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Abstract. The semantics of programs written in some languages is concerned with
the interpretation in various types of models. The purpose of structural operational
semantics is to describe how a computation is performed. This method is one of
the most popular semantic methods in the community of software engineers. It
describes program behavior in the form of state changes caused by the execution of
elementary steps. This feature predestinates the usage of the structural operational
semantics for implementation of programming languages and also for verification
purposes. Another semantic method, denotational semantics, defines changes of
states by functions. In this paper a new approach to semantics is presented: be-
havior of programs, i.e., changes of states are modeled in the category of states.
The morphisms category expresses elementary execution steps and the program ex-
ecution is an oriented path in the category, i.e. composition of morphisms. Our
categorical model is constructed for a simple procedural language that contains all
basic van Dijkstra’s constructs. We enriched our approach also with procedures
forming a collection of categories interconnected by functors. This method enables
the repeated call of procedures, nesting of procedure calls and recursive calls. More-
over, it allows to illustrate and accentuate dynamics of the program execution. The
simplicity of this method does not exclude its mathematical exactness.
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1 INTRODUCTION

Formal description of programming languages belongs to the important methods
serving for assigning exact meanings to programs and helping to implement com-
pilers. Semantics of programming languages is concerned with the interpretation of
programs written in programming languages. The main role of semantics is to pre-
dict the outcome of a program execution. The semantics can be viewed as a function
which maps syntactic elements to the semantic domains. There are several known
semantic methods used for various purposes. Denotational semantics formulated by
Scott and Strachey in [32] and later by Schmidt [24] requires quite deep knowledge of
mathematics. The meaning of programs is expressed by functions from syntactical
domains to semantic domains which can be non-trivial mathematical structures, e.g.
lattices. Up to the present time, categorical models have been used for denotational
semantics of programs. They are based mainly on the category of domains repre-
senting types [8, 15, 17, 33] and are suitable particularly for functional languages.
Among disadvantages of the denotational approach we can mention the impossibility
to describe execution steps and to observe behavior of executed programs. Therefore
this method is mainly used in the design of programming languages [28].

Programmers are often interested not only in the meaning of programs but also
in observing their behavior. Therefore, other methods, e.g. operational semantics,
received much more attention in the community of programmers than denotational
semantics [12].

The first form of operational semantics is natural semantics formulated by
Kahn [13] and is often called semantics of big steps. The author pursued two aims:

• to simplify semantic description for software engineers instead of difficult math-
ematical notations of currying and continuation functions in denotational se-
mantics; and

• to abstract from elementary steps of execution in structural operational seman-
tics.

Natural semantics describes a change of states caused by execution of whole
statements [14, 25]. Natural semantics can be useful for specification languages or
in program verification [3].

Structural operational semantics (semantics of small steps) is a simple and direct
method for describing the behavior of programs written in a programming language.
It requires minimal knowledge of mathematics and is easily understandable by prac-
tical programmers [23]. The author of structural operational semantics is Gordon
Plotkin. In his work [21], he formulated this semantic method as a formal tool for
describing detailed execution of programs by transition relations between configura-
tions before and after performing an elementary step of every operation. The main
ideas of his approach and his motivation are explained in [22].

Structural operational semantics generates labeled transition systems consisting
of transition rules describing modification of states [35]. A transition rule has a form



New Approach to Categorical Semantics for Procedural Languages 1387

(S, s)→ s′, where S stands for statement and s, s′ for states. A state is a basic notion
of structural operational semantics and it can be considered as an abstraction of
computer memory [2].

According to [35], structural operational semantics is essentially a description of
program behavior. Because it provides a detailed description of program execution,
its main application area is in implementation of programming languages [19]. Over
the years, this semantic method has become very popular with software engineers
and it has many extensions for various purposes.

One of the advantages of structural operational semantics is the notion of envi-
ronment expressing context dependencies. Context dependencies are relationships
required between the declarations and usage of variables in nested blocks with re-
spect to scope rules.

In the last decades many new results on structural operational semantics were
published. Turi in his Ph.D. thesis [34] formulated coalgebraic categorical model of
this method and showed its duality with the denotational approach. New approaches
to operational semantics were published in [26, 27]. Other research results in the
area of this semantic method include also the formulation of modular structural
operational semantics published in [10, 18, 30].

Several other semantic methods more or less used in various areas of program-
ming exist. Axiomatic semantics [9] is based on satisfying postconditions after
executing statements from truth preconditions before this action. Algebraic seman-
tics [7, 36] specifies abstract data types and models them by heterogeneous algebras.
Game semantics [1, 6] describes the meaning of programs in the form of game trees
and game arenas and it is suitable for expressing non-determinism.

We presented the basic and preliminary ideas of our approach in [31]. Here we
extend this approach with other constructs appearing in real programming languages
and with detailed discussion. We provide a new approach to defining semantics
of a programming language in terms of categories. We construct an integrated
categorical model using denotational and operational features. The basic notion
of our approach is state as an abstraction of computer memory. We construct
a model as a category of states where environment expressing context dependencies
in structural semantics is built in category objects, states, using the nesting level.
The dynamics of program execution is modeled by category morphisms that express
change of states. Morphisms are defined as functions [[S]] : s → s′, where S stands
for statement and s, s′ for states, as in denotational approach. The advantage of
our model is that the execution of program can be expressed also graphically which
is highly illustrative. This idea comes from our categorical model of the intrusion
detection system [16].

We construct our integrated categorical model for a simple procedural language
Jane. At first we specify the signature of states and their representations as par-
tially defined functions. We define semantics of statements as morphisms and then
we construct category of states as a model of a procedural programming language.
Our model enables to define semantics of local declarations within blocks, therefore
it is suitable also for languages with block structure. We extend our approach by in-
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troducing procedures to a language and we model them as a collection of categories
of states together with suitable functors for procedure call and return to calling
item.

2 THE LANGUAGE JANE

In our approach to define categorical semantics a simple imperative language Jane
is used. It consists of traditional syntactic constructions of imperative languages,
namely arithmetic and Boolean expressions, variable declarations and statements.
For defining formal syntax of Jane, the following syntactic domains are introduced:

• n ∈ Num – digit strings,

• x ∈ Var – variable names,

• e ∈ Aexpr – arithmetic expressions,

• b ∈ Bexpr – Boolean expressions,

• S ∈ Statm – statements,

• D ∈ Decl – sequences of variable declarations.

The elements n ∈ Num have no internal structure from the semantic point of view.
Similarly, x ∈ Var are only variable names without an internal structure significant
for defining semantics.

The syntactic domain Aexpr consists of all well-formed arithmetic expressions
created by the following syntax:

e ::= n | x | e + e | e− e | e ∗ e.

A Boolean expression from Bexpr can be of the following structure:

b ::= false | true | e = e | e ≤ e | ¬b | b ∧ b.

The variables used in the programs have to be declared. We consider D ∈ Decl
as a sequence of declarations:

D ::= var x;D | ε

where ε is an empty sequence. We assume that variables are implicitly of the integer
type. This restriction enables us to focus on main ideas of our approach.

Five Dijkstra’s elementary statements that are elements of syntactic domain
Statm, S ∈ Statm, are considered: assignment, empty statement, sequence of
statements, conditional statement and cycle statement together with block state-
ment and input statement:

S ::= x := e | skip | S;S | if b then S else S

| while b do S | begin D;S end | input x.
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3 SIGNATURE OF STATES AND THEIR REPRESENTATION

A state is a basic concept in semantics of imperative languages. It can be considered
as an abstraction of computer memory. Every variable occurring in a program has
to be allocated, i.e., a memory cell is reserved and named within elaboration of
declaration. A value of the allocated variable can be assigned and modified inducing
a change of state. Because of the block structure of Jane, the level of block nesting
has also to be considered.

3.1 Signature of States

According to the previous ideas about the concept of state we formulate the signature
ΣState for abstract data type State. A signature is a well-known notion used in
algebraic specification of abstract data types [7]. This signature uses types Var and
Value for variables and values, respectively.

The signature ΣState consists of types and operation specifications on the type
State:

ΣState =
types : State,Var,Value
opns : init :→ State

alloc : Var, State→ State
get : Var, State→ Value
del : State→ State.

The operation specifications have the following intuitive meaning:

• init merely creates the initial state of a program;

• alloc reserves a new memory cell for a variable in a given state and actual nesting
level;

• get returns a variable value in a given state and actual nesting level;

• del deallocates (releases) all variables together with their values on the highest
nesting level.

3.2 Representation of States

In this subsection we assign the representation to the signature of states ΣState. We
assign to the type Value the set of integer numbers together with the undefined
value ⊥:

Value = Z ∪ {⊥} . (1)

We assign to the type Var a countable set Var of variable names. Our representation
of an element of type State has to express a variable name and its value with respect
to actual nesting level. Let Level be a finite set of nesting levels denoted by natural
numbers l:

l ∈ Level, Level = N.
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The declaration level allows us to create variable environment, the notion known
from structural operational semantics, and enables to distinguish local declarations
from global ones.

We assign to the type State the set State of states. Every state s ∈ State is
represented as a function

s : Var× Level ⇀ Value. (2)

This function is partially defined, because a declaration does not assign a value to
the declared variable. We denote partial function with the symbol ⇀. Each state
s expresses one moment of program execution. We express a state s as a finite
sequence:

s = 〈((x1, 1) , v1) , . . . , ((xn, l) , vn)〉
of ordered triples

((xi, lj) , vi)

where (xi, lj) is the declared variable xi on the nesting level lj with actual (possibly
undefined) value vi for i = 1, . . . , n and j = 1, . . . , l. This sequence can also be
infinite, e.g. in the case of infinite loop. Sequence can be illustrated by a table with
possibly unfilled cells denoted by ⊥ expressing an undefined value which increases
readability (Figure 1).

variable level value

x1 1 v1

xn l vn

...

Figure 1. Representation of a state by table

In this paper, we use the sequence representation of states in definitions and we
illustrate states by tables in examples.

We define representations of operation specifications from the signature ΣState

as follows. The operation JinitK defined by

JinitK = s0 = 〈((⊥, 1) ,⊥)〉 (3)

creates the initial state s0 of a program, with no declared variable. Its role is to set
the nesting level to a value 1 at the beginning of program execution (Figure 2).

variable level value

⊥ 1 ⊥

Figure 2. Initial state of the program
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The operation JallocK appends a new item to the sequence (creates a new entry
in the table of) s and is defined by

JallocK(x, s) = s � 〈((x, l) ,⊥)〉 (4)

where “�” is concatenation operation on sequences (representation of states). This
operation sets the actual nesting level to the declared variable. Because of the
undefined value of the declared variable, the operation JallocK does not change the
state (Figure 3).

variable level value

x l ⊥
... ... ...

Figure 3. Allocation of the new state

The operation JgetK returns the value of a variable declared on the highest
nesting level and can be defined by

JgetK(x, 〈. . . , ((x, li) , vi) , . . . , ((x, lk) , vk) , . . .〉) = vk (5)

where li < lk, i < k for all i, from the definition of state.
The operation JdelK deallocates (forgets) all the variables declared on the highest

nesting level lj (Figure 4):

JdelK(s � 〈((xi, lj) , vk) , . . . , ((xn, lj) , vm)〉) = s. (6)

variable level value

x lj−1 v

... ... ...

xi lj vk
... ... ...

xn lj vm

Figure 4. Deallocation of all variables declared on the level lj

States defined above will be category objects in our model. We also consider
a special state

s⊥ = 〈((⊥,⊥) ,⊥)〉 (7)

expressing the undefined state. We close this section with definition of semantics for
arithmetic and Boolean expressions. The meaning of these expressions depends on
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an actual state s which stays unchanged. The evaluation of arithmetic and Boolean
expressions produces transient values that are used within execution of statements.

3.3 Semantics of Arithmetic and Boolean Expressions

Arithmetic and Boolean expressions serve for computing values of two implicit types
of the language Jane, integer and Boolean, respectively. In defining semantics of
both types of expressions, an actual state is used but not changed in the process of
evaluation. We introduce a new semantic domain Bool for Boolean values, that is
defined as

Bool = B (8)

where B is the set containing values {true, false}. The following Table 1 presents the
semantic functions together with the corresponding semantic definitions for arith-
metic and Boolean expressions.

JeK : State→ Value JbK : State→ Bool

[[n]]s = n [[true]]s = true

[[x]]s = [[get]](x, s) [[false]]s = false

[[e1 + e2]]s = [[e1]]s⊕ [[e2]]s [[e1 = e2]]s =

{
true, if [[e1]]s=[[e2]]s
false, otherwise

[[e1 − e2]]s = [[e1]]s	 [[e2]]s [[e1 ≤ e2]]s =

{
true, if [[e1]]s≤[[e2]]s
false, otherwise

[[e1 ∗ e2]]s = [[e1]]s⊗ [[e2]]s [[¬b]]s =

{
true, if [[¬b]]s=false
false, otherwise

[[b1 ∧ b2]]s =

{
true, if [[b1]]s=[[b2]]s=true
false, otherwise

Table 1. Semantics of arithmetic and Boolean expressions

4 CATEGORY OF STATES AS MODEL OF JANE

In the previous section we defined states as sequences of tuples. Now we construct
a model of language Jane as a category of states, CState. In this category we
consider:

• states as category objects; and

• functions on states, possibly partially defined, as category morphisms.



New Approach to Categorical Semantics for Procedural Languages 1393

Functions on states represent elaborations of declarations and executions of state-
ments. In the following section we define the semantics of variable declarations.
Then we define execution of statements as functions from state to state and in the
last section we verify that so constructed structure CState is a category.

4.1 Elaboration of Declarations

Each variable occurring in a Jane program has to be declared. Declarations are
elaborated, i.e., a memory cell is allocated and named by a declared variable. There-
fore, elaboration of a declaration

var x

is represented as a function on state s:

[[var x]] : s→ s (9)

for a given state s and defined by

[[var x]]s = [[alloc]](x, s). (10)

A sequence of declarations is represented as a composition of corresponding func-
tions:

[[var x;D]]s = [[D]] ◦ JallocK(x, s). (11)

Each declaration of variable actualizes an environment of variables in terms of op-
erational semantics.

Graphically, a variable declaration is depicted in the table by creating a new
entry for the declared variable with the actual level of the nesting and undefined
value

((x, l) ,⊥) .

4.2 Execution of Statements

Statements are the most important constructions of procedural languages. They
execute program actions, i.e., they get values from the actual state and provide new
values. A state is changed if a value of the allocated variable is modified. We model
the change of state by functions between states.

Let S be a statement. Its semantics is a function:

JSK : s→ s′ (12)

where s and s′ are states. This function can be partially defined in the case the
resulting state s′ is undefined, s′ = s⊥ as it was introduced in Section 3.2.

Statements are executed in the order, as they are written in the program text.
In this paper, the statements breaking sequential execution, e.g. goto statement or
exceptions are not considered.
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Assignment statement x := e stores a value of arithmetic expression e in a state s
in a memory cell allocated for variable x on the actual (the highest) level of nesting.
This condition ensures that a local variable visible in the given scope is used.

The semantics is as follows:

[[x := e]]s =

{
s [((x, l) , v) 7→ ((x, l) , JeKs)], for ((x, l) , v) ∈ s,

s⊥, otherwise,
(13)

and it is illustrated in Figure 5.

s s′

Jx := eK

Figure 5. Execution for assignment statement

The notation
s′ = s [((x, l), v) 7→ ((x, l), [[e]]s)] (14)

describes a new state s′ that is an actualization of the state s in its tuple for the
declared variable x whose value is changed to [[e]]s. If x is not declared then s′ is
undefined,

s′ = s⊥.

The empty statement skip does do nothing, i.e., it does not change the state.
Clearly, it is an identity function on a state s (Figure 6) and is defined by:

[[skip]]s = s. (15)

s

JskipK

Figure 6. Execution of empty statement

Typical usage of skip statement can be rewriting the statement if b then S by
the semantically equivalent statement

if b then S else skip.

That means, if [[b]]s = false, the execution of the conditional statement is modeled
by identity on s, i.e., the state s is not changed.

A sequence of statements is executed one by one and can be modeled as a com-
position of functions (Figure 7)

[[S1;S2]] = [[S2]] ◦ [[S1]] (16)
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defined for a state s by

[[S1;S2]]s = [[S2]] ([[S1]]) s. (17)

s

s′

s′′

JS1K

JS2K

JS1;S2K

Figure 7. Composition of functions for statement sequence

If a state s′ is undefined, i.e. s′ = s⊥, then the execution of the whole sequence
of statements provides undefined state:

[[S]]s⊥ = s⊥. (18)

From this definition follows that achieving undefined state s⊥ is similar as falling into
“black hole”. It means that execution of program is immediately stopped without
resulting state.

Conditional statement

if b then S1 else S2

causes branching of execution depending on the value of the Boolean expression b.
The semantics of conditional statement is defined by:

[[if b then S1 else S2]]s =

{
[[S1]]s, if [[b]]s = true,

[[S2]]s, otherwise.
(19)

The function defined in (19) returns the final state

si = [[Si]]s

where i = 1 if [[b]]s = true and i = 2 if [[b]]s = false. It means that execution
of conditional statement is modeled by one morphism depending on the value of
Boolean expression b as it is illustrated in Figure 8.

Execution of a cycle statement

while b do S

also depends on the value of Boolean expression b. If b evaluates to true in the
actual state, the body S of a cycle is executed, then again b is evaluated in a pos-
sibly modified state. If b evaluates to false, execution of the cycle statement is
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s s1

JS1K

s

JS2K
s2

JbKs = true JbKs = false

(a) (b)

Figure 8. Execution of conditional statement

finished. The cycle statement is semantically equivalent to the following conditional
statement:

[[while b do S]]s = [[if b then (S; while b do S) else skip]]s. (20)

The proof can be found in [19]. Therefore, the semantics of the cycle statement is
defined as a (possibly infinite) composition of functions.

When modeling execution of this statement, two situations can appear. The
first situation depicted in Figure 9 comes when the execution of cycle statement
finishes in some state sn.

s0 s1 s2 sn−1 sn

JSK JSK JSK JSK

Jwhile b do SK

Figure 9. Terminated execution of cycle statement

However, if the condition b is always evaluated to true, the cycle statement
is executed as infinite composition of functions. In this case, no resulting state is
provided by the cycle statement. In Figure 10 we illustrate execution of two possible
kinds of infinite cycles. Mostly, the execution in Figure 10 a) is realized when some
sequence of states is repeated infinitely. The trivial example of the execution in
Figure 10 b) can be the statement while true do x := x + 1, where each state in
the sequence is different. Both these situations can be detected in our approach by
observations thanks to graphical representation.

Input statement input x serves for reading the input value v′ and storing it in
the tuple for given variable x. Because the value of the variable is changed, execution
of input statement causes modification of the state. If the variable x is not declared,
i.e., the tuple for x does not exist in s, the final state of input statement is undefined.
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. . . . . .

s
JSK

s1
s2

s3

si

JSK
JSK

JSKJSK

s

JSK

s1

s2 s3

JSK JSK JSK JSK

s4

(a) (b)

Figure 10. Infinite cycles

[[input x]]s =

{
s [((x, l), v) 7→ ((x, l), v′)] , for ((x, l) , v) ∈ s,

s⊥ otherwise.
(21)

Programs in Jane can have nested blocks together with declarations of local
variables. Execution of a block statement

begin D;S end

follows in several steps:

• nesting level l is incremented. This step is represented by a fictive entry in the
state table

((begin, l + 1) ,⊥) ;

• local environment of variables in terms of operational semantics is created;

• local declarations are elaborated on the new nesting level l + 1;

• the body S of block is executed;

• locally declared variables are forgotten at the end of the block. This situation
is modeled by using the operation [[del]] in the Equation (6).

The semantics of the block statement is the following composition of functions:

[[begin D;S end]]s = [[del]] ◦ [[S]] ◦ [[D]](s � 〈((begin, l + 1) ,⊥)〉). (22)

4.3 Constructing the Category CState

Now we can define the category CState of states as follows:

• category objects are states defined in Section 3.2 as sequences of tuples for
variables together with special state s⊥;

• category morphisms are functions JSK : s→ s′ defined in the previous section.
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The semantics of a program in Jane is modeled in CState as a path, possibly infinite,
i.e. a composition of morphisms.

Next, we have to verify that the structure CState constructed above is a category.
Each object in a category has to have the identity morphism. In CState each state has
the identity morphism because after any sequence of statements the skip statement
represented by identity can follow.

For any two composable morphisms in a category a morphism which is their
composition has to exist. This property of category is satisfied in CState because
the semantics of a statement sequence (program) is defined by composition of mor-
phisms. Composition of category morphisms has to be associative. Our category
CState satisfies this property because morphisms are functions and composition of
functions is associative.

Our category CState has the following properties:

• the special object s⊥ = 〈((⊥,⊥),⊥)〉, undefined state, is a terminal object of
our category; from any object there is a unique morphism to this state;

• the initial state s0 = 〈((⊥, 1),⊥)〉 is the initial object of our category;

• the category CState has no products, because a program written in Jane cannot
be simultaneously in more than one state.

We can state that CState is a category without products and with initial and terminal
objects.

5 EXAMPLES OF MODELING PROGRAM EXECUTION IN CSTATE

In this section we present the modeling of programs execution in category CState on
selected examples. For better illustration we use only graphical representation of
states by tables.

Example 1. We consider a simple program P1 written in Jane with one nested
block with local variables which are modified inside the block (Listing 1).

var x;
var y;
x := 1;
input y;
begin

var x;
x := 5;
y := y + x;

end;

y := y − x

Listing 1. Program P1 with nested block
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s0
⊥ 1 ⊥

Figure 11. Initial state

Let the input value for y be 10. The initial state s0 has only starting information
in the state table (Figure 11).

Declarations of variables x and y are modeled as endomorphisms on s0. They
create global environment of variables. Assignment statement changes the state s0
to s1 according to Equation (13). Input statement stores the value 10 to the vari-
able y and the state is changed to s2. Entering the local block causes incrementation
of the nesting level and the local declaration of the variable x creates a new entry, ac-
tual local environment of variables and the state s2 becomes unchanged (Figure 12).

s2
x 1 1

y 1 10

begin 2 ⊥
x 2 ⊥

Figure 12. State s2 with new environment of variables

Execution of two block statements leads to the state s4 according to Figure 13 a).
The ending of local block deletes all entries with the maximum nesting level and
creates the state s5 in Figure 13 b).

s5
x 1 1

y 1 15

begin 2 ⊥
x 2 5

s4
x 1 1

y 1 15

begin 2 ⊥
x 2 5

(a) (b)

Figure 13. Creating and deleting the local environment of variables

Finally, the last assignment statement creates the final state s6 in Figure 14.
The semantics of the program is expressed as follows:

([[y := y − x]] ◦ [[del]] ◦ [[y := y + x]] ◦ [[x := 5]] ◦ [[var x]]◦
◦[[input y]] ◦ [[x := 1]] ◦ [[var y]] ◦ [[var x]]) (s0) = s6

(23)
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s6
x 1 1

y 1 14

Figure 14. State table after the program finishes

and is illustrated as the finite path in the category of states from the initial state s0
into the final state s6 (Figure 15).

s0

s1

Jvar yK

Jvar xK

Jx := 1K

s2
Jinp

ut
yK

Jvar xK

s3

Jx := 5K

s4

Jy := y − xK
s5

JdelK
s6

Jy := y + xK

CState

Figure 15. The path of execution P1

Example 2. Consider the program P2 in Listing 2 computing the factorial of its
input value. Following the definitions in Sections 4.1 and 4.2, states changed during
execution of this program are in Figure 16, and Figure 17 shows the path (com-
position of morphisms) how P2 is executed step-by-step from the initial state s0 to
the final state s6. In this figure, while statement is executed in five steps that are
illustrated from state s2 to state s6, i.e., this cycle is composition of all these steps.
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var x;
var y;
input x;
y := 1;
while ¬(x = 1) do (y := y ∗ x; x := x− 1)

Listing 2. Program P2 for factorial computation

The semantics of the program is expressed as follows:

([[skip]] ◦ [[x := x− 1]] ◦ [[y := y ∗ x]] ◦ [[x := x− 1]] ◦ [[y := y ∗ x]]◦
◦[[y := 1]] ◦ [[input x]] ◦ [[var y]] ◦ [[var x]]) (s0) = s6.

(24)

s1
x 1 3

s2
x 1 3

y 1 1

s3
x 1 3

y 1 3

s4
x 1 2

y 1 3

s5
x 1 2

y 1 6

(a) (b) (c)

(d) (e) (f )

s0
x 1 ⊥

s6
x 1 1

y 1 6

(g)

y 1 ⊥ y 1 ⊥

Figure 16. States changes during execution of P2

6 CATEGORICAL SEMANTICS FOR PROCEDURES

In the previous sections, the categorical model of programming language Jane
was defined. Our model is based on category CState of states. In this section,
our approach for the language with procedure declarations and procedure calls is
extended. A procedure is a named block that can be called possibly more times by
its name from the main program or from another procedure. A procedure has to
be declared within block declarations. A procedure declaration consists of its name
(possibly with parameters), the local declarations and the body of a procedure.
When a procedure is called, its parameters are replaced by arguments and the body
of a procedure is assigned to its name. In this paper, for simplification only one
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s1

s3 s4
s6s5

Jy := 1K

Jy := y ∗ xKJx := x− 1K Jx := x− 1K

Jwhile ¬(x = 1) do (y := y ∗ x;x := x− 1)K

s0

Jvar xK

Jinput xK

Jy := y ∗ xK

s2

Jvar yK

CState

Figure 17. The path of execution P2

parameter is considered but it is easy to extend this approach to a finite number of
parameters.

Firstly, formal description of extended language Jane is formulated. We intro-
duce a new syntactic domain Dp ∈ ProcDecl for sequences of procedure declara-
tions with the syntax:

Dp ::= proc p(t); S return;Dp | ε

where Dp is a sequence of procedure declarations and ε denotes the empty sequence
of declarations. A procedure declaration contains procedure name p, its parameter t
and its body, a block statement S.

Because of the new sort of declarations, we have to change also the syntax of
the block statement and add the syntax for the procedure call with the argument
that can be an arithmetical expression e:

S ::= ... | begin D;Dp;S end | call p(e).

The semantics of a program is modeled as a collection of categories of states.
The category CState constructed above serves for a main program. A declaration of
a procedure p causes the construction of the category Cp similarly as the category
CState. Constructing a new category of states for every declared procedure enables
multiple and nested calling of procedures. Every procedure call can start with
a different initial state depending on the passed value of its argument and the values
of global variables in this state.

Let p be a declared procedure with the parameter t. Its categorical model
Cp has the initial state sp0 = 〈((⊥, 1),⊥)〉 and a special object for undefined state
sp⊥ = 〈((⊥,⊥),⊥)〉, from definition. By construction of such categories for every
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declared procedure we build step by step a procedure environment of a program. In
other words, every procedure declaration allows to create the corresponding category
of states and to update a procedure environment.

The connection between constructed categories of states can be carried out by
functors. Two functors are constructed:

C : Statm→ CState → Cp,
R : Statm→ Cp → CState.

The functor C serves for calling a procedure p. Its definition comes from the following
considerations. Let p be a procedure declared by

proc p(t);Sp return

where Sp is the body of procedure p. If the statement S in CState is a call of the
procedure p with argument e, call p(e), in a state s, then the functor C has to:

• update the initial state sp0 in Cp by the state s in CState;

• append a new entry in sp0 for parameter t;

• increment the nesting level;

• pass the value [[e]]s of the argument to the new entry for parameter t.

If the statement S is other than a call of a procedure, then the image of a state s
is the undefined state sp⊥ = 〈((⊥,⊥),⊥)〉, the terminal object in Cp. Formally, the
functor C works on objects as follows:

C(S)s =

{
sp0[〈((⊥, 1),⊥)〉 7→ s � 〈((t, l + 1), [[e]]s)〉], if S = call p(e),

sp⊥, otherwise.
(25)

For any morphism s → s′ in CState its image by C is defined as follows to satisfy
functoriality of C:

C(S)(s→ s′) =

{
sp0 → sp⊥, if S = call p(e),

idp
sp⊥
, otherwise.

Notation (25) denotes replacing the original state sp0 by a new sequence of en-
tries from the calling program. That can be considered as an extension of state
actualization (14) introduced in Section 7.

Executing a procedure p can be modeled in the corresponding category Cp of
states as a finite path of states. The final state is denoted by spf and it is indicated
by return. The role of functor R is to:

• forget entries in spf of locally declared variables; and

• pass the possibly changed values of global variables to the category CState;
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because finishing the procedure body will cause forgetting the values of locally de-
clared variables and decrementation of the nesting level. Therefore, the formal
definition of functor R is simpler:

R(S)sp =

{
[[del]](sp), if sp = spf ,
s⊥, otherwise,

R(S)(sp → s′p) =

{
s⊥ → s′, if S = return,
ids⊥ , otherwise.

(26)

The semantics of the statement call p(e) is then defined by the commutative dia-
gram (Figure 18) as a composition

[[call p(e)]] = R ◦ ([[Sp]] ◦ C(call p(e))).

sp0 spf

s s′

C R

Jcall p(e)K

JSpK

Figure 18. The semantics of procedure calling

As states can be considered as sets of functions, the morphisms s⊥ → s′ always
exist [4]. Similarly, the functors C and R can be defined in a similar way between
any two categories of states depending on the declared and called procedures. In
this paper, recursive procedures are not yet discussed; they are the subject of further
research.

Example 3. Consider a fragment of program P in the language Jane with proce-
dures.

P :
. . .
proc q(t2);Sq return

proc p(t1); . . .
proc r(t3);Sr return

. . .
call r(e3);
. . .
call q(e2);

return

. . .
call p(e1);
. . .
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s0

s

s′

Jcall
pK

sq0

sqfin

sr0

srfin

Cq
Cr

sp0 spfin

sp

s′p

Jcall rK

s′′p
Jcall qK

Cp

Cq Cr

Cp

Rq

Rr

Rp

s′′′p

Figure 19. The collection of categories for program P

sp s′p
Jcall r(e3)K

sr0 srf. . .

Cr Rr

s′′p s′′′p
Jcall q(e2)K

sq0 sqf. . .

Cq Rq

. . . . . .. . .sp0 spf

s

Cp

s′

Rp

s0

Jcall p(e1)K

. . .

sf

...

Figure 20. Diagram for program P
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In the main program P , procedures p and q are declared. The procedure p is
called from the main program. In the procedure p, the local procedure r is declared
and called and the global procedure q is also called. Semantics of this program
is defined according to the commutative diagram in Figure 20 and illustrated in
Figure 19.

Program P is executed as follows: declaration of procedure q in main program
causes the construction of category Cq and declaration of procedure p causes the
construction of category Cp.

Procedure p is called in the main program. Functor Cp initiates the state sp0
from s and the body of p is executed. In p a local procedure r is declared, i.e.,
category Cr is constructed. Calling of R in some state sp initiates the state sr0 by
functor Cr and the body of Sr is executed to some final state srf . Then control is
passed back to the body of p by functor Rr and execution follows from some state s′p.
Similarly, execution of the statement call q(e2) starts in some state s′′p and ends
in a state s′′′p. Execution of p ends in some final state spf and control is passed back
to main program by functor Rp to some state s′.

7 DISCUSSION ABOUT ACHIEVED RESULTS
AND OPEN PROBLEMS

In this section we discuss our results and their applicability in real programming.
We also present advantages and disadvantages of this approach and several open
problems together with ideas how to solve them in the future research. We an-
alyzed these topics on three real imperative programming languages: Modula 3,
Python and ABAP. Each of them is used in programming practice but repre-
sents different application areas. Modula 3 [5] is a strongly typed extension of
Niklaus Wirth’s Modula 2 language enabling modular structure of programs and
because of its precise definition and understandability is now used mostly for ed-
ucational purposes. Python [29] is widely used programming language designed
for general purposes for writing applications of wide spectrum. ABAP [20] is
a language used in SAP for developing business application support and develop-
ment.

After analysis of these programming languages we recognized that they have
many common constructions differing in concrete syntax but with the same abstract
syntax which is important for semantic definitions. Therefore we introduced sample
programming language Jane containing most of the constructions known from real
procedural languages and we defined categorical semantics for it. This definition is
simply applicable for corresponding constructions in real languages.

The basic model of categorical semantics is the construction of category of states.
A state is the fundamental concept and the role of categorical semantics is to define
a change of states during the execution of a program. It can be considered as some
tracing but based on exact mathematical definitions. In this regard our approach
can be useful for several purposes.
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First, it enables to model execution of programs or their problematic parts be-
fore their actual execution on computers and helps to avoid undesirable runtime
errors. This can significantly contribute to the higher reliability of final programs.
Second, the execution of programs can be illustrated graphically in contrast with
the other semantic methods. Graphical demonstration of program execution is more
responsive for humans and leads to better understanding what happens during the
execution on computer. Third, our approach shows the dynamics of program exe-
cution. Last but not least, we hope that our approach supported by suitable appli-
cation with graphical output can be well applied also in education of programmers
to show program execution step by step.

Our approach presented in this paper can be divided into two parts. In the
first part we define categorical semantics for conventional statements of imperative
languages that are often called Dijkstra’s statements: assignment, empty statement,
composition of statements, conditional statement and cycle statement. Each of
analyzed languages has these basic statements with inconspicuous differences in
concrete syntax. The conditional statement if b then S is semantically equivalent
with the statement

if b then S else skip

in our language Jane. Similarly, the cycle statement for x = e1 to e2 do S is
sematically equivalent with the following statements

x := e1; while x ≤ e2 do (S; x := x + 1).

All analyzed languages contain unnamed block statement with local declarations.
The semantics of this statement is defined in our approach.

In this paper we limit our language on two basic types: integer and Boolean. It is
by the reason to concentrate on our idea without many technical details. Extending
Jane with other types requires to extend the concept of state with type, i.e.

s : Var×Type× Level ⇀ Value

together with corresponding representation of the semantic domain Value. For
instance, let T1, T2 and T3 be types. Table representation of a variable a : T of
record type T

type T = record

first : T1

scnd : T2

third : T3

end record

can be as follows:
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var type level value
. . . . . . . . . . . .
a T l v1

l v2
l v3

. . . . . . . . . . . .

where v1 : T1, v2 : T2 and v3 : T3 are particular values of record fields. In similar
way further types can be introduced into language. Type information needs to
be reflected also in declarations extending them with type information. We note
that our concept of state works as abstraction of static memory, therefore it is not
appropriate for dynamic structures as pointers.

Each of analyzed languages has input statement with the semantics defined in
the categorical semantics. The output statement does not affect semantics; therefore
we do not concern it.

Another problem arises when we consider unconditional jump statement go to

and exception. In such cases indirect semantics [19] has to be used. Its principle is
to construct continuation functions

cont i : S × State ⇀ State

for i = 0, . . . , n, where ci defines a change of state arising from execution of the rest
of program. For instance, if a program consists of the sequence of statements

S1;S2; . . . ;Sn−1;Sn

then c0 is the identity on final state sfin, c0 = idsfin , c1 returns the change of state
caused by execution of the statement Sn, c2 returns state change caused by execution
of the statements Sn−1;Sn and so on. The semantics of the whole program is defined
by a function cn returning the state after executing the sequence S1;S2; . . . ;Sn−1;Sn.

Exceptions also break program control and causes execution of corresponding
handler. Therefore indirect semantics shall be defined also for them. We note that
if we consider programming language with jumps and executions we will have to
construct a new category of states with the same objects, states; but the morphisms
will be continuation functions.

The second part of our paper concerns procedures. We construct model of a pro-
gram with declared procedures as a collection of state categories. The construction
of category of states for each declared procedure allows us to call it repeatedly, more-
over with nested procedures calls. This collection of categories is also graphically
better arranged as modeling of the whole program execution merely in one category
of states.

A procedure declaration causes construction of a new state category and the
statement call is modeled by a functor C copying arguments and actual state to
the initial state of called procedure. We use call-by-value approach. A functor R
returns control to calling program copying values of global variables. This idea
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enables repeated calls of a procedure with different values of arguments and also
nested calls of procedures. Further, recursive procedures can be also appropriately
modeled by this approach by constructing a new category of states for each unfolding
of recursion (Figure 21).

CState

fact(4)

C

C

C

C

R

R
R

R

fact(3)

fact(2)fact(1)

Figure 21. Unfolding recursion

We can point out that we can define the categorical semantics of programs writ-
ten in real procedural languages using the language constructions discussed above.
This research is now in process and there are several open problems.

Modern programming languages enable to program parallel processes. Calling
a process causes starting a new task without stopping the current calling program.
Independent parallel processes can work without any problems and can be modeled
by our categorical semantics. In the case when communication between processes
appears, i.e. sharing and modifying data are necessary, the synchronization is needed.

The language Python contains special module Thread with synchronization func-
tions acquire and release serving for synchronization. Modula 3 has special in-
terface Thread containing procedures supplying synchronization services. ABAP
solves creation of new task using mechanism of Remote Function Call (RFC) and
synchronization has to be implemented additionally.

The idea how to model synchronization between processes by categories can
be solved as follows. Creating of new process can be solved by a functor Thread
similarly as calling of procedure. The communication between parallel processes is
realized through shared data. To ensure mutual exclusion we need to lock shared
data during modifying them and unlock them after the transmission. That can
be modeled as a special functor Mut between state categories of communicating
processes which writes special token locked into the state where shared data are
being modified. This idea requires to extend the definition of a state with a new
column indicating locking or unlocking the data.

We note that our approach is not available for non-deterministic processes. For
modeling them another semantic method is more appropriate – game semantics [11].
Other open problems for our further research are how to model modules (as in
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Modula 3) and objects as object-oriented paradigm. It could be interesting to define
categorical semantics for component-based program systems.

8 CONCLUSION

A new approach semantics is presented based on categories of states. We constructed
the category of states CState where states are objects and state changes (statements
executions) are morphisms. Starting from the analysis of real procedural program-
ming languages we have defined a sample programming language Jane to illustrate
our approach. The semantics of a program is defined as a composition of morphisms
from the initial state into a final state and it is represented in our category as a path
of morphisms that represent each program step.

In the second part of our paper we extended the language Jane with proce-
dures and defined the model as a collection of categories connected by functors for
procedure calls and returns. Construction a collection of categories of states enables
to model repeated calls of procedures, nesting of them and recursive calling.

Our categorical model can express the dynamics of program execution and has
a great illustrative power when expressing execution of programs graphically, i.e.
step by step.

We have discussed several open problems, for instance how to extend our model
by adding types and how to model parallel processes. We also stated which con-
structs of programming languages are not appropriate for this approach.

A collection of categories inspire us to use our approach as a basis for model-
ing component composition into component based systems. Functors C and R are
foundations for modeling interactions between components which are necessary to
investigate in details. Our approach, in which an actual state within calling sub-
routine is copied into the initial state of the called program, seems to be a suitable
way for the instantiation of a particular component state when it is invoked.
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[31] Steingartner, W.—Novitzká, V.: A New Approach to Operational Semantics
by Categories. Proceedings of the 26th Central European Conference on Informa-
tion and Intelligent Systems (CECIIS 2015), Varaždin, University of Zagreb, 2015,
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