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Abstract. Cloud computing becomes increasingly popular for hosting all kinds of
applications not only due to their ability to support dynamic provisioning of vir-
tualized resources to handle workload fluctuations but also because of the usage
based on pricing. This results in the adoption of data centers which store, process
and present the data in a seamless, efficient and easy way. Furthermore, it also
consumes an enormous amount of electrical energy, then leads to high using cost
and carbon dioxide emission. Therefore, we need a Green computing solution that
can not only minimize the using costs and reduce the environment impact but also
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improve the performance. Dynamic consolidation of Virtual Machines (VMs), using
live migration of the VMs and switching idle servers to sleep mode or shutdown,
optimizes the energy consumption. We propose an adaptive underloading detection
method of hosts, VMs migration selecting method and heuristic algorithm for dy-
namic consolidation of VMs based on the analysis of the historical data. Through
extensive simulation based on random data and real workload data, we show that
our method and algorithm observably reduce energy consumption and allow the
system to meet the Service Level Agreements (SLAs).

Keywords: Cloud computing, green computing, virtual machine, dynamic consol-
idation

1 INTRODUCTION

Nowadays the Cloud computing is rapidly developing and it has already been used
in life sciences [1], climate [2], astrophysics [3], engineering, and so forth. All the
above mentioned applications in modern scientific research and common lives are
resulting in a very large number of data centers generating all over the world. As
corporations look for more energy efficiency, they examine their operations more
closely. In order to handle the sheer magnitude of today’s data, data centers have
to use much more power as they become larger, denser, hotter, and significantly
more costly to operate. The United States Environment Protection Agency (EPA)
report to Congress on servers and data center energy efficiency estimates that USA
data centers consume 1.5 % of total USA electricity consumption for a cost of $ 4.5
billion [4]. From the year 2000 to 2006, data center electricity consumption has
doubled in the USA and is currently on a road to double again by 2011 to more
than 100 billion kWh that equals to $ 7.4 billion in annual electricity costs [5]. These
data centers not only consume huge energy but also are a major contributor towards
company’s electricity bill [6]. Gartner warns that today’s data centers are big energy
consumers and are filled with high density power hungry IT equipments. If data
center managers remain unaware of these energy issues they would most probably
run the risk of doubling their energy costs between 2005 and 2011 [7]. If energy
costs continue to double every five years, they will substantially increase to 1 600 %
in the scope of the years 2005 and 2025 [8].

On the other hand, power is required to feed the cooling system operation in
the data center. For each watt of power consumed by computing resources, an ad-
ditional 0.5–1 W is required for the cooling system [9]. In addition, high energy
consumption by the infrastructure leads to substantial carbon dioxide (CO2) emis-
sions contributing to the greenhouse effect. So, in some sense, we try to optimize the
service energy, and then reduce the energy of cooling system and carbon dioxide.

The reason for such extremely high energy consumption is not only just the
large quantity of computing resources and the power inefficiency of hardware, but it
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also lies in the inefficient usage of these resources. Data center energy savings can
come from a number of places: on the hardware and facility side, e.g. by designing
energy-efficient servers and data center infrastructures, and on the software side, e.g.
through resource management. Our approach is motivated by two observations from
real data sets collected from operating Internet services. First, data collected from
more than 5 000 production servers over a six-month period has shown that although
servers usually are not idle, the utilization rarely approaches 100 % [10]. Most of the
time servers operate at 10–50 % of their full capacity, leading to extra expenses on
over-provisioning. Moreover, managing and maintaining over-provisioned resources
result in an increase of the Total Cost of Ownership (TCO). Another problem is the
narrow dynamic power range of servers: even completely idle servers still consume
about 70 % of their peak power [11]. Therefore, keeping servers underutilized is
highly inefficient from the energy consumption perspective. Assuncao et al. [12]
have conducted a comprehensive study on monitoring energy consumption by the
Grid’5000 infrastructure. They have shown that there exist significant opportunities
for energy conservation via techniques utilizing switching servers off or to low power
modes.

With the capabilities of the virtualization technology, Cloud providers can create
multiple VMs instances on a single physical server, thus improving the utilization
of resources and increasing the Return On Investment (ROI). The reduction in
energy consumption can be achieved by switching idle physical machines to low-
power modes or shutdown, thus eliminating the idle power consumption. Although
by using live migration the VMs can be dynamically consolidated to minimize the
number of physical nodes according to their current resource requirements [13],
efficient resource management in the Cloud is very important as modern service
applications often experience highly variable workloads causing dynamic resource
usage patterns. For example, researchers have reported the magnitude of daily
workload fluctuations to be in the 40–50 % range for social networking applications,
and about 70 % for e-commerce Web sites [14].

In the consolidation of VMs, the performance degradation is taken into account
when an application encounters an increasing demand resulting in an unexpected
rise of the resource usage. If the resource requirements of an application are not
fulfilled, the application can face increased response times, time-outs or failures. En-
suring reliable Quality of Service (QoS) defined via SLAs established between Cloud
providers and their customers is essential for Cloud computing environments; there-
fore, Cloud providers have to deal with the energy-performance trade-off, seeking
the minimization of energy consumption while meeting the SLAs.

The key problem of this paper is on energy and performance efficient optimiza-
tion using resource management strategies that can be applied in a virtualized data
center by a Cloud provider. We investigate performance characteristics of heuristic
algorithms for the problem of energy and performance through efficient dynamic
VMs consolidation. In order to optimize performance and energy efficiency, we de-
sign integrated strategies for managing energy consumption and performance. These
strategies include overloading and underloading detection based on historical data
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from the source by the host, and VMs selection based on the performance of the
VMs. Then, we propose and evaluate novel heuristics that adapt their behavior
based on an analysis of historical data from the resource usage by VMs to optimize
the VM deployment. In the meantime, we evaluate the proposed algorithms by ran-
dom workload and real workload data which come from the resource usage by more
than a thousand PlanetLab VMs provisioned for multiple users using the CloudSim
toolkit. Simulation results show that the algorithms significantly not only reduce
energy consumption but also maintain a high standard of the SLAs.

The rest of the paper is organized as follows: In Section 2, we discuss the
related work. Section 3 describes the architectural model of the system. Section 4
presents the challenges of VM live migration and the details of the analysis. In
Section 5, we present energy and performance aware dynamic consolidation of VMs.
Section 6 describes the simulations and discusses the results. Finally, this paper
draws a conclusion in Section 7.

2 RELATED WORK

In the first work, power management has been researched in the context of virtu-
alized data centers [15]. The authors have proposed local and global management
policies to manage resources. At the local level, the system leverages the guest OS’s
power management strategies and the global manager gets the information on the
current resource allocation from the local managers. Then, according to its policy,
it decides whether the VMs placement needs to be adapted. But, the authors have
not proposed a method for automatic resource management at the global level. Job
scheduling policies in a cluster have been studied in [16]. The authors considered
that there are servers with different performance and power characteristics, and
the scheduler is not aware of the service times of jobs. Simulation results showed
that each one of the three introduced policies has its own advantages and disadvan-
tages. The shortest queue with energy efficiency priority (SQEE) policy, which is
energy awareness, reduces the energy consumption of the system and yields average
job response times. The shortest queue with high performance priority (SQHP)
policy is optimized for performance, and thus, it outperforms both the other poli-
cies, while it yields the highest energy consumption. Lastly, the performance-based
probabilistic-shortest queue (PBP’CSQ) policy performs the worst, especially at
high load, and yields average energy consumption. It is the policy which provides
the most effective load balance among the two server types, mainly at medium load.
Their management policies are local and, thus, not suitable in a Cloud computing.
Even worse, they do not dynamically adjust the number of VMs running on a given
host. A comprehensive energy consumption analysis of Cloud computing has been
presented in [17]. The analysis considered both public and private Clouds and in-
cluded energy consumption in switching and transmission as well as data processing
and data storage. Their conclusion is that the energy consumption of Cloud com-
puting needs to be considered as an integrated supply chain logistics problem, in
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which processing, storage, and transport are all considered together. Using this ap-
proach, they have shown that Cloud computing can enable more energy-efficient use
of computing power, especially when the users’ predominant computing tasks are of
low intensity or infrequency. In [18], the authors have presented a novel adaptive
scheduling strategy or adaptive energy-efficient scheduling (AEES) for periodic, in-
dependent real-time tasks on his dynamic voltage scaling (DVS) technique enabling
heterogeneous clusters. AEES seamlessly integrates two algorithms-energy-efficient
global scheduling algorithm (EEGS) and local voltage adjusting (LVA). EEGS is
implemented in the scheduler that is able to adaptively adjust voltages according to
system load to guarantee deadlines of all waiting tasks in local queues. LVA, imple-
mented in the local adjuster, can decrease voltage levels of waiting tasks to conserve
energy when a task is scheduled and dispatched to a computing node. Their method
and strategy only improve the energy consumption through the DVS technology. In
our simulation tests, we use the Dynamic voltage and frequency scaling (DVFS),
which is more easily implemented than DVS.

A linear programming (LP) formulation and heuristics to control VMs migration
have been presented [19], which prioritized VMs with steady capacity. This is possi-
ble by including constraints to define that VMs with steady usage are not migrated
and virtual machines with variable capacity can be migrated to reduce the number
of required physical servers. Their main aim is to minimize the migration problem in
virtualized data centers. A threshold-based dynamic resource allocation scheme has
been proposed for Cloud computing that dynamically allocates the virtual resources
among the Cloud computing applications based on their load changes (instead of al-
locating resources needed to meet peak demands) and can use the threshold method
to optimize the decision of resource reallocation [20]. The proposed threshold-based
dynamic resource allocation scheme is implemented by CloudSim, and experimental
results show that the proposed scheme can improve resource utilization and reduce
the user’s usage cost. Speitkamp and Bichler in [21] described linear programming
formulations for the static and dynamic server consolidation problems. They also
designed extension constraints for limiting the number of VMs on a physical server,
guaranteeing some VMs that are assigned to different physical servers, mapping
VMs to a specific set of physical servers that contain some unique attribute, and
limiting the total number of migrations for dynamic consolidation. In addition, they
proposed an LP-relaxation based heuristic for minimizing the cost of solving the lin-
ear programming formulations. However, the authors only concern about the cost
but do not concern about the performance and energy efficiency. The authors in [22]
revealed that processor time is not a satisfactory criterion for accurate estimation
of power consumption by a VM and that some in-processor events affect processor
power consumption more significantly than others. They suggested a model for esti-
mating the energy consumption that calculates the amount consumed by a VM via
monitoring of processor performance counters. Based on the proposed estimation
scheme, they have proposed an energy-aware VM scheduler that can limit the energy
consumption of the VM to their energy budget. Conventional VM schedulers only
consider the processor time when it comes to scheduling decisions. Different from its
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traditional counterparts, the energy-credit scheduler uses the energy consumption
rates of VMs for scheduling. It schedules VMs so that their energy consumption rates
remain below user-defined values. However, the authors only take into account the
energy and they do not concern about the performance. Berral et al. have studied
the problem of dynamic consolidation of VMs running applications with deadlines
that are set in the SLAs [23]. Using machine learning techniques they optimize the
combination of energy consumption and SLAs fulfillment. The proposed approach
is designed for specific environments, such as High Performance Computing (HPC),
where applications have deadline constraints. Therefore, such an approach is not
suitable for environments with mixed workloads. In [24], the authors applied an
approach based on the idea of setting fixed utilization thresholds. However, fixed
utilization thresholds are not efficient for IaaS environments with mixed workloads
that exhibit non-stationary resource usage patterns.

Our previous works [25, 26, 27], includes resource deployment and task schedul-
ing model and algorithm, mainly optimize the cost, the time of processing and
transferring. Unlike the above discussed studies, this paper proposes an approach
which effectively deals with stringent QoS requirements, multi-core CPU architec-
tures, heterogeneous infrastructure and heterogeneous VMs consolidation to save
the energy consumption and keep performance. Moreover, we propose an energy
and performance aware heuristic algorithm based on the analysis of historical data,
which dynamically optimizes the allocation of VMs at runtime according to current
resource utilization. At the same time, the idle node is shut down or switched to
sleep mode to minimize energy consumption.

3 ARCHITECTURAL MODEL

Our main purpose is to reduce the energy consumption and to maintain the quality
of service. Our research object is infrastructure as a service (IaaS), which contains
a large number of data centers consisting of M heterogeneous physical nodes. The
performance of each node is characterized by the CPU capacity, amount of RAM
and network bandwidth. The CPU capacity is defined by the Millions Instructions
Per Second (MIPS). We do not consider the disk size dimension because we assume
that network-attached storage (NAS) is used as the main storage across the cluster.
The potential benefits of network-attached storage, compared to file servers, include
easier administration and simple configuration. So, the servers in the data center
have not local disk and the storage is provided as NAS to enable live migration
of VMs. In addition, a lot of users request the resources provided by the system
hosted in a Cloud computing environment. These resources are characterized by
requirements for processing power defined in MIPS, amount of RAM and network
bandwidth. As the requirements of each user are different, the workload and the
using time of each VM and physical node are also different.

The architecture of the system is described in Figure 1. Multiple independent
users submit requests for provisioning of N heterogeneous VMs, which have various
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MIPS, RAM, and bandwidth. The user negotiates SLAs with the Cloud provider.
In the running time, if the provider violates the SLAs, it should pay a penalty for
the users. In addition to providing SLAs, the system should provide efficient energy
management. This is realized through a software layer of the system which is tiered
comprising local and global managers. The local manager is in each of the nodes.
The aim of the local manager is to monitor the node CPU utilization and RAMs
available capacity, resize the VMs according to each requesting resource, and decide
when and which VMs should be migrated from the node. The global manager is
in the master node and gets information from the local manager to master the
overall view of resource utilization. At the same time, global manager is in charge
of optimizing the VM placement and decides to set up or shut down a physical node
according to its CPU utilization.

Figure 1. Architecture system

At present, physical servers are equipped with multi-core CPUs. If two VMs
are running on the same server, the CPU utilization of the server is estimated as
the sum of the CPU utilization of the two VMs. This is the case with memory
resources. For example, let (10 %, 20 %) be a pair of the CPU and memory requests
of a VM, and (7 %, 15 %) be that of another VM. Then, the utilizations of a server
accommodating the two VMs are estimated at (17 %, 35 %). To prevent CPU and
memory usage of a server reaching 100 %, we have to impose an upper bound on
resource utilization of a single server with some threshold value. The main idea
behind this is that 100 % utilization can cause the server queue to explode (that
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is, the queue length increases abruptly and in an uncontrolled way), then you have
a performance degradation. The only limitation is that the CPU capacity required
for a VM must be less or equal to the capacity of a single core. The reason is that
if the CPU capacity required for a VM that is higher than the capacity of a single
core, a VM must be deployed on more than one core in parallel. However, we do not
assume that VMs can be arbitrarily parallelized, as there is no a priori knowledge of
the application running on a VM and automatic parallelization is a complex research
problem.

4 CHALLENGES OF LIVE MIGRATION

Live migration describes the process of copying a VM from one physical machine
to another physical machine, while the VM is still powered on [13]. It provides
special benefits to server virtualization and becomes a significant tool for a variety
of scenarios. Many researches [28, 29, 30, 31] have verified that consolidating VMs
through live migration of an optimal number of servers and selectively switching
off underutilized servers can reduce data center’s heat loss and power consumption,
but it causes performance loss of processes running inside a VM as well as energy
overhead. For example, previous studies demonstrate that the transmission rate of
an Apache Web Server slows down by 12 % to 20 % [13] and energy consumption
may increase by up to 10 Watt during live migration [32]. So, in order to optimize
the performance and energy consumption, some criteria are used to test optimizing
algorithms.

1. Total Migration Time

Many researchers agree that, besides some constant overhead for resource reser-
vation on the target host, the total migration time Tmig highly depends on the
total amount of memory Vmig that has to be transmitted from source to target
hypervisor and the average network link speed (network bandwidth) Bw between
both hosts. It varies linearly with Vmig and inversely proportional to Bw and
can be calculated as in (1).

Tmig =
Vmig

Bw

(1)

2. Performance Degradation

Previous studies have demonstrated that the transmission rate of a Web Server
slows down by 12 % to 20 % and [34] has shown that the average performance
degradation including the downtime of web-application can be estimated at ap-
proximately 10 % of the CPU utilization. Thus, for our experiments we define
degradation experienced by a VMj as shown in (2).

Pdmigj = α ·
∫ t0+Tmigj

t0
Sj(t) dt (2)
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where Pdmigj is the total performance degradation by VMj and t0 is the time
when the migration begins; Tmigj is the time taken to complete the migration.
Sj(t) is the CPU utilization of the VMj and α is the coefficient that can be
obtained from training.

3. Energy Consumption of Live Migration

VM live migration leading to the power increasing of the source and destina-
tion servers has been verified by reference [13]. First, the power influence of
migration on the original server goes down with the increase of CPU usage of
the migrated VM, but for the destination server, the influence is stable, which
is around 10-Watt power cost. Additionally, the cost of migration processing is
not impacted by the CPU usage of a VM. So, the energy consumption of live
migration can be expressed as (3):

Emig =
∫ t0+Tming

t0
(1 + δ) · Ps(j)(t) dt+

∫ t0+Tming

t0
(1 + λ) · Pd(j)(t) dt (3)

where Emig is the energy consumption of VM live migration; Ps(j) is the power
of the source server involved in the VM migration and Pd(j) is the destination;
δ and λ are the increasing amount power of the server. According to the above
definitions, the total energy consumption is as follows (4):

E = Emig +
∫ t0

tst
Psb(j)(t) dt+

∫ tsh

t0+Tmig

Psa(j)(t) dt (4)

+
∫ t0

tst
Pdb(j)(t) dt+

∫ tsh

t0+Tmig

Pda(j)(t) dt (5)

where tst and tsh are the start time and the shutdown time of a server; Psb and
Psa are the power of the source server migrating before and after; Pdb and Pda

are the power of destination server migrating before and after.

4. Performance Metric of Live Migration

Today, customers are charged based upon resource usage or reservation. So,
the Cloud provider should meet the QoS requirements. QoS requirements are
commonly formalized in the form of SLAs, which can be determined in terms
of such characteristics as minimum throughput or maximum response time de-
livered by the deployed system. However, the performance that an application
will obtain from a given amount of resource can vary. A significant source of
variation from performance interference effects virtualized applications that are
deployed onto multicore servers. It is very important to ensure that the perfor-
mance experienced by applications is independent of whether it is consolidated
with other workloads. So, in this paper, we propose two metrics that can be
used to evaluate the SLAs delivered to any VM deployed in IaaS. The first is
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Performance Violation Percentage (PVP) (6).

PV P =
1

M

M∑
i=1

Tvi
Tai
· 100 % (6)

where M is the number of physical nodes in an IaaS; Tvi is the time during
the physical node i experiencing the utilization of 100 % to lead to an SLAs
violation; Tai is the time of the physical node i being in the active state. The
second is Performance Degradation Percentage (PDP) (7).

PDP =
1

N

N∑
i=1

Pdmigj

Prj

· 100 % (7)

where N is the number of VMs; Pdmigj is the performance degradation of the
VM j caused by migrations; Prj is the total CPU capacity requested by the
VM j during its lifetime. Both the PVP and PDP metrics are independent
and of equal importance in the characterization of the SLAs violations by the
infrastructure. Therefore, we propose a combined metric that encompasses per-
formance degradation both due to host overloading and due to VM migrations.
We denote the combined metric SLAs Violation (SLAV), which is calculated as
shown in (8).

SLAV = PV P · PDP. (8)

5 ENERGY AND PERFORMANCE AWARE DYNAMIC
CONSOLIDATION METHOD OF VIRTUAL MACHINE

Through the above analysis, we know that energy and performance are two depen-
dent aspects in all kinds of application. In this section, we propose several heuristic
algorithms for dynamic consolidation of VMs based on energy and performance
awareness. In fact, the server utilization is usually less than 50 % in Cloud comput-
ing which has most of the servers and all kinds of application servers, so, in order
to optimize the energy consumption, we should dynamically migrate VMs and shut
down the redundant servers.

Energy and performance awareness of dynamic consolidation of VMs can be
broken down into three questions:

1. determining when one or more VMs should be migrated from the server which
is overloaded or underloaded; in overloaded case, migrating virtual machine is
to keep performance, and in underloaded case, migrating virtual machine is to
reduce energy consumption;

2. determining which VM should be migrated from an overloaded or underloaded
server; and

3. determining where should be migrated into for a overloaded or underloaded
server. In the following, we discuss the above three problems.
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5.1 Overloaded or Underloaded Detection Method

A heuristic method for deciding the time to migrate VMs from a host based on
utilization threshold has been proposed in [24]. The main ideas are to set upper
and lower utilization threshold for hosts and keep the total utilization of the CPU
by all the VMs between these thresholds. If the CPU utilization of a host exceeds
the upper threshold, one or some VMs must be migrated from the host to reduce
the utilization. If the CPU utilization of a host is below the lower threshold, all the
VMs have to be migrated from this host and the host has to be switched to the sleep
mode or shut down in order to reduce energy consumption. Although the fixed value
of utilization threshold is simple, it is unsuitable for an environment with dynamic
workload, in which different classes of applications and requests can share a host. In
order to fit the threshold to a varying environment, designing an auto-adjustment
of the utilization thresholds based on the historical data is necessary.

1. Overloading Detection Method

Qiao et al. have proposed a polynomial regression modeling to predict the cen-
tral processing rate (CPU) of MapReduce jobs in a Cloud computing environ-
ment [33]. Furthermore, four different methods for adaptively adjusting the
utilization threshold have been previously proposed in literature [34]. They are
the Median Absolute Deviation, Interquartile Range, Local Regression and Ro-
bust Local Regression, respectively. In addition, their experiments showed that
the Local Regression method is the best one. In this paper, we also use the
Local Regression method to predict the upper threshold utilization of the host’s
CPU.

Local Regression based on the Loess method has been proposed by Cleve-
land [35]. The main idea of the method of LR is fitting simple models to localized
subsets of data to build up a curve that approximates the original data. The
observations (xi, yi) are assigned neighborhood weights using the tricube weight
function shown in (9).

T (u) =

 (1− |u|3)3, if |u| < 1,

0, otherwise.
(9)

Using the described method derived from Loess, for each new observation they
have found a new trend line g∧(x) = a∧ + b∧ x . This trend line is used to es-
timate the next observation g∧(xk+1) . The algorithm decides that the host is
considered overloaded and some VMs should be migrated from it if the inequal-
ities (10) are satisfied.

s ·
∧
g(xk+1) > 1, xk+1 − xk < tm (10)

where s ∈ R+ is the safety parameter; and tm is the maximum time required for
a migration of any of the VMs allocated to the host. The safety parameter s
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can be obtained from training. The training result was the best when the s took
1.2 in the training. So in this paper, with the term “LR overloading detection
method” we mean Local Regression with s = 1.2. The value of a and b are found
by minimizing the function shown in (11).

k∑
i

wi(x)(yi − a− bxi)2 (11)

where xk is the last observation, and x1 is the kth observation from the right
boundary. Let xi satisfy x1 <= xi <= xk, and, therefore, the tricube weight
function can be simplified as for 0 <= u <= 1 and the weight function is as
follows (12):

wi(x) = T

(
∆i(xk)

∆1(xk)

)
=

1−
(
xk − xi
xk − x1

)3
3

. (12)

2. Host Underloading Detection Method

Arithmetic mean (AM) and minimal utilization of host (MU)

The arithmetic mean (or simply “mean”) of a sample (x1, x2, . . . , xn) is the sum
of the sampled values divided by the number of items in the sample:

x =
x1 + x2 + . . .+ xn

n
. (13)

The method decides that the host is considered underloading and one VM,
some VMs or all the VMs should be migrated from it if the inequalities (14) are
satisfied.

h ∈ Hi | ∀a ∈ Hi, Hu(h) ≤ Hu(a) and Hu(h) < s · AM (14)

where Hu(h) is the amount of CPU currently utilized by the host h; Hu(a) is
the amount of CPU currently utilized by the host a; and s ∈ R+ is the safety
parameter. According to the AM method, if the CPU utilization of the host is
the least in all the hosts and less than the s · AM , this host is considered as
underloading. If a host is detected as underloading, some VMs or all the VMs
must be migrated from the underloading host to other host in the light of the
following VM placement method. If we change inequality (14) to inequality (15),
the AM detection method becomes MU.

h ∈ Hi | ∀a ∈ Hi, Hu(h) ≤ Hu(a). (15)

In terms of the MU method, if the CPU utilization of the host is minimal in all
the hosts, this host is considered underloading. Just as well the AM method,
the VMs have to be migrated from the underloading host.

First, all the overloaded hosts are detected using the overloading detection algo-
rithm and the VMs which are selected by the VM selecting algorithm are migrated
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from the overloading hosts to the destination hosts. Then, computing the arith-
metic mean of all the host CPU utilization, the system finds the host with the
minimum utilization compared to the other hosts with CPU utilization below the
AM, and tries to place the VM from underloading host on other hosts keeping them
not overloaded. If this can be accomplished, the VM will be migrated to the de-
termined target hosts, and the source host is switched to the sleep mode once all
the migrations have been completed. If all the VMs from the underloading host
cannot be placed on other hosts, the underloading host is kept active. This process
is iteratively repeated for all hosts.

5.2 VM Selection Method

Once the host overloading detection algorithm has run, an overloaded host is selected
and has to choose a VM to migrate to the other hosts. The key problem is a VM
selecting policy which not only saves energy consumption, but also preserves higher
performance. This section presents three policies for VM selecting. When a selecting
VM has been migrated, the host must be checked again by overloaded algorithm.
Once it is still considered as being overloaded, the VM selection policy is applied
again to select another VM to migrate from the host until the host is considered as
being not overloaded.

1. Minimum Migration Time Policy

The Minimum Migration Time (MMT) policy migrates a VM v that requires
the minimum time to complete a migration relatively to the other VMs. The
migration time is estimated as the amount of RAM utilized by the VM divided
by the spare network bandwidth available for the host j. Let Vj be a set of VMs
currently allocated to the host j. The MMT policy finds a VM v that satisfies
the conditions formalized in (16)

v ∈ Vj | ∀a ∈ Vj,
RAMu(v)

NETj
≤ RAMu(a)

NETj
(16)

where RAMu(a) is the amount of RAM currently utilized by the VM a; and
NETj is the spare network bandwidth available for the host j.

2. Maximum CPU Utilization and the Minimum CPU Utilization

The Maximum CPU Utilization (MAU) policy migrates a VM v that meets the
maximum CPU utilization. Let Vj be a set of VMs currently allocated to the
host j. The MAU policy finds a VM v which satisfies the conditions formalized
in (17)

v ∈ Vj | ∀b ∈ Vj, CPUu(v) ≥ CPUu(b) (17)

where CPUu(b) is the amount of CPU utilization currently utilized by the VM b.
Likewise, the Minimum CPU Utilization (MCU) can be expressed as follows:

v ∈ Vj | ∀b ∈ Vj, CPUu(v) ≤ CPUu(b). (18)



1348 L. Guo, Y. Zhang, Sh. Zhao

5.3 VM Placement Method

The VM placement problem that deploys all the VMs from the overloaded hosts and
underloaded hosts to other hosts makes the active host minimal and keeps better
performance. This problem can be seen as a two-dimensional bin packing problem
with variable bin width and height, where bins represent the physical nodes; items
are the VMs that have to be allocated; bin width is the available RAM (wr) amount
of the nodes; and bin height is the available CPU (hc) capacities of the nodes.
A setV = {v1, v2, vi, . . . , vn}, which vi = {wri, hci} is an element, is waiting for
allocation VMs, and destination host machine set is H = {h1, h2, . . . , hm}, hj =
{Wrj, Hcj}. Find a sub set H ′ of H, H ′ = {h1′, h2′, . . . , hm′}, hj ′ = {Wrj

′, Hcj
′}

H ′ = {h′1, h′2, . . . , h′|H|′} ⊂ H, hj
′ = {Wrj

′, Hcj
′} (19)

and set up a mapping f :V → H ′

Min|H|,Min|E|, s.t.
∑

vi→hs′j

hci < Hc′j,
∑

vi→hs′j

wri < Hr′j. (20)

As the bin packing problem is NP-hard, we apply a greedy strategy. We use the
modification of the algorithm denoted Power Aware Best Fit (PABF). Firstly, get
all the VMs and hosts, then allocate each VM to a host that provides the least
increase of the power consumption caused by the allocation. This allows to leverage
the node heterogeneity by choosing the most power-efficient ones first. The details
of the PABF are listed in Algorithm 1. The complexity of the algorithm is O(nm),
where n is the number of hosts andm is the number of VMs that have to be allocated.
Similarly, the other methods like Best Fit Decreasing (BFD), First Fit Decreasing
(FFD) and First Fit (FF) can also be implemented.

5.4 The General Optimizing Algorithm of VM Deployment

The general optimizing algorithm of VM deployment is shown in Algorithm 2.
Firstly, each host is checked by the overloading method, and determines whether
a host is overloaded. If the host is overloaded, the VM selection method chooses
a VM from the overloaded host and adds it to waiting for migration list. This op-
eration is repeated until the load of the overloaded host drops below the threshold.
Once the hosts are checked by the overloaded method and build the migration list
of VMs, the PABF optimization algorithm is applied to deploy the VMs of waiting
for migration. Secondly, applying the underloading method finds the underloaded
host and using the VM deployment method deploys the VMs from these hosts. In
the worst case, the complexity of the algorithm is O(n+nm+mn2), where n is the
number of hosts and m is the number of VMs that have to be allocated.
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Algorithm 1: Power aware best fit (PABF)
1. input: host list, vm list, output: mapping of vm to host
4. for vm in vm list do
5. minPower = plus infinity
6. vmMappingHost = null
7. for host in host list do
8. if a host has enough resources for VM then
9. power = computing (host, VM)
10. if power < minPower then
11. vmMappingHost = host
12. minPower = power
13. end
14. end
15. end
16. if vmMappingHost 6= NULL then
17. Map.add(vm, vmMappingHost)
18. end
19. return vmMappingHost
20. end

6 PERFORMANCE EVALUATION

6.1 Simulation Set Up

In order to evaluate the performance of the proposed algorithms in a Cloud com-
puting environment, we must research all kinds of workload models, resources pro-
visioning policies, resource deploying policies and resource scheduling algorithms
and so on. On the one hand, there are large scales of resources. On the other
hand, the user is charged according to the using resource type. So, evaluating the
performance of Cloud provisioning policies, application workload models, and re-
source performance models in a repeatable manner, varying system and different
user requirements is difficult to achieve. To overcome this challenge and ensure the
repeatability of experiments, simulations have been used to evaluate the performance
of Cloud computing.

The CLOUDS Lab at the University of Melbourne has developed the CloudSim
Toolkit software which is released as open source and has been used as a simulation
platform. For instance, HP Labs (Palo Alto) researchers are using CloudSim for
evaluation of resource allocation algorithms for HP’s Cloud data centers; Duke Uni-
versity (USA) researchers are using it for energy-efficient management of Data Cen-
ters; National Research Center for Intelligent Computer Systems (Beijing, China)
researchers are using it for SLAs oriented management and optimization of Cloud
computing environments; and Kookmin University (Seoul, Korea) researchers are
using the toolkit for their investigation on workflow scheduling in Clouds. So, in
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Algorithm 2: The general optimizing algorithm for VM deployment
1. input: host list, output: mapping of vm to host
2. for host in host list do
3. while host overloaded(host) do
4. vms to migrate.add(Selecting a vm from the overloaded host)
5. end
6. end
7. PABF(host, vms to migrate list)
8. for host in host list do
9. if host underloaded(host) then
10. vms to migrate.add (host.getVmList ())
11. end
12. PABF(host, vms to migrate list)
13. if host is NULL(host) then
14. shutDown(host) or switch to sleep mode
15. end
16. end
17. return vmMappingHos

this paper, we also use the CloudSim which is the 3.02 version to simulate our
experiment1.

In order to simulate the real experiment, we have selected three servers from
the main page of the Standard Performance Evaluation Corporation2 as physical
servers, and the configurations of them are listed in Table 1. Power consumption
characteristics of the selected servers are presented in Table 2. In addition, the
characteristics of the VM types in our test correspond to Amazon EC2 instance
types. In our test, we use the M1 instance types of family, which provides a balance
of computing, memory, and network resources, and it is a good choice for many
applications. The configurations of the VMs are listed in Table 3.

Simulation test data is divided into two categories: random and real workload.
In the random test, we used the ProLiant ML110 G5 and the IBM System x3650 M4
servers as the host. We have simulated a data center, which comprised 100 hetero-
geneous physical hosts, and the users submitted 100 heterogeneous VM requests at
the same time in the random test data. The CPU utilization of the VMs distributed
was generated based on the uniform distribution. Initially the VMs were allocated
according to the resource requirements defined by the VM types. Besides, to make
the experiments reproducible, it is important to rely on test data to regenerate the
workload consistently, which would allow the experiments to be repeated as many
times as necessary. At the same time, it is more important for test data to use
workload traces collected from a real system rather than artificially generated, as
this would help to reproduce a realistic scenario. The real workload comes from the

1 http://cloudbus.org/cloudsim/
2 http://www.spec.org/power_ssj2008/results/

http://cloudbus.org/cloudsim/
http://www.spec.org/power_ssj2008/results/
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open platform PlanetLab3. The workload has been applied to 1 052 VMs spanning
over 800 servers located at more than five hundred locations around the world. The
interval of utilization measurements is 5 minutes. But at the same time, in the real
workload, we used the ProLiant ML110 G5 and the ProLiant ML110 G4 servers as
the host. Initially, each VM was randomly assigned a workload trace from the real
workload. In the simulations all the tasks were submitted to the data center at the
same time, as this would benefit to dynamically adjust the consolidation of the VMs
and stress the experiment objective of the consolidation algorithms.

Hardware
Vendor

Server Type CPU Description MHz Core Total
Memory
(GB)

Servers
CPUs Are
Mapped
Onto MIPS

Hewlett-
Packard

ProLiant
ML110 G4

Intel Xeon
Processor 3040

1 860 2 4 1 860

Hewlett-
Packard

ProLiant
ML110 G5

Intel Xeon
Processor 3075

2 660 2 4 2 600

IBM IBM System
x3650 M4

Intel Xeon
E5-2660

2 200 16 24 2 200

Table 1. Configuration of the selected servers

Server 0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

ProLiant ML110 G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
ProLiant ML110 G5 93.7 97 101 105 110 116 121 125 129 133 135
IBM System x3650 M4 57.2 84 93.2 103 114 129 148 171 193 226 262

Table 2. Power consumption of the selected servers at different load levels in watts

Instance Type vCPU Memory (GiB) VM vCPUs
Are
Mapped
onto MIPS

m1. small 1 1.7 500
m1. medium 1 3.75 1 000
m1. large 2 7.5 1 500
m1. xlarge 4 15 2 000

Table 3. Configuration of the VMs

3 http://www.planet-lab.org/

http://www.planet-lab.org/
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6.2 Comparison of Methods and Metrics

Here, we have simulated some combinations of the host overloading detection method
(LR), two detection methods of hosts underloading (MU, AM), three methods of
VM selection (MMT, MCU, MAU) and four methods of VM deployment (PABFD,
PABF, PAFFD, PAFF). In order to test the performance of every combination,
the same test data and metrics are used to evaluate the above methods. One of
the metrics is the total energy consumption which is caused by the physical servers
in a data center. The metrics used to evaluate the SLAs are SLAV, PDP, and
PVP described in Section 3.2. The other metrics are the number of VMs migration
(VMN) and the number of hosts shutdown (HN) by the management system during
the running time. In the above metrics, the main metrics are energy consumption
and SLAV, but, there is a strong negative correlation between the two metrics as
SLAs violations are usually decreased by the cost of the energy increase. Our main
purpose is to optimize the energy and SLA violations, so we propose a metric that is
the combination of the two metrics, which can be defined Energy and SLA violation
(ESLVA) in (21).

ESLV A = E · SLV A. (21)

Policy Energy (KWh) VMN SLAV PDP PVP HN ESLVA

No power aware 77.75 0 0 0 0 56 0
DVFS 14.14 0 0 0 0 56 0
LR MU MMT PABFD 4.99 340 0.11402 % 0.30 % 37.84 % 120 0.00569
LR MU MMT PABF 4.89 279 0.08031 % 0.26 % 31.34 % 111 0.003927
LR MU MMT PAFF 4.35 363 0.20369 % 0.42 % 48.49 % 108 0.008861
LR MU MMT PAFFD 4.21 316 0.16101 % 0.35 % 46.60 % 108 0.006779
LR MU MCU PABFD 4.72 285 0.13908 % 0.34 % 40.78 % 81 0.006565
LR MU MAU PABFD 4.84 257 0.09430 % 0.28 % 32.23 % 102 0.004564

Table 4. Simulation results of the PABFD, PABF, PAFF, PAFFD, MCU and MAU al-
gorithm combination using random data

Policy Energy(KWh) VMN SLAV PDP PVP HN ESLVA

LR MU MMT PABFD 4.99 340 0.11402 % 0.30 % 37.84 % 120 0.00569
LR 0.8AM MMT PABF 4.85 229 0.06571 % 0.23 % 28.76 % 96 0.003187
LR 0.8AM MAU PABF 4.86 232 0.06719 % 0.23 % 28.76 % 96 0.003265
LR 0.8AM MMT PABFD 4.87 225 0.06055 % 0.23 % 26.90 % 96 0.002949
LR 0.8AM MAU PABFD 4.84 224 0.07078 % 0.24 % 29.35 % 96 0.003426

Table 5. Simulation results of the PABFD, PABF, MMT and MAU algorithm combina-
tion using random data
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6.3 Simulation Results and Analysis

The authors have demonstrated that the LR MU MMT PABFD combination is the
best method of optimizing the performance and energy in their simulations [34]. So
in our test, we mainly compare our test to the LR MU MMT PABFD policy. We
firstly test the random data and use the overloading methods (LR), underloading
methods (MU), the VM’s deploying methods, the VM’s selecting methods. In the
simulation, the hosts and the VMs are all 100 and the simulation time is 4 hours;
the scheduling interval is 300 seconds for the live migration of VMs. The simulation
results are shown in Table 4.

From Table 4, we draw the conclusion that

1. the energy consumption of Dynamic Voltage Frequency Scaling (DVFS) algo-
rithm obviously outperforms No Power Aware (NPA);

2. dynamic VM consolidation algorithms effectively reduce the energy consumption
comparing with DVFS and NPA;

3. the metric of LR MU MMT PABF policy and LR MU MAU PABFD policy
are better than LR MU MMT PABFD policy.

The conclusions of Table 4 present that the MAU of the VM’s selecting algo-
rithm and the PABF of the VM’s deploying algorithm can get better results. Fur-
thermore, large numbers of simulation results show that the AM are optimal when
the safety parameter of the AM algorithm is 0.8, in all the underloading detection
methods. Therefore, in the following, we use the above conclusions and combine
with the underloading detection algorithm to optimize the energy consumption and
performance. The results are presented in Table 5.

From Table 5, we can see that the 0.8AM and LR policy combined with the
MMT, BF, MAU and BFD is better than the LR MU MMT PABFD policy. The
reason is that the MU policy selects the host with the lowest resource utilization,
and tries to migrate the VMs from this host to other hosts keeping them not over-
loaded. However, when using the 0.8AM policy, the system selects a host to con-
sider the host utilization not only minimal but also less than 0.8AM. Thus, the
hosts do not migrate VMs when all the hosts’ utilization is more than 0.8AM.
In contrast to this, the host continues to select a host to migrate its VMs when
all the hosts utilization is higher when using the MU policy. The host has a rel-
atively high utilization. One of the reasons is that the VM resource utilization
running on the host may be high, and the other reason is that the number of
VMs on the host may be relatively higher. At this point, if we continue to mi-
grate VMs from the high utilization of host, serious problems will occur. On the
one hand, you need to migrate a lot of VMs and the time of migration will be
relatively long. At the same time, the system will lead to an increase in energy
consumption and service degradation during the migration. On the other hand,
the host utilization is relatively high, if the load has seen a dramatic change,
the host is more easy to overload, and lead to performance degradation. Besides,
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the amount of the VMs migrated and hosts shutdown reduce comparing with the
MU.

Policy Energy (KWh) VMN SLAV PDP PVP HN ESLVA

No power aware 2 410.80 0 0 0 0 457 0
DVFS 803.91 0 0 0 0 457 0
LR MU MMT PABFD 176.16 27 041 0.00003690 0.07 % 5.21 % 5472 0.00650030
LR 0.8AM MMT PABFD 174.74 20 788 0.00001860 0.04 % 4.29 % 4811 0.00325016
LR 0.8AM MAU PABFD 149.28 11 481 0.00004840 0.10 % 4.90 % 3298 0.00722515
LR 0.8AM MMT PABF 177 21 042 0.00001870 0.04 % 4.22 % 4658 0.00330990
LR 0.8AM MAU PABF 149.47 11 272 0.00004800 0.10 % 4.82 % 3358 0.00717456

Table 6. Simulation results of the PABFD, PABF, MMT and MAU algorithm combina-
tion for the simulation time 300× 288 seconds using real workload

Policy Energy (KWh) VMN SLAV PDP PVP HN ESLVA

LR MU MMT PABFD 118.83 27 366 0.00008510 0.11 % 7.81 % 5 550 0.01011243
LR 0.8AM MMT PABFD 117.00 20 724 0.00004100 0.06 % 6.31 % 4 830 0.004797
LR 0.8AM MAU PABFD 100.30 11 355 0.00010690 0.15 % 7.21 % 3 366 0.01072207
LR 0.8AM MMT PABF 118.50 21 021 0.00004410 0.07 % 6.36 % 4 759 0.00522585
LR 0.8AM MAU PABF 100.31 11 311 0.00105300 0.15 % 7.15 % 3 369 0.100562643

Table 7. Simulation results of the PABFD, PABF, MMT and MAU algorithm combina-
tion for the simulation time 200× 288 seconds using real workload

Policy Energy (KWh) VMN SLAV PDP PVP HN ESLVA

LR MU MMT PABFD 63.21 27 451 0.00029900 0.21 % 14.45 % 5 550 0.01889979
LR 0.8AM MMT PABFD 58.99 20 297 0.00016020 0.13 % 12.46 % 4 722 0.009450198
LR 0.8AM MAU PABFD 51.27 11 403 0.00040680 0.29 % 13.98 % 3 350 0.020856636
LR 0.8AM MMT PABF 60.01 20 702 0.00016710 0.14 % 12.31 % 4 635 0.010027671
LR 0.8AM MAU PABF 51.17 11 209 0.00039220 0.29 % 13.72 % 3 318 0.020068874

Table 8. Simulation results of the PABFD, PABF, MMT and MAU algorithm combina-
tion for the simulation time 100× 288 seconds using real workload

The above conclusion and analysis disclose that the 0.8AM policy and LR policy,
combined with the MMT, BF, MAU and BFD, can achieve good results. So in the
following, in order to make the simulation more realistic, we use the real workload to
test the above conclusions. In the simulations, the scheduling interval is 300 seconds
for the live migration of VMs because the interval of utilization measurements is 300
seconds in 24 hours, i.e., the original workload traces are made of 288 sample points.
So, firstly, we test the above methods with the interval scheduling of 300 seconds
in 24 hours and the test results are listed in Table 6. From Table 6, we can see
that the real workload further validates the above conclusion. In addition, when the
overloading detection policy (LR), underloading detection policy (0.8AM), the VM
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deploying policy (PABF or PABFD) are the same, the VM selection policy MAU is
better than MMT in the energy consumption, the number of VM migration and host
shutdowns; but the performance is lower than MMT. The reason is that the MMT
policy can quickly migrate a VM from an overloading host and make the overloading
host to normal state, so the performance outperforms the MAU policy. However,
the MAU policy can make an overloading host not to overload in a long time if the
workload is relatively stable, at the same time, the host can preserve a relatively
high utilization. For this reason, MAU policy reduces the energy consumption, the
number of host shutdowns and VM migrations.

In order to test the robustness of the proposed methods, we scale the interval of
the scheduling time that is 200, 100 and 50 seconds. All the simulation results are
presented in Table 7, Table 8 and Table 9 respectively and all these results confirm
the proposed methods once more. The mean value of the sample means along with
95 % confidence interval (CI) measured for each method during the experiments is
listed in Table 10 and Table 11. The time before a host is switched to the sleep
mode (HSS) for the method combination is approximately 15 to 20 minutes when
the interval of scheduling time is 300 seconds, or approximately 5 minutes when
the interval of scheduling time is 50 seconds. This value is very important for real-
world systems, as modern servers have low-latency transitions to the sleep mode
consuming low power. According to the data provided by Meisner et al. [36], power
consumption of a typical blade server is 450 W in the fully utilized state, 270 W in the
idle state, and 10.4 W in the sleep mode, while the transition delay is 300 ms. The
mean value of the sample means of the VM selecting (VMS) time is about 2 ms for
the different methods combination respectively; the mean value of the sample means
of the host selecting (HS) time is about 20 ms for the different methods combination
respectively; the mean value of the sample means of the VM relocating (VMR) time
from 54 ms to 240 ms with the different methods combination.

Policy Energy (KWh) VMN SLAV PDP PVP HN ESLVA

LR MU MMT PABFD 31.39 27 551 0.00126760 0.43 % 29.29 % 5 548 0.039789964
LR 0.8AM MMT PABFD 30.61 20 601 0.00060410 0.25 % 24.01 % 4 736 0.018491501
LR 0.8AM MAU PABFD 26.69 11 484 0.00153850 0.57 % 26.86 % 3 333 0.041062565
LR 0.8AM MMT PABF 31.21 21 037 0.00063190 0.27 % 23.68 % 4 754 0.019721599
LR 0.8AM MAU PABF 26.74 11 261 0.00154580 0.58 % 26.47 % 3 367 0.041334692

Table 9. Simulation results of the PABFD, PABF, MMT and MAU algorithm combina-
tion for the simulation time 50× 288 seconds using real workload

7 CONCLUSION AND FUTURE WORK

The increasing cost of energy consumption and the worldwide desire to reduce CO2

emissions have felt concern about the energy efficiency of information and com-
munication technology. Moreover, to maximize the return on investment, Cloud
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Policy HSS (s) VMS (ms) HS (ms) VMR (ms)

LR MU MMT PABFD 1 026.91 3.85 19.13 212.12
(817.19, 1 236.63) (3.44, 4.26) (18.37, 19.89) (205.77, 218.47)

LR 0.8AM MMT PABFD 931.22 2.99 20.29 196.75
(659.13, 1 203.31) (2.81, 3.17) (19.51, 21.07) (190.94, 202.66)

LR 0.8AM MAU PABFD 1 228.01 1.86 20.14 58.72
(933.51, 1 522.51) (1.75, 1.97) (19.32, 20.96) (57.07, 60.37)

LR 0.8AM MMT PABF 921.61 2.68 19.46 179.92
(672.15, 1 171.07) (2.52, 2.84) (18.70, 20.22) (174.66, 185.18)

LR 0.8AM MAU PABF 1 199.49 1.80 17.72 54.72

(897.24, 1 501.74) (1.69, 1.91) (16.91, 18.53) (53.14, 56.30)

Table 10. Simulation results of the PABFD, PABF, MMT and MAU algorithm combina-
tion for the simulation time 300× 288 seconds using real workload

Policy HSS (s) VMS (ms) HS (ms) VMR (ms)

LR MU MMT PABFD 181.17 3.69 20.80 239.45
(148.76, 213.58) (3.47, 3.91) (20.03, 21.57) (232.34, 246.56)

LR 0.8AM MMT PABFD 177.50 2.79 20.37 183.71
(125.72, 229.28) (2.62, 2.96) (19.59, 21.15) (177.91, 189.51)

LR 0.8AM MAU PABFD 211.34 1.91 18.23 57.14
(173.79, 268.89) (1.79, 2.03) (17.38, 19.08) (55.56, 58.72)

LR 0.8AM MMT PABF 164.97 2.78 19.59 191.27
(123.98, 205.96) (2.61, 2.95) (18.83, 20.35) (186.79, 195.75)

LR 0.8AM MAU PABF 214.75 1.52 18.50 56.13

(168.12, 261.38) (1.43, 1.61) (17.72, 19.28) (54.53, 57.73)

Table 11. Simulation results of the PABFD, PABF, MMT and MAU algorithm combina-
tion for the simulation time 50× 288 seconds using real workload

providers have to apply energy-efficient technology to reduce energy consumption,
such as DVFS and dynamic consolidation of VMs. However, decreasing the energy
consumption and improving performance is a self-contradiction. When we design
the algorithm and management policy, we take into account not only energy, but
also performance. In this paper we have described the architecture, the performance
parameter and a model for the VM migrating problems. We have concluded that
it is necessary to develop an adaptive underloading detection policy of the host
which adaptively selects a host to improve the performance and energy consump-
tion. Moreover, we have proposed several adaptive heuristic algorithms that are
based on analyzing the historical data to optimize the VMs dynamic consolidation
and to optimize the performance and energy consumption.

We have tested the proposed algorithms through the extensive simulation of
random and real data. The test results of the simulation have verified that the pro-
posed underloading detection policies, VM selection policies and VM deployment
algorithms are efficient with regard to the ESLVA metric because they substantially
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reduce the level of SLAs violations, energy consumption, the number of VM migra-
tions and host shutdown. In future work, we plan to test the proposed methods
in a real-work, such as Openstack. Furthermore, we plan to research on heuristic
algorithm that minimizes the cost of the user using the Cloud resources while it can
maintain user QoS requesting and minimize the energy consumption.
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