original properties of coherency, consistency and
sufficiency of a method.

3.3 KUALI-BEH Knowledge

In this section we discuss KB-K, short for the knowledge representation of KUALI-
BEH using DL and based on KB-O. To make a clear picture of the process of creating
KB-K, we will provide some examples. Let us consider the concept practitioner
defined in Table [B] of KB-O. This concept can be defined using sets as:

{z | Practitioner(z)}.

To express roles we proceed in a similar way. Let us consider the relationship
isFormedOf presented in Table [d This relationship expresses that a work team is
formed of practitioners, and it can be denoted as follows:

{(z,y) | isFormedOf(z,y)}.

Now let us transform these sets into First Order Logic (FOL) predicates, which
is a common transformation process of semantic networks and ontologies. Let us
assume that every work team in our organization must be formed of practitioners.
This assertion can be rewritten in FOL as:

V. WorkTeam(z) — Jy.isFormedOf(z, y) A Practitioner(y).
Then, this predicate can be rewritten again, but now in DL:
WorkTeam C VisFormedOf.Practitioner.

In a similar way, the inverse relationship of isFormedOf can be represented as
the relationship belongsTo. This expresses that each practitioner in the organization
belongs to a work team, and can be represented as follows:

Practitioner = JbelongsTo.WorkTeam.

The creation process of KB-K used two DL association types:

Towards a Formalization of KUALI-BEH an ESSENCE Extension 127

has-part: This type can be used to denote aggregation and composition in
UML [30]. Although these associations are completely different in UML, since
they denote strong and weak relationships, in DL has-part can represent both
of them.

is-a: This type is equivalent to the generalization in Entity-Relationship model or
to inheritance in Object Oriented paradigm. It is a general association that can
be interpreted as is-a-kind-of and is-an-instance-of.

For example, we identified in KUALI-BEH that an Activity consists of four
elements: Knowledge and Skills, Tasks, Tools and Measures (see Figure . So,
expressing in DL that an Activity has-parts we have:

Activity C (Frequires. KnowledgeAndSkills) A
((FisDecomposedIn.Task) V
(FisCarriedOutUsing.Tool) V
(FisMeasuredIn.Measure) V true).

Notice that only Knowledge and Skills are mandatory, while Task, Tool and
Measure are not.

In KUALI-BEH the Stakeholder Needs is a specialization of a WorkProduct.
Then, we can say that StakeholderNeeds is-a WorkProduct, which is written in DL
as:

StakeholderNeeds ©& WorkProduct.

This association is used for the three instances defined in KB-O: Stakeholder
Needs, Project Conditions and Software Product.

To represent an attribute, for example, we know that a WorkProduct has an
attribute named status and its datatype is String, so we have:

{z | WorkProduct(z) A (3s.Status(z, s) A String(s))}.

In DL the datatype equivalent to String is Text, so we can represent a Work
Product in DL as follows:

WorkProduct C (=1 (status.Text)).

Let us examine a more general example: if we have a work product named
Database Model and its status is Draft, in DL we have:

WorkProduct(“DatabaseModel”) A
Status(“DatabaseModel”, “Draft”) A Text(“Draft”).

3.3.1 Definition of KB-K

After having transformed KB-O into DL expressions, we generated KB-K, which is
defined as follows:

128 M. Morales-Trujillo, H. Oktaba, F. Hernandez-Quiroz, B. Escalante-Ramirez

Method:

C (=1 (mpi.MPI)) A
(FisComposedOf. Practice) A
(FisEnactedIn.SoftwareProject) A
(=1 (purpose.Text)).

MPI:

C (I stores.SoftwareProject) V
(I stores.Method) V
(I stores.Practice) vV
(I stores.WorkProduct) Vv
(I stores.Condition).

Practice:

C (3 method.Method) A
(3 consumes.Input) A
(3 produces.Result) A
(FisVerifiedUsing. VerificationCriteria) A
(Fhas.Activity) A
(=1 (objective. Text)).

Practitioner:

C (dworkTeam.WorkTeam) A
(3 possesses. Knowledge AndSkills).

WorkTeam:

C (FisFormedOf.Practitioner) A
(FisAssignedTo.SoftwareProject).

Due to space restrictions, only 4 definitions are presented. The full KB-K is
available online on WebProtege sitd’}

5 http://webprotege.stanford.edu/#Edit:projectId=d846a165-258c-4ce9-b703-
44229dd690c8

http://webprotege.stanford.edu/#Edit:projectId=d846a165-258c-4ce9-b703-44a29dd690c8
http://webprotege.stanford.edu/#Edit:projectId=d846a165-258c-4ce9-b703-44a29dd690c8

Towards a Formalization of KUALI-BEH an ESSENCE Extension 129

4 VALIDATION

This section presents a KB-K proof of concept and exemplifies the KB-K usage
through a method, which was expressed in a real organization during the validation
stage of KUALI-BEH. At the end, we present a comparison with related work.

4.1 Proof of Concept

As it has been mentioned before, DL systems not only store terminologies and
assertions, but also offer services to reason about them. Typical reasoning tasks are
to determine whether a description is satisfiable (i.e., non-contradictory) [25]. In
order to show the usage of KB-K, we offer a proof of concept through an example
in the next subsections.

4.1.1 Source of the Example

To prove the usefulness of the proposed formalization, we need an example of an ex-
pressed way of working that would contain a description of a software project activ-
ity. In this case, the example was taken from Annex C: Case Studies and Examples
of [8] and is a fragment of a typical information system delivery process done in
Fujitsu DMR Macroscope modeled in SPEM:

The Information System Delivery Process is developed during the Preliminary
Analysis phase and consists of only one iteration that is the First Joint Require-
ments Planning Workshop. In this iteration the Define Owner Requirements task
is developed by the System Architect role in three steps: Define objectives based on
stated needs, Define the key issues and Determine the relevant enterprise princi-
ples. Besides, one work product is required to start the task and two new items are
produced, the Enterprise Architecture, Assessment of Current System and Owner
Requirements, respectively.

The specific SPEM elements appear in bold fonts. Acronyms of each element
of the process are presented in the parenthesis, this with the purpose of facilitating
process representations in KB-K.

Activity {kind: Phase}: Preliminary Analysis (PA)
Process: Information System Delivery Process (ISDP)
Activity {kind: Iteration}: First Joint Requirements Planning
Workshop (FJRPW)
TaskUse: Define Owner Requirements (DOR)
RoleUse: System Architect (SA)
WorkDefinitionParameter {kind: in}
WorkProductUse: Enterprise Architecture (EA)
WorkDefinitionParameter {kind: out}
WorkProductUse: Assessment of Current System (ACS)
{state: initial draft}

130 M. Morales-Trujillo, H. Oktaba, F. Hernandez-Quiroz, B. Escalante-Ramirez

WorkProductUse: Owner Requirements (OR)
{state: initial draft}
Steps
Step: Define objectives based on stated needs (DOBOSN)
Step: Define the key issues (DTKI)
Step: Determine the relevant enterprise principles (DREP)

At this point we have an expressed way of working, but how well is it defined?
It was implied in [I] that the process was not fully completed and five inconsisten-
cies related to two major classes of problems were pointed out. Firstly, Phase and
Iteration have no performer. Since both elements are a specialization of an Activ-
ity, they must have at least one performer each. Secondly, the WorkProductUse’s
kinds are not clear, because they are defined through the WorkDefinitionParame-
ter. And it is not possible to know precisely if a specific work product is input or
output.

In order to prove that KUALI-BEH solves these inconsistencies, the Fujitsu way
of working was modeled using the formalization presented in this paper.

4.1.2 Example of KB-K Usage

To provide a comparison between SPEM and KUALI-BEH, a partial mapping be-
tween the KUALI-BEH concepts and the SPEM elements was done. Table [f] shows
a subset of the mapping and contains only the concepts required for the purpose of
the example.

SPEM KUALI-BEH
Process Method

Activity Practice

TaskUse Activity

Step Task

RoleUse Knowledge AndSkills

WorkProductUse WorkProduct

Table 6. Mapping between KUALI-BEH and SPEM concepts

This research followed the idea of [31I] who propose the use of ontologies for
the evaluation of metamodels. In their study, they create a reference ontology, i.e.,
an ontology of method in general against which they can then compare any given
‘branded’ method or SME approach [21].

Towards a Formalization of KUALI-BEH an ESSENCE Extension 131

Based on the mapping (Table @, we obtain the following expressions, which are
equivalent to the process fragment presented in the previous subsection:

Method(“ISDP”) A isComposedOf(“ISDP”, “FJRPW”) A
Practice(“FJRPW”) A has(“FJRPW”, “DOR”) A
Activity(“DOR”) A requires(“DOR”, “SA”) A
KnowledgeAndSkills(“SA”) A isDecomposedIn(“DOR”, “DOBOSN”) A
isDecomposedIn(“DOR”, “DTKI”) A isDecomposedIn(“DOR”, “DREP”) A
Task(“DOBOSN”) A Task(“DTKI”) A Task(“DREP”) A
input(“DOR”, “EA”) A WorkProduct(“EA”) A
Status(“EA”, “initial draft”) A Text(“initial draft”) A
result(“DOR”, “ACS”) A WorkProduct(“ACS”) A
Status(“ACS”, “initial draft”) A Text(“initial draft”) A
result(“DOR”, “OR”) A WorkProduct(“OR”).

It is worth mentioning that using Protégé (version 5.0.0) and HermiT (ver-
sion 1.3.8.413) we demonstrated the satisfiability of this example. Figure |7_1| shows
the resulting KB-K graph generated using Protégé.

[0 poree] ; N
Practice l_ . S FJEPW
|
y
oo

~ (ars

A . P

_ -
-
KnowledgeAndSki A
=

-
| # poBosN

Figure 4. KB-K inferred model

It can be noticed that DOR has a performer (SA) and each of the work products
associated with DOR can be differentiated as inputs (blue arrow) or results (pink
aITows).

132 M. Morales-Trujillo, H. Oktaba, F. Hernandez-Quiroz, B. Escalante-Ramirez
4.1.3 Results of the Example

It was pointed out by Wang [I] that direct reasoning about models built using
metamodels like SPEM is difficult and it is hard to keep these models consistent,
thus making SPEM to be not the best choice when analyzing models. Nevertheless,
we found that KUALI-BEH is capable of representing ways of working through
a clear model that preserves its structure [32].

Our example has demonstrated how the SPEM inconsistencies found by [1] can
be corrected. These inconsistencies are solved by KUALI-BEH because

1. KUALI-BEH has a well-defined hierarchical approach, and
2. KUALI-BEH does not have reflexive associations.

Since KUALI-BEH’s structure is a tree, the dependencies of its elements can be
hierarchically stated. As a consequence, the practitioners’ ways of working are mod-
eled as a fixed structure avoiding ambiguities and allowing a uniform interpretation
of data.

Importantly, KUALI-BEH has no cyclical dependencies and no element can be
defined recursively, which is a major drawback in SPEM. For example, in the above
described Fujitsu process, an Activity can represent either a process or an iteration
using the stereotype kind; however, the elements that form an activity remain the
same regardless of the fact that different kinds of objects are modeled. In fact, this
constitutes the main cause of inconsistencies found in [I].

Last but not least, the coherency, consistency and sufficiency properties, defined
in KUALI-BEH, can be evaluated and are meant to decide if the expressed way of
working is well or ill-formed, thus giving practitioners an initial means of verifying
and improving their own ways of working.

4.2 Examples Obtained from Case Studies

During the validation of KUALI-BEH, specifically during case studies, we iden-
tified situations where the formalization was used in order to improve practices
and methods created by participants. It is important to mention that the val-
idation focus was not the formalization per se, however, the case study partici-
pants naturally used properties and operations to improve their practices and meth-
ods.

The first appearance of a formalization element occurred when practitioners of
case study 1, reported in [32], evaluated the consistency of its method, called IB.
In particular, one practice produced two results that consequently became input
for another practice. The problem was that the practice did not consume one of
the results. This behavior occurred because the practices were executed by different
practitioners. After having expressed explicitly the whole method, both practitioners
realized that there exists a practice which result (a subset of it) is not similar to
the input of the rest of the method’s practices. In other words, the practice was

Towards a Formalization of KUALI-BEH an ESSENCE Extension 133

producing a result that nobody else consumed:
Ip1 € IB(produces(py,) but fip; € 1B consumes(p;, 7).

Therefore:
consistency(IB) = false.

Another instance of the formalization occurred during the case study 3. At
a particular moment of method authoring, the participants decided to adapt the
defined method using adaptation operations. On the one hand, they needed to
split a practice in order to make it easier to execute and distribute the work. On
the other hand, they wanted to merge four practices having similar objectives and
create a more generic practice that could be applied in different contexts. When
this was done empirically, we evaluated the rules defined by the adaptation oper-
ations against the method properties confirming that the latter were totally pre-
served.

4.3 Comparison with Related Work

Method engineering approaches offer guidance to express methods and methods frag-
ments with the purpose of formalizing knowledge and tailoring methods to particular
situations. Aharoni [33] identifies four approaches: the OPEN Process Framework
(OPF) [34], the assembly-based SME approach [35], the scenario-based approach [36]
and the application-based approach [37].

These fragment representation approaches were evaluated by Aharoni in terms
of expressiveness, consistency, formalism and comprehensibility. He reports the lack
of comprehensibility of the obtained representations where only 1 of 4 approached
supports assembly operations and formalisms. Besides, all the four approaches rely
on visual semi-formal languages. There is a special need to provide a formal repre-
sentation and to define adequate operations to manipulate methods.

On the other hand, these approaches require the means to represent methods
or processes, i.e. a process modeling language (PML). For example, an extensively
used PML in software engineering is UML. In [38] several other PMLs, such as Petri
nets, Business Process Model and Notation (BPMN) [39] and SPEM are mentioned.

Analyzing the variety of alternatives to modelling methodologies and hence many
aspects of SME, it is generally agreed that there are at least three core elements: pro-
ducer, work unit and work product [2I]. SPEM and ISO/IEC 24744 [40)] follow this
line and, together with BPMN and UML, are the most representative alternatives
for modeling processes.

However, some drawbacks can be identified. Firstly, SPEM, which is also a OMG
standard specially created for Software Engineering methods, is perceived as very
complex and hard to tackle making it difficult to learn [4I]. Second, despite for-
malism and structure advantages of the ISO/IEC 24744, the introduced concepts
are not only unfamiliar to practitioners, but also are distanced from their con-
text [42]. Finally, as reported by [43], the important drawbacks of UML, BPMN

134 M. Morales-Trujillo, H. Oktaba, F. Hernandez-Quiroz, B. Escalante-Ramirez

and other PMLs remain deficiency of evolution, evaluation and human decision sup-
port.

KUALI-BEH formalization supports a comprehensive representation of know-
ledge and permits to reason about created methods. On the one hand, it is based
on a simpler set of concepts (KB-O), allows a formal representation and manip-
ulation of methods (KB-A) and provides a method rationale mechanism (KB-K).
On the other hand, the KUALI-BEH concepts are compatible with alternatives
used in the software engineering community, e.g. SPEM, BPMN or UML. There-
fore, any process that is modelled with these alternatives can be formalized through
KUALI-BEH taking advantage of its simplicity, common language and method rea-
soning.

5 INTENDED USAGE

According to [44], the main objectives of formalizations are to improve the commu-
nication, computational inference and reuse of knowledge. As a whole, the formal-
ization of KUALI-BEH (KB-K, KB-O and KB-A) is a starting point to motivate and
improve these aspects, giving practitioners and organizations a viable alternative to
structure their wide tacit knowledge.

KB-O offers a unified vocabulary (terms and definitions) and improves commu-
nication among humans, consequently discussions and agreements over a specific
domain are possible.

Applying KB-A | its rules and properties, we can manipulate knowledge in a uni-
form and standardized manner and achieve communication between humans and
computers.

With KB-K, comprising a knowledge base and inference rules, the communica-
tion between software tools will foster the exchange and analysis of data. Besides,
providing a structure and a management mechanism to the knowledge involved in
software projects, we will be able to make computational inferences. Moreover,
practitioners will have means to evaluate and enrich their knowledge.

It is important to keep in mind that the target audience of KUALI-BEH for-
malization is process engineers; this formalization aims at providing them with the
means of description, analysis and reasoning about software projects.

According to [45], an advantage for knowledge representation is the coupling
between theory and practice. In fact, KUALI-BEH was born as a proposal to
bridge the gap between theory and practice by structuring and reasoning about
practitioners’ knowledge and enriching the Software Engineering body of know-
ledge. It has also been validated by practitioners directly involved in software
developer organizations with solid results [32], which has encouraged its formal-
ization.

Finally, the main intended usage of the formalization is to establish the basis for
creating a Computer-Aided Method Engineering (CAME) tool. There is a necessity
for creating a tool that would fulfill the needs defined by [23] or [46], and which were

Towards a Formalization of KUALI-BEH an ESSENCE Extension 135

never completely achieved, based on the words of [47]: “Unfortunately none of these
tools can express the process part of a method and support the enactment of the
method process mode”. We hope that KB-K, -A, and -O will become the basis of
a tool that really helps practitioners to carry out the processes of method authoring
and enactment.

The tool, named KB-Tool, is currently being developed. We already released
two modules: the first module expresses and shares ways of working using KB-O; the
second module uses KB-A to determine the accomplishment of method properties.
The module that integrates KB-K with the reasoning process is still a prototype
and is under development. The idea is to go from manual to systematic (semi-
automatic) and then to automatic approaches [9]. As it was mentioned before, the
proof of concept used the functionalities provided by Protégé.

6 CONCLUSIONS AND FUTURE WORK

KUALI-BEH formalization preserves the foundations of SME. On the one hand it
defines the common concepts required to express the practitioners’ ways of working
by taking advantage of KUALI-BEH ontology. On the other hand, it permits the
adaptation of its elements, practices and methods, in a controlled manner using the
KUALI-BEH adaptation operations and properties defined as a set of axioms, def-
initions, predicates and functions. Following these rules it is possible to customize,
modify and assemble complex elements from other elements.

Moreover, the hierarchical organization of KUALI-BEH common concepts allows
for the consistency on the granularity level of its elements, no matter if it is analyzed
separately or as a part of a whole.

Finally, through DL, a knowledge representation formalism, which is able to
capture virtually almost all class-based representation formalisms used in Artificial
Intelligence, Software Engineering, and Databases [45], we can improve communica-
tion among humans and machines, allow for computational inference and promote
the reuse of knowledge.

We can conclude that with KUALI-BEH formalization it is possible to build
a knowledge base with the following characteristics:

it has the necessary knowledge (completeness);
the knowledge is reliable to the real world (correctness);

the knowledge is not self-contradictory (consistency); and

= W =

the system has efficient algorithms to perform inferences (competence), which,
according to [2], are the stringent requirements for a knowledge base.

Besides, as stated in [48], the practical usefulness of a formal semantics for a language
is that it provides a rigorous standard that can be used to judge the correctness of
an implementation, in our case the correct forming of ways of working.

136 M. Morales-Trujillo, H. Oktaba, F. Hernandez-Quiroz, B. Escalante-Ramirez

This work is at the initial stage, and the DL representation of KUALI-BEH is the
first step to provide method engineers with an alternative to reason directly about
the actual knowledge, which is expressed by practitioners themselves, so several lines
arise as future work. In the first place our research group will work on:

1. enhancing the robustness and completeness of KB-A;

2. proving the usefulness and applicability of KB-K applying it to more real life
cases and ways of working;

3. making the formalization available to method engineers for feedback and im-
provements; and

4. use existing theory expression methods, like Petri nets or fuzzy logic, to capture
and check inconsistencies of expressed ways of working.

Second, but not less important is to develop and release a fully functional tech-
nological environment, which will motivate more practitioners to use KUALI-BEH
and will result in the spread of the proposal and its formalization.

Acknowledgment

The authors thank Pascual Julian Iranzo, Ph.D. for his expert advice in Description
Logics.

This work has been funded by the Postdoctoral Fellowships Program of the Gen-
eral Directorate of the Academic Staff (DGAPA-UNAM) and the PAPIIT project
IN113013 (DGAPA-UNAM); the Graduate Science and Engineering Computing
(PCIC-UNAM) and CONACYT (Mexico).

REFERENCES

[1] WaNG, S.—JiN, L.—JIN, C.: Represent Software Process Engineering Metamodel
in Description Logic. Proceedings of World Academy of Science, Engineering and
Technology, Vol. 11, 2006, pp. 109-113.

[2] DEvANBU, P. T.—JONES, M. A.: The Use of Description Logics in KBSE Systems:
Experience Report. Proceedings of the 16'" International Conference on Software
Engineering (ICSE’94), Los Alamitos, CA, USA. IEEE Computer Society Press,
1992, pp. 23-35.

[3] EDWARDS, J.: Managing Software Engineers and Their Knowledge. In: Aurum, A.,
Jeffery, R., Wohlin, C., Handzic, M. (Eds.): Managing Software Engineering Know-
ledge. Springer, Berlin, Heidelberg, 2003, pp. 5-27, doi: 10.1007/978-3-662-05129-0_1.

[4] SELFRIDGE, P. G.—HOEBEL, L. J.—WHITE, D. A.: The Sixth Annual Knowledge-
Based Software Engineering Conference (KBSE-91). SIGART Bulletin, Vol. 3, 1992,
No. 1, pp. 33-35, doi: 10.1145/130836.130839.

[5] SCHNEIDER, K.: Experience and Knowledge Management in Software Engineering.
Springer-Verlag, Berlin, Heidelberg, 2009, doi: 10.1007/978-3-540-95880-2.

https://doi.org/10.1007/978-3-662-05129-0_1
https://doi.org/10.1145/130836.130839
https://doi.org/10.1007/978-3-540-95880-2

Towards a Formalization of KUALI-BEH an ESSENCE Extension 137

[6]
(7]
8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

MORALES-TRUJILLO, M.—OKTABA, H.: KUALI-BEH Software Project Common
Concepts. Technical Report, Object Management Group, Needham, MA, USA, 2012.

OMG. ESSENCE - Kernel and Language for Software Engineering Methods. Version
1.0, Formal/2014-11-02, Object Management Group, Needham, MA, USA, 2014.

OMG. Software and Systems Process Engineering Metamodel (SPEM). Version 2.0,
Formal /2008-04-01, Object Management Group, Needham, MA, USA, 2008.

Masaraciu, C.—CHIN, W.-N.—ANDREI, S.—ALAIBA, V.: A Rigorous Methodol-
ogy for Specification and Verification of Business Processes. Formal Aspects of Com-
puting, Vol. 21, 2009, No. 5, pp. 495-510, doi: 10.1007/s00165-009-0106-y.

CALERO, C.—Ru1z, F.—P1aTTINI, M. (Eds.): Ontologies for Software Engineering
and Software Technology. Springer-Verlag, Berlin, Heidelberg, 2006, doi: 10.1007/3-
040-34518-3.

Ruiz, F.—HILERA, J.: Using Ontologies in Software Engineering and Technology.
In: Calero, C., Ruiz, F., Piattini, M. (Eds.): Ontologies for Software Engineering and
Software Technology. Springer, Berlin, Heidelberg, 2006, pp. 62-119.

GOMEZ-PEREZ, A.—FERNANDEZ-L6PEZ, M.—CoORCHO, O.: Ontological Engineer-
ing. Springer-Verlag, London, 2004.

ABRAN, A.—CUADRADO, J.—GARCIiA-BARRIOCANAL, E.—MENDES, O.
SANCHEZ-ALONSO, S.—SICILIA, M.: Engineering the Ontology for the SWEBOK:
Issues and Techniques. In: Calero, C., Ruiz, F., Piattini, M. (Eds.): Ontologies for
Software Engineering and Software Technology. Springer, Berlin, Heidelberg, 2006,
pp- 120-138.

GONzALEZ-PEREZ, C.—HENDERSON-SELLERS, B.: An Ontology for Software De-
velopment Methodologies and Endeavours. In: Calero, C., Ruiz, F., Piattini, M.
(Eds.): Ontologies for Software Engineering and Software Technology. Springer,
Berlin, Heidelberg, 2006, pp. 139-168.

Dias, M.—ANQUETIL, N.—DE OLIVEIRA, K.: Organizing the Knowledge Used in
Software Maintenance. Journal of Universal Computer Science, Vol. 9, 2003, No. 7,
pp- 641-658.

GARrciA, F.—BEgRrroA, M.F.—CALERO, C.—VALLECILLO, A.—Rvuiz, F.
PiaTTINI, M.—GENERO, M.: Towards a Consistent Terminology for Software Mea-
surement. Information and Software Technology, Vol. 48, 2006, No. 8, pp. 631-644.

CALERO, C.—Ru1z, F.—BARONI, A.—BRITO, F.—PI1ATTINI, M.: An Ontological
Approach to Describe the SQL:2003 Object-Relational Features. Computer Standards
and Interfaces, Vol. 28, 2006, No. 6, pp. 695713, doi: [10.1016/j.cs1.2005.09.002.

W3C. Web Ontology Language. Standard, World Wide Web Consortium, Cambridge,
MA, 2012.

W3C. Resource Description Framework. Standard, World Wide Web Consortium,
Cambridge, MA, 2014.

HARMSEN, F.—BRINKKEMPER, S.: Design and Implementation of a Method Base
Management System for a Situational CASE Environment. Proceedings of the Asia
Pacific Software Engineering Conference, 1995, doi: [10.1109/APSEC.1995.496992.

https://doi.org/10.1007/s00165-009-0106-y
https://doi.org/10.1007/3-540-34518-3
https://doi.org/10.1007/3-540-34518-3
https://doi.org/10.1016/j.csi.2005.09.002
https://doi.org/10.1109/APSEC.1995.496992

138

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

M. Morales-Trujillo, H. Oktaba, F. Hernandez-Quiroz, B. Escalante-Ramirez

HENDERSON-SELLERS, B.—RALYTE, J.—AGERFALK, P.-Rossi, M.: Situa-
tional Method Engineering. Springer-Verlag, 2014. ISBN 978-3-642-41466-4, doi:
10.1007/978-3-642-41467-1.

AGERFALK, P.—AHLGREN, K.: Modelling the Rationale of Methods. In: Khosrow-
pour, M. (Ed.): Managing Information Technology Resources in Organizations in
the Next Millennium. Proceedings of the 10" Information Resources Management
Association International Conference. IDEA Group, Hershey, PA, 1999, pp. 184-190.

HARMSEN, F.—BRINKKEMPER, S.—OEI, H.: Situational Method Engineering for
Information System Project Approaches. In: Verrijn Stuart, A. A., Olle, T. W. (Eds.):
Methods and Associated Tools for the Information Systems Life Cycle. Proceedings
of the IFIP WG 8.1 Working Conference, Maastricht, Netherlands, September 1994.
IFIP Transactions A-55, North-Holland, 1994, pp. 169-194. ISBN 0-444-82074-4.

BAADER, F.—CALVANESE, D.—McGUINNESS, D.L.—NARDI, D.—PATEL-
SCHNEIDER, P.F. (Eds.): The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, New York, NY, USA, 2003.

BAADER, F.—NutT, W.: Basic Description Logics. In: Baader, F., Calvanese, D.,
McGuinness, D. L., Nardi, D., Patel-Schneider, P.F. (Eds.): The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge University Press,
2003, pp. 47-100.

KapLaNskI, P.: Description Logic as a Common Software Engineering Artifacts
Language. 15¢ International Conference on Information Technology (IT 2008), IEEE,
2008, pp. 1-4.

SCHMIDT-SCHAUSS, M.—SMOLKA, G.: Attributive Concept Descriptions with Com-
plements. Artificial Intelligence, Vol. 48, 1991, No. 1, pp. 1-26.

TauTz, C.—vON WANGENHEIM, C.: REFSENO: A Representation Formalism for
Software Engineering Ontologies. IESE-Report No. 015.98/E, Fraunhofer Institute
IESE, 1998.

OMG. Unified Modeling Language (UML) Infrastructure. Version 2.5, Formal/15-03-
01, Object Management Group, Needham, MA, USA, 2015.

SATTLER, U.: Description Logics for the Representation of Aggregated Objects. In:
Horn, W. (Ed.): Proceedings of the 14" European Conference on Artificial Intelli-
gence, Berlin, Germany, 2000, pp. 239-243.

IacoveLLl, A.—SOUVEYET, C.: Towards Common Ground in SME: An Ontology
of Method Descriptors. In: Ralyté, J., Mirbel, I., Deneckére, R. (Eds.): Engineer-
ing Methods in the Serviceoriented Context. Proceedings of 4™ IFIP WG8.1 Work-
ing Conference on Method Engineering (ME 2011), Paris, France. Springer, Heidel-
berg, IFIP Advances in Information and Communication Technology, Vol. 351, 2011,
pp- 77-90.

MORALES-TRUJILLO, M.—OKTABA, H.—P1ATTINI, M.: Using Technical-Action-
Research to Validate a Framework for Authoring Software Engineering Methods. 17"
International Conference on Enterprise Information Systems (ICEIS '15), INSTICC,
2015, pp. 15-27, doi: 10.5220/0005338800150027.

AHARONI, A.—REINHARTZ-BERGER, I.: Representation of Method Fragments:
A Comparative Study. In: Ralyté, J., Brinkkemper, S., Henderson-Sellers, B. (Eds.):

https://doi.org/10.1007/978-3-642-41467-1
https://doi.org/10.5220/0005338800150027

Towards a Formalization of KUALI-BEH an ESSENCE Extension 139

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]
[44]

[45]

[46]

Situational Method Engineering: Fundamentals and Experiences. Springer, Boston,
MA, TFIP Advances in Information and Communication Technology, Vol. 244, 2007,
pp- 130-145.

FirRESMITH, D.—HENDERSON-SELLERS, B.—Z0owGHI, D.: Using the OPEN Pro-
cess Framework to Produce a Situation-Specific Requirements Engineering Method.
Software Engineering Institute, 2005.

VAN DE WEERD, [.—BRINKKEMPER, S.—SOUER, J.—VERSENDAAL, J.: A Sit-
uational Implementation Method for Web-Based Content Management System-
Applications: Method Engineering and Validation in Practice. Software Process: Im-
provement and Practice, Vol. 11, 2006, No. 5, pp. 521-538.

ROLLAND, C.—PLIHON, V.—RALYTE, J.: Specifying the Reuse Context of Scenario
Method Chunks. Proceedings of the 10" International Conference on Advanced In-
formation Systems Engineering (CAiSE’98). Springer, Lecture Notes in Computer
Science, Vol. 1413, 1998, pp. 191-218, doi: [10.1007/BFb0054226.

STURM, A.—REINHARTZ-BERGER, I.: Applying the Application-Based Domain
Modeling Approach to UML Structural Views. International Conference on Con-
ceptual Modeling (ER 2004). Lecture Notes in Computer Science, Vol. 3288, 2004,
pp. 766779, doi: 10.1007/978-3-540-30464-7_57.

KELEMEN, Z.D.—KUSTERS, R.J.—TRIENEKENS, J.—BALLA, K.: Selecting

a Process Modeling Language for Process Based Unification of Multiple Standards
and Models. Technical Report TR201304, Budapest, Hungary, 2013.

OMG. Business Process Model and Notation (BPMN). Version 2.0, Formal/2011-01-
03, Object Management Group, Needham, MA, USA, 2011.

ISO/IEC, 24744 Software Engineering — Metamodel for Development Methodologies.
International Organization for Standardization, 2007.

NIKNAFS, A.—AsaDI, M.: Towards a Process Modeling Language for Method
Engineering Support. 2009 WRI World Congress on Computer Science and In-
formation Engineering, 2009, pp. 674-681, doi: [10.1109/CSIE.2009.956, doi:
10.1109/CSIE.2009.956.

MORALES-TRUJILLO, M.—OKTABA, H.—PIATTINI, M.: Bottom-Up Authoring of
Software Engineering Methods and Practices. Journal of Applied Research and Tech-
nology, Elsevier, Submitted 2016.

Zamrl, K. Z.—MAT IsA, N. A.: A Survey and Analysis of Process Modeling Lan-
guages. Malaysian Journal of Computer Science, Vol. 17, 2004, No. 2, pp. 68-89.
GRUNINGER, M.—LEE, J.: Ontology: Applications and Design. Communications of
the ACM, Vol. 45, No. 2, 2002, pp. 39-41.

ZHANG, Y.—ZHANG, W.: Description Logic Representation for Requirement Specifi-
cation. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P. M. A. (Eds.): Computa-
tional Science (ICCS 2007). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 4488, 2007, pp. 1147-1154.

ABAD, Z.S.H.—SADpI, M. H.—RaAMSIN, R.: Towards Tool Support for Situational

Engineering of Agile Methodologies. 2017 17" Asia Pacific Software Engineering Con-
ference (APSEC 2010), IEEE, 2010, pp. 326-335.

https://doi.org/10.1007/BFb0054226
https://doi.org/10.1007/978-3-540-30464-7_57
https://doi.org/10.1109/CSIE.2009.956
https://doi.org/10.1109/CSIE.2009.956

140 M. Morales-Trujillo, H. Oktaba, F. Hernandez-Quiroz, B. Escalante-Ramirez

[47) ArNI-BLocH, N.: Towards a CAME Tools for Situational Method Engineering. In-
teroperability of Enterprise Software and Applications, IFITP-ACM, 2005.

[48] BORONAT, A.—MESEGUER, J.: An Algebraic Semantics for MOF. Formal Aspects
of Computing, Vol. 22, 2010, No. 3-4, pp. 269-296, doi: 10.1007/s00165-009-0140-9.

Miguel MORALES-TRUJILLO received his Ph.D. in computer
science from the National Autonomous University of Mexico
(UNAM). He is the UNAM Representative at the Object Man-
agement Group. He has been Assistant Professor at the Science
Faculty of the UNAM since 2010. His research interests are soft-
ware engineering and process engineering.

Hanna OKTABA received her Ph.D. in computer science from
the University of Warsaw, Poland. She has been Full Profes-
sor at the UNAM since 1983. She was in charge of the Mo-
ProSoft project for the Mexican government’s PROSOFT pro-
gram. She is Technical Leader of the Mexican delegation in
WG24 of ISO/IEC JCT1 SC7. Nowadays she leads the KUALI-
KAANS research group. Her research interests are software en-
gineering and software quality.

Francisco HERNANDEZ-QUIROZ received his Ph.D. in computer
science from the Imperial College of Science, Technology and
Medicine in London. He has been Full Professor at the UNAM
since 2002. His research interests are computability theory and
its practical and philosophical implications, as well as modal
logic in computer science and philosophy.

https://doi.org/10.1007/s00165-009-0140-9

Towards a Formalization of KUALI-BEH an ESSENCE Extension 141

i

Boris ESCALANTE-RAMIREZ received his Ph.D. in computer
science from the Technical University of Eindhoven. His research
interests are computational models of human vision and their
applications to digital image processing. He is a member of the
National Research System of Mexico.

