Computing and Informatics, Vol. 37, 2018, doi: 10.4149/cai,2018,1

TWO-LAYER LOAD BALANCING
FOR ONEDATA SYSTEM

Lukasz OpiotA, Lukasz DuTkA, Michal WRZESZCZ

AGH University of Science and Technology
ACC Cyfronet AGH
ul. Nawojki 11

30-950 Krakow, Poland
e-mail: {lopiola, dutka, wrzeszcz}@agh.edu.pl

Renata SLOTA, Jacek KITOWSKI

AGH University of Science and Technology

Faculty of Computer Science, Electronics and Telecommunications
Department of Computer Science

al. A. Mickiewicza 30

30-059 Krakow, Poland

&

ACC Cyfronet AGH

ul. Nawojki 11

30-950 Krakow, Poland

e-mail: {rena, kito}@agh.edu.pl

Abstract. The recent years have significantly changed the perception of web ser-
vices and data storages, as clouds became a big part of IT market. New challenges
appear in the field of scalable web systems, which become bigger and more complex.
One of them is designing load balancing algorithms that could allow for optimal
utilization of servers’ resources in large, distributed systems. This paper presents
an algorithm called Two-Level Load Balancing, which has been implemented and
evaluated in Onedata — a global data access system. A study of Onedata architec-
ture, request types and use cases has been performed to determine the requirements
of load balancing set by similar, highly scalable distributed systems. The algorithm
was designed to match these requirements, and it was achieved by using a synergy of

2 L. Opiota, L. Dutka, M. Wrzeszcz, R. Slota, J. Kitowski

DNS and internal dispatcher load balancing. Test results show that the algorithm
does not introduce considerable overheads and maintains the performance of the
system on high level, even in cases when its servers are not equally loaded.

Keywords: Load balancing, geographically distributed systems, DNS, web clusters

Mathematics Subject Classification 2010: 68M11, 68M14, 68W99

1 INTRODUCTION

The number of Internet users grows every day, and the software and hardware ven-
dors have to face demands for fast, convenient and massively scalable services. At
the same time as web services are thriving, data centres around the globe are racing
each other to create more and more powerful supercomputers. Many institutions
form Grids and Clouds to provide platforms of immense computing power and stor-
age space. Thanks to this, scientists of various disciplines can conduct research and
cooperate to solve problems which have been beyond their reach for years. Such ap-
proach is called e-Science [9] and has created new trends in distributed computing,.
Again, there is a demand for scalable web services that will allow to harness the
potential of distributed environments and ensure the convenience of using resources
offered by data centres.

The answer to current challenges in the sector of web services are web clusters
and distributed web systems, composed of tens or hundreds of servers. Recently,
more and more systems try to use the advantages of highly distributed architectures.
Popular web portals have to constantly extend their pools of servers to handle the
growing amount of clients and data produced by them. Among them, there are
cloud storage services such as Dropbox, Google Drive or OneDrive [I], which focus
on any time and any place access to user data. Cloud solutions are also built for High
Performance Computing (HPC) purposes, e.g. Amazon Web Services [2] and IBM
HPC Cloud [3], which allow performing data-intensive computations on distributed
architectures. Other massively scalable systems that handle millions of requests ev-
ery minute and store enormous amounts of data in databases, include Facebook [4],
Twitter [5] or Gmail [6]. As the complexity and distribution of those systems grow, it
is harder to manage their numerous servers. Relevantly, the full, collective potential
of multi-node architectures can be unlocked only by use of dedicated solutions that
allow for cooperation of the servers. Among them, load balancing is arguably one of
the most important. It determines the way that incoming requests are distributed
to servers and strives to efficiently use their cumulative resources. The approaches
used in modern systems range from simple static to complicated dynamic algorithms
supported by server monitoring, dedicated hardware, advanced mathematical mod-
els and others. The choice of load balancing algorithm is dependent on many factors

Two-Layer Load Balancing for Onedata System 3

including the system size, its purpose, type of clients and anticipated throughput of
requests.

This paper describes an originally created load balancing algorithm called T'wo-
Level Load Balancing. It is dedicated for highly scalable, distributed web systems
that are meant to handle numerous requests that vary in size and processing time.
It has been implemented and evaluated in Onedata [7, 8] to prove its viability in
such systems.

Onedata, a global data access system, was created as an answer to the require-
ments of modern science. It virtualizes the storages of globally distributed storage
providers and unifies them into one data space. From the user’s point of view, it
hides the growing complexity of storage systems. Moreover, it facilitates adminis-
tration with advanced monitoring tools and automated data management. Beside
being a new, powerful tool for research teams, it is also a promising choice for
everyday users.

The rest of the paper is organized as follows. The second section includes gath-
ered knowledge about existing load balancing strategies. In the third section, the
Onedata system is described in detail to underline the requirements of load bal-
ancing algorithms that can be used in similar systems. In the next sections, the
proposed solution is presented and evaluated.

2 STATE OF THE ART

For better understanding and to avoid ambiguities, several terms should be in-
troduced that are used throughout this paper. Starting with architectural terms,
a node is a single machine (computer). Nodes can be organized in groups and inter-
connected to form a cluster of nodes. Finally, a cluster of nodes can communicate
with other clusters to form a distributed network of clusters. Another frequently
used phrase is web system, which is a collection of hardware and software that con-
stitutes a portal available on the Internet. A web system can be deployed on one
of mentioned architectures, by installing server software on the nodes. A node that
runs a server application is called a server (or a web server). An application that
connects to a web system and sends requests is called a client, and it is most often
a web browser. In cases where a web system runs on more than one node, a load
balancing algorithm is required. It describes the decision process used to distribute
incoming client requests among servers of a web system.

Load balancing is naturally an important aspect of every web system that can
be deployed on a cluster of nodes. Hence, in recent years, numerous load balanc-
ing algorithms have been invented, tested and documented. The approaches differ
depending on many factors, such as the distribution of the system, used hardware,
the homogeneity and size of the cluster and more. The main focus of this section is
to gather and systematize the knowledge about load balancing, in order to provide
a clear background for issues addressed in this article.

4 L. Opiota, L. Dutka, M. Wrzeszcz, R. Slota, J. Kitowski
2.1 Classifications of Load Balancing Algorithms

Load balancing algorithms can be categorized [10] based on four important features:

e physical location of cluster nodes,
e visibility in IP network,
e OSI model layer on which they operate,

e static or dynamic character.

Physical location of cluster nodes can be classified as local scale-out and global
scale-out. Local scale-out is an installation where all the nodes reside in a separate
area, close to each other and interconnected. If a web system is composed of geo-
graphically distributed servers, it is called a global scale-out setup. The distribution
of servers is a key factor when designing a load balancing algorithm.

As far as visibility in IP network is concerned, two classes can be determined —
web clusters and distributed web systems. If the whole system is visible under one
virtual IP address, it is often called a web cluster or a cluster-based web system. This
setup can be accomplished in several ways, usually by directing the incoming traffic
to nodes via a front-end network device (switch or router), which often acts as a load
balancer. In contrast, distributed web systems are structures where multiple nodes
are visible to the clients under their distinct IP addresses. In these cases, mostly
DNS servers with dedicated algorithms are employed to provide load balancing [15].
Intuitively, most web clusters are local scale-out setups, and many distributed web
systems are built on global scale-out architectures, but this is not always the case.

The next categorization is based on the OSI model layer, on which the load
balancing is executed. In case of web clusters, the network device which distributes
load among cluster nodes commonly operates on layer 2, 3 or 4 [10]. It is not a rule,
though, some algorithms include web switches that are aware of the application
content (OSI layer 7) of incoming requests and consider it in decision process [I1].
Layer 7 policies can likewise be based on a software dispatcher incorporated in a web
server, which reroutes requests internally using the knowledge of request content and
application logic.

Finally, load balancing algorithms can be categorized as static and dynamic.
Static algorithms base on initial configuration that does not change in time, for
example number of servers or their computing power. Round-Robin (RR) and
Weighted Round-Robin (WRR) are good examples — they are widely used in web
systems with satisfying results, thanks to being uncomplicated and not introducing
considerable overheads. For these reasons they are also a good benchmark while
testing more complex algorithms. Dynamic load balancing actively uses feedback
from servers, for example current load or number of queued requests, to make request
distribution decisions. Popular algorithms include shortest queue, least-connection
and load-based approaches [IT]. Although static algorithms are often sufficient for
smaller, less complicated systems, they do not provide elasticity and are poorly fit-
ted for systems with dynamic and database-driven workloads. It has been shown

Two-Layer Load Balancing for Onedata System 5

in many publications that a well-designed dynamic algorithm can manifest better
performance than RR or WRR in more complex systems. This is why dynamic al-
gorithms are subject to research and there have been many attempts to create new,
effective solutions.

2.2 Related Works

This section describes several examples of dynamic load balancing algorithms which
can be found in literature. The first one is a load balancing algorithm presented
in [12], intended for web clusters. It is based on an approximation model which
helps estimate the utilization and capacity of web servers. In addition, feedback
from servers is used to correct the estimation errors of the model. The knowledge
gathered in this way is used to make load balancing decisions and the results are
very appealing. However, the whole logic is enveloped in a complicated web switch
and application servers have to be compatible with it.

Another algorithm for web clusters was presented in [I3] and has also been
proven to give better results than static algorithms. It utilizes a theoretical model
based on Markov chain and a probability generating function. The analysis covers
queue lengths and mean cyclic time for queries, and the authors show that the
proposed model is realistic and applicable in load balancing. Nonetheless, it is
not universal, as it assumes the environment to be a web cluster with a special
hierarchical architecture.

Remarkable algorithms have also been developed in the field of distributed web
systems. In such systems, load balancing is executed by DNS servers. Basic ap-
proach uses Round-Robin policy to distribute load among multiple servers, but often
other algorithms are employed with better results than simple DNS RR.. The authors
of [I4] proposed a solution where the DNS server (working in RR mode) does not
require modifications, but it is dynamically updated with the list of available web
servers. Based on the knowledge of current load of servers and a configurable thresh-
old, the algorithm decides which servers are overloaded and should be temporarily
removed from DNS server’s list. Its advantage is compatibility with third party DNS
server software, as the updates are part of DNS specification (see RFC 2136 [16]).
However, the mechanism requires a load balancing module that gathers monitoring
data from the servers and performs the updates. It might introduce substantial
overheads and delays in reacting to current load fluctuations. What is more, this
approach might be insufficient in systems with high incoming network traffic, be-
cause of DNS response caching in intermediate DNS servers and in client machines.
Overloaded nodes would still receive requests until the expiry of a DNS reply.

Other algorithms include customizations of the DNS servers, for example in [I5],
where they are modified to direct clients to geographically closest web servers. The
purpose is to reduce network impact on communication and it is achieved using
a proximity algorithm. Moreover, if a web server becomes overloaded, it delegates
some requests with a simple HTTP redirect. This should enhance the Quality of
Service of the whole system, but it is not trivial to decide when and where such

6 L. Opiota, L. Dutka, M. Wrzeszcz, R. Slota, J. Kitowski

redirects should be performed. If this issue is handled wrongly, the response times
of the web system might increase. Moreover, if redirected requests reach a server
that is overloaded too, it might cause another redirection, which leads to undesirable
instability in periods of high network traffic.

To summarize, there are numerous load balancing algorithms documented, some
are dedicated for certain systems and not each of them can be adapted to be used
elsewhere. To the best of our knowledge, none of discussed policies could be em-
ployed with satisfying results in highly scalable, distributed systems with wide re-
quest type spectrum, such as Onedata. The reasons are usually connected with
architectural assumptions of these solutions or the lack of features that are crucial
in such systems.

3 LOAD BALANCING IN 0NEDATA — REQUIREMENTS ANALYSIS

This section is intended to provide overview on the Onedata system, its use cases
and main features. It outlines the challenges connected with designing an effective
load balancing algorithm that would be compatible with its architecture and have
desired qualities.

3.1 Onedata Overview

The main goal of Onedata is to provide unified and efficient access to data stored
in globally distributed environments [8]. The need for such system was initially
observed among users of big computing infrastructures [19], such as PL-Grid (The
Polish Grid Infrastructure) [I7] or EGI (The European Grid Infrastructure) [Ig].
Many scientists of various disciplines conduct data-intensive research, and some-
times they would like to simultaneously use infrastructures located in different data
centres, or cooperate with research associates in other institutions. Currently, it is
inconvenient as the users often have to manually manage and migrate their data
between different data centres. What is more, various storage systems that they
use have different interfaces and often require technical knowledge to use. Onedata
removes these barriers by virtualizing globally distributed storage systems of dif-
ferent providers. In other words, it introduces a virtual file system that uses the
collective resources of all storage systems to which a user has access and gives the
user a unified view on his data. With data management and migration handled
transparently to the users, it is an excellent tool for any time, any place data ac-
cess. What distinguishes Onedata from other similar tools is its support for High
Performance Computing (HPC), which is crucial from the perspective of computing
infrastructures users. While Onedata was originally dedicated for big data centres
and scientists, it might have potential in the commercial market too. It is possible
because the today’s everyday users are encouraged to store their data in clouds and
would like to have a coherent and uniform view on their data.

Two-Layer Load Balancing for Onedata System 7
3.1.1 System Architecture

From the global point of view, Onedata is composed of many cooperating deploy-
ments, one per every provider that decides to enter the Onedata system with its
storage resources (see Figure . Such deployment is called Oneprovider cluster
and is essentially a web system hosted on a cluster of nodes. The instances of
Oneprovider clusters cooperate globally to unify user’s view on his data. The
significant feature of this cooperation is that the providers can retain their auton-
omy and do not have to trust each other. This is achieved with a mediator called
GlobalRegistry and other innovative architectural solutions [8]. This paper describes
a load balancing algorithm that is limited to the context of a single Oneprovider
cluster instance.

GlobalRegistry

PC with oneclient
or web browser

Provider 2

oneprovider
.. Cluster

POSIX CLIENT

Computing
Element

Process .
--1oneclient --+--
of User

Storage
Systems

g Systems

home, scratch,

archive, etc. home, scratch,

archive, etc.

Figure 1. Exemplary environment with Onedata

Oneprovider cluster is a distributed application deployed on multiple nodes,
each having its own, external IP address and each connected to underlying storage
systems. The main responsibilities of Oneprovider cluster include file metadata
management, data access coordination and, most importantly in the context of load
balancing, processing of user requests. The application is written in Erlang, which
is renowned for its powerful distribution mechanisms, as well as parallel processing
capabilities. This choice of technology has proven advantageous in the light of
scalability and high availability requirements of Onedata.

In reference to classifications presented before, the architecture of Oneprovider
cluster falls in the category of distributed web systems, and is based on a local
scale-out infrastructure. This is an unusual setup, and in connection with mech-

8 L. Opiota, L. Dutka, M. Wrzeszcz, R. Slota, J. Kitowski

anisms implicitly offered by Erlang, it constitutes a unique case for load balanc-
ing.

3.1.2 Client and Request Types

There are several interfaces through which the Onedata system can be accessed.
Firstly, a client application called Oneclient, which exposes a standard POSIX
file system interface. Secondly, an intuitive web GUI that provides easy access
from any place connected to the Internet. Finally, REST and CDMI (Cloud Data
Management Interface) endpoints that are suited for third party service developers.

The Oneclient application is based on FUSE (Filesystem in Userspace). It al-
lows for mounting a virtual file system in UNIX-based systems, so that a Onedata
user can access his data exactly like on a local storage. Oneclient communicates
with a Oneprovider cluster and handles low level file management transparently.
This is a perfect solution for a typical user, but can also greatly facilitate computa-
tions and experiments performed by scientists in data centres. Onedata puts a great
importance on support for HPC and the client application is fitted to handle data-
intensive operations. If the host of Oneclient has direct access to storage systems
used by Oneprovider cluster, their communication is limited to metadata only
and Oneclient reads and writes the data directly from the storage systems. In other
cases, e.g. when it is installed on a personal notebook, it works in a slower mode, as
the Oneprovider cluster has to mediate in all file operations. Hence, the client
applications can generate various types of requests. In both cases (direct and remote
file access) it performs numerous, lightweight metadata requests, such as retrieving
physical location of a file. However, a remote Oneclient (e.g. installed on a PC)
has to send and receive a lot of data through the network connection during I/O
operations, which consist of multiple read and write requests. It is also possible for
a directly connected Oneclient to require data transfers on the wire, for instance
when some files are located on the storage of another provider.

The web GUI was designed to provide access to data without installation of
any software and ensure a user-friendly experience. It features an intuitive and re-
sponsive file manager with data sharing and publishing capabilities, among others.
The communication with Oneprovider cluster is based on secure HTTPS and
websocket protocols, thus some connections can be kept alive for a long time. No-
ticeably, all the operations must be performed via Oneprovider cluster, including
those that cause high network interface usage by performing file uploads and down-
loads. On the other hand, some requests might be lightweight (e.g. renaming a file),
or use a lot of computing resources (e.g. removing large directories).

Third party service developers can use the REST and CDMI APIs to integrate
with Onedata. They both rely on stateless, secure HI'TPS connections. The REST
endpoints offer most file operations in a robust, concise and well documented API
based on interoperable JSON. CDMI complaint interface, that allows both low and
high level operations on user data, constitutes a more complicated yet usable and
powerful alternative. The great advantage of CDMI is introduction of file opera-

Two-Layer Load Balancing for Onedata System 9

tions that are not available in Oneclient, for example issuing copying of large files
and directories, often used in pre-staging of content before data-intensive computa-
tions. As far as REST and CDMI are concerned, the processing time and volume
of requests may vary dramatically depending on the type of operations performed.
In addition, some requests do not carry much information on the wire, but might
consume considerable amounts of server’s processing power or memory (e.g. copy-
ing large files). Those interfaces might contribute considerably to Oneprovider
cluster load, especially when it is deployed on a Grid infrastructure and integrated
with middleware or job schedulers.

Noticeably, some of Oneprovider cluster load results from communication
with GlobalRegistry and other Oneprovider clusters. It is based on REST in-
terfaces and essentially the performed requests have the same characteristics as
described above. Hence, this communication is not perceived as a separate class of
requests.

Oneclient Oneclient web GUI REST & CDMI
direct i/o remote

light ++ + E +
small transfer + ++ + 4
large transfer - — ++ Tt
computationally requiring - - + [

Table 1. Request types in Onedata

Considering the impact of requests on resource usage, we classified them into
four categories: light, small transfer, large transfer and computationally requiring.
Light requests have high priority and should be processed with no delays, i.e. meta-
data requests. They do not carry much information on the wire nor use much
computational resources. Small transfer requests carry minor amounts of data back
and/or forth, for instance read /write operations generated by Oneclient working in
remote mode. Requests classified as large transfer carry big data payloads that can
cause high usage of network interfaces. Finally, computationally requiring requests
consume significant amounts of computing power to be processed. Table [I] contains
a summary of request categories in Onedata. The number of ‘+’ signs indicates how
often such requests appear for different interfaces.

The variety of requests is significant in the context of load balancing, as different
requests have different impact on load of cluster nodes, both network and computa-
tional (CPU, memory). It is also important that in the Oneclient application we
have full control over server preference when connecting to Oneprovider cluster.
However, in case of other interfaces (all HTTP based), the only way to control the
choice of servers by the clients is to use a DNS server. Even then, we still cannot
influence the way the DNS resolvers and web browsers work. For those reasons,
Onedata is a great example of a distributed web system that cannot fully use all of
its design advantages without a well suited load balancing algorithm.

10 L. Opiota, L. Dutka, M. Wrzeszcz, R. Slota, J. Kitowski
3.1.3 Onedata Use Cases

To better explain the influence of different users and requests on a Oneprovider
cluster in the context of load balancing, some concrete use cases of different inter-
faces are presented below.

As far as web GUI is concerned, one of the key functionalities is upload and
download of files. This relates both to private content and shared files that can be
downloaded by anyone possessing a valid URL. Such operations cause a substantial
load on network interfaces and generate I/O operations on the server.

Considering Oneclient, when a data center user is performing data-intensive
computations on a directly connected storage, hundreds of light metadata requests
are generated and they should be handled quickly so as not to limit the Oneclient
performance.

Further on, a researcher might want to use a copy of a huge file with gigabytes
of data as an input to his simulation. He would then use the CDMI interface, most
probably indirectly by middleware that can pre-stage his data. Such request requires
lots of CPU time, RAM and I/O operations to be processed.

3.2 Load Balancing Scenarios

Bearing in mind the above-mentioned characteristics of Onedata, we identified three
representative scenarios that depict requirements of load balancing for Oneprovider
cluster:

e sharp load fluctuations,
e unbalanced use of resources,

e node failure.

The first scenario includes a set of clients (of any type) connected to a node
of Oneprovider cluster (node A). Assume that all other nodes maintain similar
number of connections at the time, and the cluster load is balanced. However, it is
possible that suddenly some of the clients of node A greatly increase the intensity
of their requests, as, for instance, a large grid job has started. Node A becomes
overloaded and there is no possibility of redirecting the clients to other nodes without
breaking the connections. A mechanism is required that would allow for internal
rerouting of requests to nodes which have more free resources.

Another example shows why the payloads and processing time of requests should
be taken into account. Consider two nodes (4 and B), which hold a comparable
number of connections. However, node A has received a lot of file upload/download
requests from web clients and its interfaces are practically exhausted. Nevertheless,
it still has reserves of computing power. On the other hand, node B is busy with
processing multiple, computationally requiring CDMI requests which causes full
CPU utilization, while its network interfaces stand practically unused. The cluster
should direct new connections to node B, but at the same time internally delegate

Two-Layer Load Balancing for Onedata System 11

some requests from node B to node A to achieve optimal utilization of resources on
both nodes.

The next case regards a cluster of nodes and a situation where one of the nodes
(node A) becomes temporarily nonoperational. The reason might be either a network
malfunction, software failure or overload. While it is not possible to amend existing
connections of node A, the system should be able to stop new clients from connecting
to it and direct them to healthy nodes.

All the aforementioned scenarios are possible, and while such cases might not
occur often, the system must be able to react rationally in any circumstances. Beside
the specific scenarios where a load balancing algorithm is indispensable, there are
also general requirements that it must fulfil, as described below.

3.3 Load Balancing Challenges

Firstly, the main reason of introducing any load balancing algorithm is achieving
scalability. Basically, it means ability to increase system’s performance by extending
the cluster with new nodes. Naturally, the bigger the cluster, the less improvement
will be introduced with new extensions, as the overheads of managing such an infras-
tructure and maintaining communication between the nodes become too substantial.
The desired load balancing algorithm should allow for building clusters big enough
to handle expected number of clients.

Other crucial features for distributed systems are High Availability (HA) and
Quality of Service (QoS). The former means that a service should remain fully
operational despite failures of some nodes or components. The latter, from the
user’s point of view, is how efficient, responsive and failure-free the service is.
Load balancing algorithm can have a great influence on both of these aspects if
it can instantly react to undesired situations and minimize traffic on overloaded
nodes.

An optimal load balancing solution should incorporate mechanisms that would
allow for maintaining comparable resource utilization on all nodes of a cluster, which
includes computational resources as well as network interfaces. It is especially im-
portant that none of the nodes becomes significantly more loaded than the others.
Another feature that is somehow connected is avoiding bottlenecks. When this is
neglected, it might ruin the system’s scalability and the potential of parallel pro-
cessing.

Manageability is also a relevant aspect. The system administrators should be
able to easily modify the size of a cluster or migrate some applications between
servers, while the load balancing algorithm adapts dynamically to the new circum-
stances.

Last, but not least, the distributed architecture of target systems must be con-
sidered when designing a load balancing algorithm. It must be well integrated, but
should also exploit the benefits of distribution.

12 L. Opiota, L. Dutka, M. Wrzeszcz, R. Slota, J. Kitowski

4 TWO-LEVEL LOAD BALANCING

Considering all the aforementioned requirements, an original load balancing algo-
rithm, called Two-Level Load Balancing (TLLB), has been designed and evaluated.
The two levels refer to DNS servers and internal, application layer (OSI 7) dis-
patchers. A sequence diagram for reference is presented in Figure 2} It presents the
complete flow of requests, starting from domain resolving and ending with a HTTPS
reply from a server, with symbols indicating where each level of load balancing is
applied. The whole algorithm is discussed in detail later on.

Web client Public DNS oneprovider cluster

DNS request

DNS response (NS)

- I

DNS request

| Load balancing
! decision on
DNS response (A) DNS level

I
HTTPS request
1

Load balancing

|

: decision on
HTTPS response dispatcher level

i

T | T
| | |

Figure 2. Two-level load balancing — sequence diagram

A significant aspect of the presented approach is that both levels are handled by
software that is fully integrated in the cluster. Every node has its own external IP
address and contains a DNS server and a dispatcher module. Both modules operate
as part of the Oneprovider cluster application. It means that they can communi-
cate with other components of the system, one of which is Central Cluster Manager
(CCM). One of its responsibilities is collecting monitoring data from Oneprovider
cluster nodes, which contains current load (CPU, memory) and network interfaces
usage. This data can be used for load balancing decisions on both levels. Obviously,
gathering monitoring data and processing it introduce overheads, and this fact is
usually considered an important factor when comparing a dynamic algorithm to
static algorithms like RR. It often happens that complicated supervision methods

Two-Layer Load Balancing for Onedata System 13

and decision algorithms slow down the whole system so much that there is no point
in using them. However, the monitoring in Oneprovider cluster was designed for
advanced diagnostic and administrative tools. It is essential anyway, thus it can
be used in load balancing with practically no additional cost. The algorithms are
uncomplicated, and the data is processed by the CCM and served to DNS servers
and dispatchers in a form of ready-to-use load balancing instructions. They are
updated periodically in short intervals so that the cluster can quickly react to load
fluctuations.

4.1 First Level — DNS Server

By default, all nodes TP addresses appear in the DNS response. High Availability
(HA) is achieved by including multiple addresses in responses and the ability to
temporarily exclude nodes that are nonoperational or unreachable. The nodes with
lower load have proportionally greater probability to be placed at the top of the
list (see Figure 4 While this cannot ensure that they will be preferred, most web
browsers and operating system level resolvers will be more eager to choose addresses
that come first. Hence, this algorithm produces the desired effects. Currently, there
is no method to impose the record choice priorities on clients of Onedata, which are
all based on HTTP protocol. The SRV DNS records could be an answer to this,
but the HT'TP protocol does not assume its use and popular web browsers do not
support it. The load of a node, L, is calculated using a weighted average, as in

Equation .

a * net_load + B * cpu_load + v * mem_load
a+ B+

L= (1)

where net_load is network interfaces load, cpu_load is the CPU usage and mem_load
is the memory usage. They are expressed in per cents and so is the resulting load.
The network usage ratio depends on maximum interface throughput. The values
of a, 8 and 7 are determined experimentally. If « coefficient is dominating, the
DNS server will be eager to lighten the network traffic to nodes with heavily utilized
interfaces, which is a desired feature. Nonetheless, computational load must be also
taken into consideration so that more clients can be directed to nodes with free
resources. In Figure B an example DNS instructions has been shown, where one of
the nodes has been temporarily removed because of a failure or connection problem.
The sequence in exemplary response has been randomized as described before.

4.2 Second Level — Dispatcher

The dispatcher module has been introduced in order to increase control, refine the
load balancing algorithm and handle edge cases. The instructions for dispatchers
are created based on computational load of a node, according to Equation (2).

14 L. Opiota, L. Dutka, M. Wrzeszcz, R. Slota, J. Kitowski

B * cpu_load 4 v * mem_load
= 517 (2)

where cpu_load is the CPU usage and mem_load is the memory usage. The 3 and
v coefficient values are selected experimentally. The network traffic is omitted, as
the dispatcher does not influence the external interfaces usage, regardless of its de-
cisions. In natural circumstances, when the nodes of Oneprovider cluster are
similarly loaded, the dispatcher has a very low impact on request processing time
as it simply follows the incoming requests to handler modules residing on the same
node. However, it is crucial in cases when the load is fluctuating sharply. If the
node which received the request is significantly more loaded than the others, the
dispatcher will delegate such request to another one. This is determined using
a threshold coefficient (Equation (3)).

L

I > p => overloaded. (3)
The p coefficient value is selected experimentally. The load of each node — L — is
compared to the lowest load in the cluster — L,,;,, and if the ratio exceeds the p
threshold, the node is considered overloaded and the generated instructions for dis-
patchers will strive to correct that situation. They include information how often
and to which nodes should requests be delegated (see Figure [3)). The target node
for delegation is chosen in weighted random manner, where the least loaded nodes
are most probable to be chosen. The randomization approach introduces very low
overheads while giving satisfying results, and allows for parallelization of request
redirecting as the load balancing instructions are processed in read-only mode. Nat-
urally, the request rerouting itself increases its processing time. However, given
that the Oneprovider cluster nodes are interconnected with high performance in-
terfaces and communication mechanisms in Erlang are greatly optimized, it is still
beneficial to delegate the request as it will be processed faster than on a heavily
loaded node. This is especially true for requests that consume a lot of resources to
be processed.

4.3 Request Flow in TLLB

Figure] presents a Oneprovider cluster composed of two nodes, outlines all mod-
ules and entities that take part in load balancing process and shows the requests
flow during web GUI usage.

As mentioned before, the CCM module prepares instructions for DNS and
dispatcher modules based on monitoring data and propagates them periodically
(step (0) in Figure). When a user wants to use the web GUI, firstly his browser
has to resolve the Oneprovider cluster domain into an IP address. The domain
must be public and recognizable by global DNS servers. The client performs a DNS
request to a public DNS server, and receives a response indicating where it should

Two-Layer Load Balancing for Onedata System 15

a) DNS instructions

P probability
Node A 200.0.0.1 0.26
Node B 200.0.0.2 0.31
Node C 200.0.0.3 0.43
Node D - -

Exemplary DNS response:

200.0.0.3
200.0.0.1
200.0.0.2

b) dispatcher instructions

7 o
Node OK Node overloaded
probability probability

Node A 1.0 Node A 0.20
Node B 0.32

Node C 0.48

+ +
All requests 80 % of requests dele-

processed locally gated to other nodes

Figure 3. a) DNS and b) dispatcher instructions

------ > (0) Updates of LB advices

<«----» (1) DNS query to public DNS HTTPS
<— —» (2) DNS query to internal DNS :
<«—> (3) HTTPS request and response

of node 2 overload

Public DNS 7

(O DISPATCHER
-(0)
.Q)—
0"

<«— (4a) Local request processing DNS Eiﬁg;
<« (4b) Request rerouting in case :53 MANAGER HANDLER

ONEDATA CLUSTER
Nodel:[]| Nodel
Node2:[__]| 200.0.0.1

; MODULE
/(0) -

7 7 =

8

’ Node 2
200.0.0.2

P

DISPATCHER

HANDLER
MODULE

user’s web
browser

Figure 4. Request flow in Two-Level Load Balancing

ask again (step (1)). The response list contains hostnames of all the Oneprovider
cluster nodes. The client continues to resolve the domain by asking one of the

internal DNS servers (step (2)).

The queried server returns a list of IP addresses

of cluster nodes (sorted in a manner mentioned before), and one of the addresses is
finally chosen. The client performs a HT'TPS request, which reaches the dispatcher
(step (3)). If the target node is not highly loaded, the request is processed locally
(step (4a)) and the response is returned to the client. However, in case of an over-
load, delegation is performed and another, less loaded node evaluates the request
(step (4b)). Eventually, the client receives the response, which has been processed

16 L. Opiota, L. Dutka, M. Wrzeszcz, R. Slota, J. Kitowski

unnoticeably longer. It is important that all nodes in the cluster are able to handle
any request, so the delegation algorithm is uncomplicated.

4.4 Synergy of the Two Levels

Ultimately, it should be justified why both load balancing levels shall be used instead
of just one. To start with, DNS servers are indispensable in distributed web systems,
i.e., when the system is reachable under multiple IP addresses. This issue could be
settled by using a static, third party DNS server that uses Round-Robin shuffling.
However, the proposed solution gives great elasticity and ability to quickly react to
changes in the cluster structure and possible node failures. Moreover, by having
access to the system status, the load balancing can be finer and better distribute
incoming connections. In addition, the integration of DNS servers increases main-
tainability of the whole system. Secondly, the presence of dispatchers is necessary,
as DNS load balancing has too high inertia. It means that it cannot responsively
control the flow of requests, and it is mostly because of its responses Time To Live
(TTL). For Oneprovider cluster it is set to a very low value of 60 seconds, but
during this time the cluster status might change dramatically while the clients will
still be using cached DNS responses. Hence, dispatchers are indispensable for finer
and more responsive load balancing. Arguably, the two levels of load balancing
create a synergy, which utilizes their best features.

5 TEST RESULTS

To evaluate the TLLB algorithm, a test environment has been set up. It was com-
posed of multiple, homogeneous virtual nodes with enabled network emulation.
Oneprovider cluster instances of different sizes were deployed on some nodes,
while other served as clients that generated requests. The conducted tests included
scalability tests based on throughput measurements. In addition, a test scenario
which emphasises the two-level synergy has been evaluated. The obtained results
have been normalized for more convenient analysis.

The clients’ behaviour was simulated, using requests of various types and sizes —
and the configurations were constant in the scope of each test. Each test was re-
peated multiple times and the outcomes were averaged. The repeatability of test
results was high.

The aim of these tests was to assess the behaviour of the TLLB algorithm in
a virtual environment, identical with target physical environment that the system
could be deployed on. The tests were designed to ensure assumed features of the
TLLB algorithm, such as the ability to maintain efficient system scaling or delegate
requests on dispatcher level. This way, the algorithm can be safely introduced in
production environment, where further testing and tuning will be performed.

The purpose of the first test was to examine the scalability of Oneprovider
cluster depending on the use of different load balancing levels. This way, four
combinations were obtained:

Two-Layer Load Balancing for Onedata System 17

1. none,

2. dns,

3. disp,

4. dns_disp (see Figure [f).

Combination 1. included a DNS server working in RR mode and disabled dispatcher,
i.e. all requests were processed on the target node. It served as a reference mea-
surement as the simplest, static solution with none of proposed load balancing al-
gorithms enabled. The next combinations were: 2. enabled DNS level and disabled

dispatcher, 3. disabled DNS (RR mode) and enabled dispatcher and 4. Two-Level
Load Balancing. The results are presented in Figure [5

8 ‘
mnone
madns
disp
madns_disp
| I
0 . ! l I l I I ‘ I | | J J
1 2 3 4 5 6 7 8 9 10 " 12

Number of nodes

Normalized throughput

~

~

Figure 5. Scalability — throughput (normalized)

The results show that none of the proposed load balancing levels introduce
significant overheads as their performance is comparable to static algorithms. In
this case, an improvement over static algorithms was not anticipated because all the
nodes were similarly loaded during the tests. Nevertheless, the test results justify
the use of dedicated DNS servers in Oneprovider cluster. They achieve similar
performance as standard RR algorithms, but also ensure elasticity and HA of the
system by the ability to temporary exclude nonoperational nodes.

For the next test, a specific scenario was designed to evaluate the dispatcher
efficiency. Only half of the nodes were receiving requests to verify if the dispatchers
can cope with such situation. For reference, the tests were repeated with dispatcher

18 L. Opiota, L. Dutka, M. Wrzeszcz, R. Slota, J. Kitowski
load balancing turned off, which is indicated by ‘none’ data series. The ‘dispatcher’
data series includes results when dispatchers were enabled. The results are depicted

in Figure

12

10

0 ‘ ‘
2 4 6 8 10 12

Number ofnodes

@

mrone
W dispatcher

Normalized throughput
>

Y

Figure 6. Dispatcher performance with uneven node loads — throughput (normalized)

Obtained results show that dispatchers were able to use free resources on the
nodes that did not receive requests. The overall system throughput was nearly two
times greater compared to the case when dispatchers were disabled — as requests were
rerouted internally to the free nodes, they could be processed more quickly. It was
not possible to double the throughput as the requests rerouting introduces overheads
on the processing time, but the results prove the value of dispatchers. Their use
ensures resistance to load fluctuations and efficient use of collective resources of the
whole Oneprovider cluster.

6 CONCLUSIONS AND FUTURE WORK

The complexity and size of distributed web systems increases and so does the demand
for effective load balancing algorithms. Their requirements have been identified
using the case of Onedata, considering the various use cases of the system and
diversity of requests that it processes. Finally, an innovative solution has been
designed, called Two-Level Load Balancing. The first level refers to DNS servers, and
the second to dispatchers that operate on application level and are able to reroute
requests inside a cluster of nodes. Both levels are encapsulated in the Oneprovider
cluster application, which allows for low-cost use of monitoring data. The DNS
servers distribute load among network interfaces of the cluster in a balanced manner,
while dispatchers correct load fluctuations.

Two-Layer Load Balancing for Onedata System 19

The proposed Two-Level Load Balancing has been implemented and evaluated.
It has proven to be a suitable choice for the Onedata system. The obtained results
show that a Oneprovider cluster instance can benefit from the use of TLLB in
cases of unbalanced or fluctuating loads, while during smoother periods it does not
impair the performance of the system. One of the reasons the overheads are neg-
ligible is the simplicity of the algorithms used on both levels. While the two level
approach is not novel, the proposed algorithm features a highly distributed architec-
ture based on Erlang language, where load balancing modules are fully integrated
with the system. This way, it becomes a unique approach. What is more, it has the
potential to be used in other scalable web systems, not only in the field of global
data access.

The proposed algorithm still has the potential for improvements. It has been
tested in environment with simulated clients and yielded satisfying results. However,
further testing and tuning should be performed in production environment. What
is more, there are techniques that could potentially improve its performance. They
include probabilistic load prediction based on history of requests, admission control
or content awareness. Importantly, their introduction must be careful and well
thought out, as it might cause overheads that could impair the system’s performance.

REFERENCES

[1] MARTIN, A.: OneDrive vs. Google Drive vs. Dropbox: The
Best Cloud Storage Service of 2017. Online. Accessed 13.09.2017.
http://www.alphr.com/dropbox/7034/onedrive-vs-google-drive-vs-dropbox—
the-best-cloud-storage-service-of-2017.

[2] Amazon Web Services (AWS) for HPC: Online. Accessed 13.09.2017. http://aws.
amazon.com/hpc/.

[3] IBM HPC Cloud: Online. Accessed 13.09.2017. https://ibm.com/systems/
spectrum-computing/solutions/hpccloud.html|

[4] facebook: Online. Accessed 13.09.2017. https://facebook.com.

[5] twitter: Online. Accessed 13.09.2017. https://twitter.com.

[6] gmail: Online. Accessed 13.09.2017. https://gmail.com.

[7] onedata: Online. Accessed 13.09.2017. https://onedata.org,.

[8] DuTtka, L.—WRzEszcz, M.—LicHoN, T.—Stota, R.—ZEMEK, K.—
TrzepLA, K.—OpiotA, L.—StoTA, R.—KIiTOWSKI, J.: Onedata — A Step For-
ward Towards Globalization of Data Access for Computing Infrastructures. Procedia
Computer Science, Vol. 51, 2015, pp. 2843-2847, doi: 10.1016/j.procs.2015.05.445.

[9] BuBAk, M.—KiTowsKl, J.—WIATR, K. (Eds.): eScience on Distributed Comput-
ing Infrastructure. Springer, Lecture Notes in Computer Science, Vol. 8500, 2014.
ISBN 978-3-319-10893-3, doi: |10.1007/978-3-319-10894-0.

[10] Gy, K.—Ju1z, C.—PUIGJANER, R.: An Up-to-Date Survey in Web Load Bal-
ancing. World Wide Web, Vol. 14, 2011, No. 2, pp. 105-131.

http://www.alphr.com/dropbox/7034/onedrive-vs-google-drive-vs-dropbox-the-best-cloud-storage-service-of-2017
http://www.alphr.com/dropbox/7034/onedrive-vs-google-drive-vs-dropbox-the-best-cloud-storage-service-of-2017
http://aws.amazon.com/hpc/
http://aws.amazon.com/hpc/
https://ibm.com/systems/spectrum-computing/solutions/hpccloud.html
https://ibm.com/systems/spectrum-computing/solutions/hpccloud.html
https://facebook.com
https://twitter.com
https://gmail.com
https://onedata.org
https://doi.org/10.1016/j.procs.2015.05.445
https://doi.org/10.1007/978-3-319-10894-0

20

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]

L. Opiota, L. Dutka, M. Wrzeszcz, R. Slota, J. Kitowski

TiwARI, A.—KANUNGO, P.: Dynamic Load Balancing Algorithm for Scalable Het-
erogeneous Web Server Cluster with Content Awareness. Trendz in Information Scien-
ces Computing (TISC), 2010, pp. 143-148, doi: 10.1109/TISC.2010.5714626.
SHARIFIAN, S.—MOTAMEDI, S.A.—AKBARI, M.K.: An Approximation-Based
Load-Balancing Algorithm with Admission Control for Cluster Web Servers with Dy-
namic Workloads. The Journal of Supercomputing, Vol. 53, 2010, No. 3, pp. 440-463,
doi: 10.1007/s11227-009-0303-8.

Bao, L.—ZHAO, D.—ZHAO, Y.: A Dynamic Dispatcher-Based Scheduling Algo-
rithm on Load Balancing for Web Server Cluster. Web Information Systems and
Mining (WISM 2010). Springer, Lecture Notes in Computer Science, Vol. 6318, 2010,
pp- 95-102, doi: 10.1007/978-3-642-16515-3_13.

Moon, J.-B.—Kim, M.-H.: Dynamic Load Balancing Method Based on DNS
for Distributed Web Systems. E-Commerce and Web Technologies (EC-Web 2005).
Springer, Lecture Notes in Computer Science, Vol. 3590, 2005, pp. 238-247, doi:
10.1007/11545163_24.

CARDELLINI, V.—CoOLAJANNI, M.—YU, P.S.: Geographic Load Balancing for
Scalable Distributed Web Systems. Proceedings of the 8" International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
2000, pp. 20-27, doi: 10.1109/MASCOT.2000.876425|

RFC 2136: Online. Accessed 13.09.2017. https://ietf.org/rfc/rfc2136.txt.
PL-Grid Infrastructure: Online. Accessed 13.09.2017. http://plgrid.pl/en.
European Grid Infrastructure: Online. Accessed 13.09.2017. https://egi.eu/|
Stota, R.—DutkaA, L.—WRzEszcz, M.—KRryza, B.—NikoLow, D.—
KROL, D.—KI1TOWSKI, J.: Storage Management Systems for Organizationally Dis-
tributed Environments — PLGrid PLUS Case Study. Parallel Processing and Applied
Mathematics (PPAM 2013). Springer, Lecture Notes in Computer Science, Vol. 8384,
2014, pp. 724-733, doi: [10.1007/978-3-642-55224-3_68.

Lukasz OPIOLA received his Master’s degree in computer scien-
ce from the University of Science and Technology (AGH), Cra-
cow, Poland in 2015. He is currently a Ph.D. student at the
Faculty of Computer Science, Electronics and Telecommunica-
tion at AGH and an employee of the Academic Computer Centre
CYFRONET-AGH. His research areas include data synchroniza-
tion in distributed systems, as well as authentication and autho-
rization infrastructures.

https://doi.org/10.1109/TISC.2010.5714626
https://doi.org/10.1007/s11227-009-0303-8
https://doi.org/10.1007/978-3-642-16515-3_13
https://doi.org/10.1007/11545163_24
https://doi.org/10.1109/MASCOT.2000.876425
https://ietf.org/rfc/rfc2136.txt
http://plgrid.pl/en
https://egi.eu/
https://doi.org/10.1007/978-3-642-55224-3_68

Two-Layer Load Balancing for Onedata System 21

Lukasz DUTKA has significant expertise in cloud systems, large-
scale systems, development of application for business purposes,
team and project management in commercial projects as well as
EU IST projects. He received his Ph.D. in computer science from
the AGH University of Science and Technology, Cracow, Poland.
He has a longstanding experience with managing large develop-
ment teams. His scientific interests include large-scale computer
system, system architectures, component approaches. He is the
author of a modern software development architecture called the
Component-Expert Architecture combining expert systems with
component architectures, with successful applications in commercial and scientific environ-
ments. He has actively participated in a number of EU funded projects including Indigo
DataCloud, EGI Engage, Helix Nebula Science Cloud and many others. Currently he is
the Technical Director of PL-GRID Plus project and leader of Onedata team.

Michal WRZESZCzZ is a Ph.D. student of computer science at the
AGH University of Science and Technology in Cracow, Poland
and an employee of the Academic Computer Centre CYFRO-
NET-AGH. He is the author or co-author of over 20 scientific
papers and conference contributions. His research interests are
transparent data access and distributed computing as well as
artificial intelligence and social networks.

Renata SLoTA Ph.D., D.Sc., works at the Department of Com-
puter Science of the AGH University of Science and Technology
(AGH) in Cracow, Poland. She is the author or co-author of
about 130 scientific papers. Topics of interest include parallel
and distributed computing, distributed systems, grid and cloud
environments, data management and storage systems, know-
ledge engineering. She has been involved in many national (re-
cently: PL-Grid Core, PL-Grid NG) and international projects
most notably in EU IST, recently: PaaSage, and VirtRoll.
Among others, she worked on the development of Onedata and
Scalarm systems. Member of the Program Committee of the International Conference
on Computational Science (ICCS), and the International Conference on Parallel Process-
ing and Applied Mathematics (PPAM). Reviewer of: Future Generation Computer Sys-
tems (FGCS), Computing and Informatics (CAI), and Computer Science (CSCI) journals.
Currently, she is the Deputy Dean of the Faculty of Computer Science, Electronics and
Telecommunication of AGH.

22

L. Opiota, L. Dutka, M. Wrzeszcz, R. Slota, J. Kitowski

Jacek K1Towskl is Full Professor of computer science and Head
of Computer Systems Group at the Department of Computer
Science of the AGH University of Science and Technology in
Cracow, Poland and Head International Affairs at the Academic
Computer Centre CYFRONET-AGH, responsible for interna-
tional collaboration and for developing high-performance sys-
tems and grid/cloud environments. He is author or co-author
of about 240 scientific papers. His topics of interest include
large-scale computations, Grid services and Cloud computing,
distributed storage systems, high availability systems, network

computing, knowledge engineering. He is a member of program committees of many con-
ferences, participant of many international and national projects, funded by the European
Commission, European Defense Agency, Polish National Centre for Research and Devel-
opment and Polish National Science Centre. Director of PLGrid Consortium running
PLGrid e-infrastructure in Poland for scientific computing. Member of Ministry Expert
Body for Scientific Investments.

