
Computing and Informatics, Vol. 36, 2017, 1261–1282, doi: 10.4149/cai 2017 6 1261

PARALLEL TILED CODE GENERATION WITH LOOP
PERMUTATION WITHIN TILES

Marek Palkowski, Wlodzimierz Bielecki

Faculty of Computer Science
West Pomeranian University of Technology
Zolnierska 49, 70-210 Szczecin, Poland
e-mail: {mpalkowski, wbielecki}@wi.zut.edu.pl

Abstract. An approach of generation of tiled code with an arbitrary order of loops
within tiles is presented. It is based on the transitive closure of the program depen-
dence graph and derived via a combination of the Polyhedral and Iteration Space
Slicing frameworks. The approach is explained by means of a working example.
Details of an implementation of the approach in the TRACO compiler are outlined.
Increasing tiled program performance due to loop permutation within tiles is illus-
trated on real-life programs from the NAS Parallel Benchmark suite. An analysis of
speed-up and scalability of parallel tiled code with loop permutation is presented.

Keywords: Optimizing compilers, tiling, loop permutation, transitive closure, de-
pendence graph, code locality, automatic parallelization

Mathematics Subject Classification 2010: 68N20, 65Y05, 52Bxx, 97E60,
05-XX

1 INTRODUCTION

Tiling is a very important iteration reordering transformation for both improving
data locality and extracting loop nest parallelism. Tiling for improving locality
groups loop nest statement instances in a loop nest iteration space into smaller blocks
(tiles) allowing reuse when the block fits in local memory. Tiling for parallelism
increases parallel program locality and coarsens the granularity of computation that
may considerably improve parallel code performance.

1262 M. Palkowski, W. Bielecki

Loop interchange reverses the order of two adjacent loops in a loop nest. It can
be applied to ensure that the elements of a multi-dimensional array are accessed
in the order in which they are present in memory, improving locality of reference.
For example, if a 2-D array is stored in memory in row major order, i.e., two array
elements are stored adjacent in memory (their second indices are consecutive num-
bers), while accesses to the array elements are in a column wise manner, program
locality will be poor. However, after interchanging loops, accesses to array elements
will be in row major order, this leads to enhancing code locality.

Loop interchange is valid if it does not reverse the execution order of the source
and destination of any dependence in the loop nest.

Loop interchange can be generalized to loop permutation by allowing more than
two loops to be moved at once and by not requiring them to be adjacent.

Sometimes it is reasonable to apply both transformations, first to produce tiled
code, then to permute the order of loops within each tile. This may increase tiled
code locality.

To our best knowledge, well-known tiling techniques and the interchange trans-
formation are based on linear or affine transformations [1, 2, 3, 4, 5].

In our paper [6], we presented a novel approach to generation of tiled code for
affine loop nests which is based on the transitive closure of program dependence
graphs. Under that approach, first, we define original rectangular tiles, if they are
not valid (their lexicographical execution order does not respect original loop nest
dependences), then original tiles are corrected to be valid by means of calculations
based on applying transitive closure. We demonstrated that such an approach allows
producing tiled code even when there does not exist a band of fully permutable loops.
But the approach presented in paper [6] does not guarantee the validity of the loop
permutation transformation, i.e., it does not guarantee that changing the order of
loops within target tiles will respect all dependences available in the original loop
nest.

In this paper, we extend the approach presented in paper [6] so that a desired
order of loops is taken as the input of an algorithm and it is guaranteed that gener-
ated target code will be valid. For both generation of valid tiled code and applying
the loop permutation transformation, we use the transitive closure of a loop nest
dependence graph.

The contributions of this paper over previous work are as follows:

1. proposition of an algorithm of generation of valid tiled code with an arbitrary
order of loops within tiles;

2. presentation of the TRACO compiler implementing the algorithm;

3. demonstration of experimental results received by means of TRACO exhibiting
program performance increase due to applying both the tiling and loop permu-
tation techniques.

The paper is organized as follows. Section 2 presents background. Section 3
discusses loop nest tiling and permutation of loops within tiles. Section 4 includes

Parallel Tiled Code Generation with Loop Permutation within Tiles 1263

related work. Section 5 presents results of experiments. Section 6 concludes this
paper and discusses future work.

2 BACKGROUND

In this paper, we deal with affine loop nests where, for given loop indices, lower and
upper bounds as well as array subscripts and conditionals are affine functions of
surrounding loop indices and possibly of structure parameters (defining loop indices
bounds), and the loop steps are known constants.

Dependences available in the loop nest are represented with a dependence rela-
tion of the form [input list]→ [output list]: formula, where input list and output list
are the lists of variables and/or expressions used to describe input and output tuples,
and formula describes the constraints imposed upon input and output lists and it
is a Presburger formula built of constraints represented with algebraic expressions
and using logical and existential operators.

In the presented algorithm, standard operations on relations and sets are used,
such as intersection (∩), union (∪), difference (-), domain (dom R), range (ran R),
relation application (S ′ = R(S) : e′ ∈ S ′ iff exists e s.t. e → e′ ∈ R, e ∈ S). The
positive transitive closure for a given relation R, R+, is defined as follows:

R+ = {e→ e′ : e→ e′ ∈ R ∨ ∃e′′ s.t. e→ e′′ ∈ R ∧ e′′ → e′ ∈ R+}. (1)

It describes which vertices e′ in a dependence graph (represented by relation R) are
connected directly or transitively with vertex e.

Transitive closure, R*, is defined as follows [10]:

R∗ = R+ ∪ I (2)

where I is the identity relation. It describes the same connections in the dependence
graph (represented by R) that R+ does plus connections of each vertex with itself.

Techniques aimed at calculating the transitive closure of a dependence graph,
which in general is parametric, are presented in papers [9, 10, 11] and they are out
of the scope of this paper. It is worth to note that existing algorithms return either
exact transitive closure or its over-approximation. The former means that transitive
closure represents only existing dependences in the original loop nest, while the latter
implies that the representation of transitive closure includes both all existing and
false (non-existing) dependences. Both representations can be used in the presented
algorithm but, if we use an over-approximation of transitive closure, tiled code will
be not optimal: it will allow for less code locality and/or parallelization.

The paper [12] presents the time of transitive closure calculation for NPB bench-
marks [16]. It depends on the number of dependence relations extracted for a loop
nest and can vary from milliseconds to several minutes (in very rare cases when the
number of dependence relations is equal to hundreds or thousands).

1264 M. Palkowski, W. Bielecki

3 TILING AND PERMUTATION OF LOOPS WITHIN TILES

In this section, we recap the tiling technique presented in paper [6], then we demon-
strate how that algorithm can be modified to implement the loop permutation tech-
nique to respect all original loop nest dependences, and finally present a formal
algorithm.

3.1 Tiling Based on Transitive Closure

Our goal is to transform a loop nest of depth d below

for(i 1=lb1; i 1<=ub1; i 1++)

for(i 2=lb2; i 2<=ub2; i 2++)

.........................

for(i d=lbd; i d<=ubd; i d++)

{S}

to a valid tiled loop nest of the following structure.

for(ii 1=0; b1*ii 1+lb1<=ub1; ii 1++)

for(ii 2=0; b2*ii 2+lb2<=ub2; ii 2++)

.............................

for(ii d=0; bd*ii d+lbd<=ubd; ii d++)

for(i′1=.....)

for(i′2=.....)

...............................

for(i′d=.....)

{S′}

where i1, i2, . . . , id are the original loop indices; ii1, ii2, . . . , iid are the loop indices
defining the identifier of a tile; i′1, i

′
2, . . . , i

′
d are the indices of the tiled loop nest;

the constants b1, b2, . . . , bd define the tile size; lb1, lb2, . . . , lbd and ub1, ub2, . . . , ubd
state for the lower and upper bounds of the loop indices, respectively; {S} and {S ′}
denote the original and target loop nest statements, respectively.

A valid tiled loop nest means that all the dependences available in the original
loop are respected in the tiled loop nest.

Let us consider the following working loop nest.

for (i =0; i<= 3 ; i++)
for (j =0; j<= 3 ; j++)

c [i] [j]=c [i −1] [j +1] ;

Listing 1. Working loop nest

In this paper, we use the syntaxes of the Barvinok and Omega tools [13, 27] to
present sets and relations. The relation below describes dependences available in
the working loop nest.

Parallel Tiled Code Generation with Loop Permutation within Tiles 1265

R:= {[i,j] -> [i+1,j-1] : 0 <= i <= 2 && 1 <= j <= 3}.

Our paper [6] presents an algorithm allowing for tiled code generation on the
basis of the transitive closure of a loop nest dependence graph. The first step in this
algorithm is to define original rectangular tiles as follows.

TILE:=[ii,jj]->{[i,j]: 2ii <=i<= 2ii+1, 3 and 2jj <= j <= 2jj+1,

3 and 0 <=ii and 0 <=jj}

where the notation [ii, jj]− > {. . .} means that variables ii, jj, defining tile iden-
tifiers, are parameters in the constraints of the set {. . .}; i, j are the loop indices,
“2” represents the tile side (original tiles are of the size 2 × 2), and “3” states for
the upper bound for variables i and j. Figure 1 a) demonstrates for the working
example dependences and original rectangular tiles (shown in blue) of the size 2×2.

i

j

0 1 2 3

1

2

3

T00

T01

T10

T11

i

0 1 2 3

1

2

3

T10

T_LT10

T_GT10

T11

T01

T00 T10

a) b)

j

0
0

Figure 1. Dependences, original, and target tiles for the working example

The following step is to define sets TILE LT and TILE GT including the
iterations belonging to the tiles whose identifiers are less and greater than that of
TILE, respectively. For the working example, these sets, calculated according to the
formulae presented in paper [6], are as follows.

TILE_LT:= {[i,j]: ii=1 and 0 <= jj <= 1 and 0 <= i <= 1 and

0 <=j <= 3} union {[i,j]: jj = 1 and 0 <= ii <= 1 and 2ii <= i

<= 2ii+1 and 0 <= j <= 1};

TILE_GT:={[i,j]: ii = 0 and 0 <= jj <=1 and 2 <= i <= 3 and

0 <= j <= 3} union {[i,j]: jj = 0 and 0 <= ii <= 1 and 2ii <= i

<= 2ii+1 and 2 <= j <= 3}.

1266 M. Palkowski, W. Bielecki

Figure 1 b) presents sets TILE LT and TILE GT for original tile T10. Next, we
use sets TILE LT, TILE GT, and the transitive closure of relation R, R+, in the
corresponding steps of the algorithm presented in paper [6], to obtain target tiles,
represented by set TILE VLD, as follows.

TILE ITR = TILE−R+(TILE GT),
TVLD LT = (R+(TILE ITR) ∩ TILE LT)−R+(TILE GT),

TILE VLD = TILE ITR ∪ TVLD LT =

[ii, jj] -> { [i0, j] : jj >= 0 and j >= jj and ii >= 0 and

i0 >= 2ii and j <= 1 + 2ii + 3jj - i0 and ii <= 1 and j >=

2ii + 2jj - i0 and i0 <= 1 + 2ii and j <= 3 and j <= 1 + 2jj

and i0 <= 3 + 2ii - 2jj }.

Figure 1a) shows target (corrected) tiles (in red) for the working example.

i

j

0 1 2 3

3

2

1

0

Figure 2. Changing the iteration enumeration order by means of tiling with the tile size
4× 1

The algorithm presented in the paper [6] can be easily extended to arbitrarily
nested loops as follows. For each loop nest statement, we have to form all sets,
provided by the examined algorithm, separately and then generate tiled code using
the union of extended sets representing target tiles. Details are presented in our
paper [7]. Such an extension has been already implemented in TRACO (publicly
available at the website traco.sourceforge.net).

3.2 Parallel Tiled Code Generation

Parallel tiled code can be generated by means of many different approaches: assum-
ing that a tile is a macro atomic statement, all known parallelization algorithms
can be applied to serial tiled code starting from techniques based on affine transfor-
mations and ending with those based on transitive closure. The TRACO compiler,

traco.sourceforge.net

Parallel Tiled Code Generation with Loop Permutation within Tiles 1267

which implements the algorithm presented in this paper, to generate parallel code
applies techniques presented in the papers [14, 15] to a dependence graph whose ver-
tices are tiles while edges point out dependences among tiles. Details are presented
in the papers [7, 35, 36].

3.3 Loop Interchange

Now we are interested in applying the algorithm presented in [6] to allow for loop
permutation within tiles. Our goal is to allow the user to define an arbitrary
order of loops represented with indices j1, j2, . . . , jd, where jr ∈ {[i1, i2, . . . , id]},
r = 1, 2, . . . , d, d is the loop nest depth, responsible for iteration enumeration within
each tile and to guarantee that under such an order target tiled code will be valid.

Figure 2 illustrates that applying tiling with the tile size 4 × 1 to the 4 × 4
iteration space results in interchanging the order of iteration enumeration which
corresponds to the lexicographical order of scanning elements of vector J = (j, i)T .

Analyzing Figure 1a), we can state that we cannot allow for loop interchange
within each tile because this will result in invalid code since original loop nest de-
pendences will not be respected. To cope with this problem, we can form sub-tiles
of the size 2× 1 within each target tile shown in red.

Figure 3a) shows such sub-tiles in green. It is worth to note that the identifiers
of those sub-tiles are composed of four numbers, the first two represent target tile
identifiers in the original loop nest iteration space (shown in red), while the last
two numbers represent the identifiers of sub-tiles within each target tile (shown in
green).

Next, we apply the algorithm, introduced in paper [6], to the subspaces repre-
senting target tiles and get target sub-tiles within each tile, Figure 3b) presents such
sub-tiles in green. Now scanning target sub-tiles and iterations within each of them
in the lexicographical order is valid. It is worth to note that it is not the classic loop
interchange transformation within each target tile, but it is as close as possible to
that.

To generate target sub-tiles within each target tile in a formal way, we first need
to form set, TILE SUB, which represents a parametric sub-tile within a parametric
target tile. For this purpose, we introduce additional parameters ii′, jj′, responsible
for the representation of sub-tile identifiers, and to the constraints of set TILE VLD,
defining target tiles, add the constraints describing a parametric tile of the size 2×1.
This results in the following set where the sign “#” begins a comment.

TILE_SUB:=[ii,jj,ii’,jj’]->{[i,j]:

the constraints below define a parametric tile of the size 2x1

within each target tile

2ii’<=i<=2ii’+1,3 and jj’=j and j<=3 and 0<=ii’ and jj’>=0 and

the constraints below define a parametric set TILE_VLD

(exists i0: i=i0 and jj >= 0 and j >= jj and ii >= 0 and i0 >= 2ii

1268 M. Palkowski, W. Bielecki

i

j

0 1 2 3

1

2

3

T00

T01

T10

T11

i

0 1 2 3

1

2

3
T11

T01

T00
T10

a) b)

j

0
0

T0103

T0102

T0001

T0000

T0101

T1113

T1111

T1010

T1011

T1112

T0000 T1010

T0001

T0102

T0103 T1113

T1112

T1011

Figure 3. Dependences; original, target tiles and sub-tiles for the working example

and j <= 1 + 2ii + 3jj - i0 and ii <= 1 and j >= 2ii + 2jj - i0 and

i0 <= 1 + 2ii and j <= 3 and j <= 1 + 2jj and i0 <= 3 + 2ii - 2jj)

};

Next, we form sets TILE SUB LT including iterations being comprised in all
the sub-tiles that are lexicographically less than that of TILE SUB in the same
manner as it is explained in the algorithm presented in the paper [6] except from
instead of the vector of length 2, defining target tile identifiers, we use the vector of
length 4 defining sub-tile identifiers. This results in the following set.

TILE_SUB_LT:=[ii, jj, ii’, jj’] -> { [i, j]: (ii = 1 and ii’ = 1

and jj <= 1 and jj’ >= jj and jj’ <= 1 + 2jj and jj’ <= 1 + 3jj

and i <= 1 and i >= 0 and 2j >= -1 + i and j <= 3) or (ii’ = ii

and ii <= 1 and ii >= 0 and jj <= 1 and jj’ <= 1 + 2jj and

i <= 1 + 2ii and j >= 2ii + 2jj - i and j >= 0 and j <= -1 + jj’)

or (jj = 1 and ii’ = ii and ii >= 0 and jj’ <= 3 and jj’ >= 1 and

i >= 2ii and i <= 3 and j >= 0 and j <= 1 + 2ii - i) }.

In an analogous way, we form set TILE SUB GT and then apply the discussed
algorithm to sets TILE SUB LT and TILE SUB GT to generate a set representing
target sub-tiles and finally generate the target code below (see Listing 2).

This code enumerates target tiles and iterations within each target tile. The
order of the iteration enumeration within each target tile is equivalent to the enu-
meration of sub-tiles and iterations within each sub-tile in the lexicographical order.

In general, when all elements of all dependence direction vectors of an original
loop nest are non-negative, we will receive the same code as that generated with the
classic loop permutation transformation, otherwise we will get valid code which is
as close as possible to the code generated by the loop permutation transformation.

Parallel Tiled Code Generation with Loop Permutation within Tiles 1269

for (i i = 0 ; i i <= 1 ; i i ++)
for (j j = 0 ; j j <= 1 ; j j ++)

for (i = 2 ∗ j j ; i <= min (3 , 3 ∗ j j + 1) ; i++)
for (j = 2∗ i i ; j <= min(2∗ i i + 1 , 2∗ i i − j j + i) ; j++){

c [j] [2 ∗ i i + i − j]=c [j −1] [2 ∗ i i + i − j +1] ;
i f (j j == 1 && i == 3 && j == 2 ∗ i i + 1)

c [2 ∗ i i + 1] [3] = c [2 ∗ i i] [4] ;
}

Listing 2. Tiled loop nest

3.4 Formal Algorithm

Before presenting a formal algorithm allowing for loop permutation within tiles, let
us consider the loop nest of depth 3. Figure 4 presents all possible orders of loops
(represented with indices i, j, k) in a 3-D tile of the size 2×2×2. To satisfy a given
order of loops, say i, k, j, in each 3-D tile, we have to apply first tiling within each
3-D tile with the tile size 1×2×2, this will result in 2-D sub-tiles enumerated along
axis i. Then within each 2-D tile, we apply tiling with the size 1 × 2 × 1, this will
result in 1-D tiles enumerated along axis k. To satisfy the order k, i, j, we first have
to apply tiling with the tile size 2 × 2 × 1; this will result in 2-D tiles enumerated
along axis k. Then we apply tiling with the tile size 1× 2× 1 which will return 1-D
tiles scanned along axis i.

Figure 4 shows tile sizes which can be applied to get a given order of loops for
all possible cases. The numbers in the square boxes show the order of loop nest
iteration enumeration. The number of consecutive tile transformations is equal to
d− 1, where d is the loop nest depth.

In the general case when the original order of loops is i1, i2, . . . , id, the target
order within each d-D tile is j1, j2, . . . , jd, where jr ∈ {[i1, i2, . . . , id]}, r = 1, 2, . . . , d,
d is the loop nest depth, and the original tile size is b1 × b2 × . . . × bd, we apply
the following scheme. We begin with the comparison of the pair j1 and i1, if they
are different, we compare the pair j1, i2 and so on. As soon as the indices, say
j1, is, s > 1, are the same, we have to form (d-1)-D tiles of the size b1 × b2 ×
. . . × bs−1 × 1 × bs+1 × . . . × bd enumerated along axis is. Next, we compare the
pairs j2, i1; j2, i2 and so on. As soon as the indices, say j2, ip, are the same,
supposing that p < s, we form within each (d-1)-D tile (d-2)-D tiles of the size
b1 × b2 × . . . × bp−1 × 1 × bp+1 × . . . × bs−1 × 1 × bs+1 × . . . × bd enumerated along
axis ip. We continue this process until all pairs each including an index of the target
order and one of the original order will be compared.

Algorithm 1 below presents a formal way to generate tiled code with permutation
of loops within d-D target tiles. It is a modification of the algorithm presented
in paper [6] and includes the following steps. The first one is the preparation of
data needed to generate target code. The second step is preprocessing, it carries

1270 M. Palkowski, W. Bielecki

j

i

k

0 1

1

1

1

4

2

3

5

6

8

7
j

i

k

0 1

1

1

1

4

2

3

5

6

8

7

j

i

k

0 1

1

1

1

42

3

5

6

8

7

j

i

k

0 1

1

1

1

4

2

3

5 6

8

7

j

i

k

0 1

1

1

1

4

2

3

5 6

8
7

j

i

k

0 1

1

1

1

42

3

5

6

8

7

a) order: i,j,k b) order: i,k,j

 tile1: 1x2x2

 tile2: 1x2x1

c) order: k,i,j

 tile1: 2x2x1

 tile2: 1x2x1

d) order: k,j,i

 tile1: 2x2x1

 tile2: 2x1x1

e) order: j,k,i

 tile1: 2x1x2

 tile2: 2x1x1

f) order: j,i,k

 tile1: 2x1x2

 tile2: 1x1x2

 direction of iteration enumeration of the innermost loop

 direction of iteration enumeration of the middle loop

 direction of iteration enumeration of the outermost loop

Figure 4. All possible loop orders for the loop nest of depth 3

out a dependence analysis, calculate the positive transitive closure of a dependence
graph for an original loop nest, form sets to be used in the following steps, and
initialize variables and sets. The last action in this step is checking whether all
elements of all dependence distance vectors are non-negative, if so, this means that
we can directly generate target tiled code and it is valid to permute loops within
each tile according to a given input order, the proof can be found in book [8].

The third step is calculation of basic sets to be used for producing target tiles.
It is based on the algorithm presented in paper [6], this algorithm is consecutively
applied first to the original loop nest iteration space, then to each subspace occupied
by a corresponding target tile/sub-tile. Step 4 forms sets representing valid target
tiles, first for the original loop nest iteration space, then for each subspace occupied
by a corresponding target tile/sub-tile. Step 5 produces a matrix responsible for
tile/sub-tile size and a vector responsible for sub-tile identifiers to be used in step 3.
The last step generates target code.

To justify the correctness of Algorithm 1, we take into account the following.
To each loop nest iteration space (first to the original one, then to each subspace
occupied by a corresponding tile/sub-tile) the algorithm presented in paper [6] is

Parallel Tiled Code Generation with Loop Permutation within Tiles 1271

applied. That algorithm guaranties that the lexicographical order of both tile/sub-
tile enumeration and iteration enumeration in each tile/sub-tile is valid, so the target
tiled code is valid.

4 RELATED WORK

There has been a considerable amount of research into tiling demonstrating how
to aggregate a set of loop nest iterations into tiles with each tile as an atomic
macro statement, from pioneer papers [3, 29, 30] to those presenting advanced tech-
niques [20, 2, 4, 21].

Advanced tiling is based on the polyhedral model. Let us remind that this
approach includes the following three steps: i) program analysis aimed at translating
high level codes to their polyhedral representation and to provide data dependence
analysis based on this representation, ii) program transformation with the aim of
improving program locality and/or parallelization, iii) code generation [20, 22, 23,
28, 29].

All above three steps are available in the presented approach. But there exists
the following difference in step ii): in the polyhedral model a (sequence of) program
transformation(s) is represented by a set of affine functions, one for each statement,
while the approach, based on transitive closure, does not find and use any affine
function. It applies the transitive closure of a program dependence graph to spe-
cific subspaces of the original loop nest iteration space. At this point of view, the
program transformation step is rather within the Iteration Space Slicing Framework
introduced by Pugh and Rosser [25]. In the papers [6, 7], we demonstrate that ap-
plying transitive closure instead of affine transformations does not require full loop
permutability. This increases the scope of loop nests which can be tiled.

The papers [3, 30, 31, 5] are seminal works presenting the theory of tiling tech-
niques based on affine transformations. These publications present techniques con-
sisting of the two steps: the first one transforms an original loop nest into a fully
permutable loop nest, the second one converts the fully permutable loop nest into
tiled code. A loop nest is fully permutable if its loops can be permuted arbitrarily
without altering the semantics of the original program. If a loop nest is fully per-
mutable, it is sufficient to apply a tiling transformation to this loop nest [31]. The
tiling validity condition by Irigoin and Triolet [3] requires non-negative elements
of dependence distance vectors. The algorithm, presented in this paper, does not
require full loop permutability and non-negative elements of dependence distance
vectors to generate tiled code.

The papers [1, 2, 32, 4] generalize pioneer techniques and present an advanced
theory on tiling implying that given a loop nest, first “time-partition constraints”
are to be formed, then a solution to them has to be found. The “time-partition
constraints” represent the condition that if one iteration depends on the other, then
the first must be assigned to a time that is not earlier than that of the second; if they
are assigned to the same time, then the first has to be executed after the second.

1272 M. Palkowski, W. Bielecki

Algorithm 1 Tiled code generation with loop permutation within target tiles
Input: A perfect loop nest of depth d with the original order of iteration variables i1, i2, . . . , id; constants
b1, b2, . . . , bd defining the size of an original rectangular tile; the target order of iteration variables within each
tile j1, j2, . . . , jd, where jr ∈ {[i1, i2, . . . , id]}, r = 1, 2, . . . , d.

Output: Tiled code

Method:

1 Data preparation. Form:

Vector I whose elements are original loop indices i1, i2, . . . , id;

Vector II whose elements ii1, ii2, . . . , iid define the identifier of a tile;

Vectors LB and UB whose elements are lower lb1, lb2, . . . , lbd and upper ub1, ub2, . . . , ubd bounds of
indices i1, i2, . . . , id of the original loop nest, respectively;

Vector 1 whose all d elements are equal to the value 1;

Vector 0 whose all d elements are equal to the value 0;

Diagonal matrix B whose diagonal elements are constants b1, b2, . . . , bd defining the size of an original
rectangular tile.

2 Preprocessing

2.1 Carry out a dependence analysis to produce a set of relations describing all the dependences in the
original loop nest.

2.2 Calculate the transitive closure of the union of all the relations returned by step 2.1, R+, applying any
known algorithm, for example, [10, 9, 11].

2.3 Form set II SET including the identifiers of all tiles:

II SET ={[II] | II≥0 and B*II+LB ≤UB }.
2.4 Form set TILE(II, B) including the iterations belonging to the parametric tile defined with parameters

ii1, ii2, . . . , iid as follows

TILE(II,B) = [II]→ {[I]jB ∗ II + LB ≤ I ≤ min(B ∗ (II + 1) + LB − 1,UB) AND II ≥ 0}.
2.5 k = 1, r = 1, Bk = B , II k = II ,TILE SUBk(II k,Bk) = TILE(II ,B),TILE VLDk−1 = TILE(II ,B).

2.6 Check whether all elements of all dependence distance vectors are non-negative; if so, then validity =
TRUE, otherwise validity = FALSE.

3 Calculation of basic sets

3.1 Form set TILEk(IIk,Bk) including the iterations belonging to the parametric tile defined with vector
IIk as follows

TILEk(IIk,Bk) = [IIk] → {[I]|I ∈ TILE VLDk−1 AND I ∈ TILE SUBk(IIk,Bk)}, where
TILE SUBk(IIk,Bk) = [IIk]→ {[I]jBk∗II k+LB ≤ I ≤ min(Bk∗(II k+1)+LB−1,UB) AND II k ≥
0}.

3.2 Form sets TILE LTk and TILE GTk as the union of all the tiles whose identifiers are lexicographically
less and greater, respectively, than that of TILEk(II k,Bk) as follows

TILE LTk = [II k] → {[I’]|∃I , II’k s.t. II’k ≺ II k AND I ∈ TILEk(II k,Bk) AND I’ ∈
TILEk(II’k,Bk)}, TILE GTk = [II k] → {[I’]|∃I , II’k s.t. II’k � II k AND I ∈
TILEk(II k,Bk) AND I’ ∈ TILEk(II’k,Bk)},

4 Form set TILE VLDk as follows

TILE ITRk = TILEk(IIk,Bk)−R+(TILE GTk),
TVLD LTk = (R+(TILE ITRk) ∩ TILE LTk)−R+(TILE GTk),
TILE VLDk = TILE ITRk ∪ TVLD LTk.

5 If validity = TRUE, then go to step 6, otherwise do

if (jr 6= i1) then
if (jr 6= i2) then

if (jr 6= i3) then
................................

if (jr 6= id) then print “error, vector J is invalid”
else bd = 1, goto L

................................
else b3 = 1, go to L

else b2 = 1, go to L
else b1 = 1

L: if r < d− 1 then form vector II r whose elements iir1, iir2, . . . , iird define identifiers of sub-tiles within the
tile with identifier II k; k = k + 1, form new vector II k by adding the elements of vector II r at the end of
vector II k−1; r = r + 1 goto step 3;

6 Code generation

6.1 Form set TILE VLD EXT by means of inserting into the first positions of the tuple of set TILE VLDk
elements of vector IIk.

6.2 Generate tiled code by means of applying any code generator scanning elements of set TILE VLD EXT
in the lexicographic order, for example, CLooG [24] or the codegen function of the Omega project [19].

Parallel Tiled Code Generation with Loop Permutation within Tiles 1273

If there exist more than one linearly independent solutions to the time-partition
constraints of a loop nest, then it is possible to apply a tiling transformation to
this loop nest [4]. The presented algorithm does not require forming “time-partition
constraints”, it applies the transitive closure of dependence graphs to generate tiled
code.

The tiling validity condition by Xue [5] checks for lexicographic non-negativity
of inter-tile dependences. Mullapudi and Bondhugula [33] demonstrate that those
conditions are conservative, i.e., they miss tiling schemes for which the tile schedule
is not easy to present statically. They suggest to check whether an inter-tile depen-
dence graph is cycle-free. If not, splitting or merging problematic original tiles can
be applied manually to break cycles and then form a tile schedule dynamically, i.e.,
at run-time. The presented algorithm allows for automatic breaking cycles in the
inter-tile dependence graph and generation of tiled code statically that in general
leads to higher performance of tiled code.

In the paper [34], the authors introduce the definition of “mostly-tileable” loop
nests for which classic tiling is prevented by an asymptotically insignificant number
of iterations. They suggest to peel the problematic iterations of the loop nest and
apply tiling to the remaining iterations. The authors demonstrate the application
of their algorithm to only one code implementing Nussinov’s algorithm. The scope
of the applicability of that algorithm is not presented. The algorithm, presented in
this paper, instead of peeling problematic tiles corrects them automatically to make
them valid and can be applied to any loop nests.

The papers [14, 15] demonstrate how we can extract coarse- and fine-grained
parallelism applying different Iteration Space Slicing algorithms, however they do
not consider any tiling transformation.

The papers [6, 7] present algorithms based on transitive closure and the proof of
the correctness of generated target code, but they do not allow for automatic loop
permutation within tiles.

The paper [36] exhibits how to generate parallel synchronization-free tiled code
based on transitive closure and the application of the discussed algorithm to different
real-life benchmarks, but it does not consider loop permutation within tiles.

The paper [35] discuses how to form free-scheduling for tiles in code generated
by means of transitive closure, but it does not allow for loop permutation within
tiles.

Loop interchange is well-known reordering transformation. When all elements
of all dependence distance vectors are non-negative, it is valid to permute loops
within each tile according to a given input order [8]. Otherwise loop permutation
may result in invalid code. The algorithm, presented in this paper, is able to pro-
duce always valid tiled code with loop permutation within tiles. When all elements
of all dependence direction vectors of an original loop nest are non-negative, it will
generate the same code as that generated with the classic loop permutation trans-
formation, otherwise it will produce valid code which is as close as possible to the
code generated by the loop permutation transformation.

1274 M. Palkowski, W. Bielecki

Summing up, we may conclude that the algorithm, presented in this paper, al-
lows for both automatic tiled code generation and loop permutation within tiles.
This algorithm is to be implemented in optimizing compilers generating automati-
cally parallel tiled code.

5 RESULTS OF EXPERIMENTS

The presented algorithm has been implemented in the optimizing compiler TRACO,
publicly available at the website traco.sourceforge.net. For calculating the tran-
sitive closure of a loop nest dependence graph, TRACO uses the corresponding
function of the ISL library [18].

To carry out experiments, we chosen the loop nests shown in the first column
of Table 1 which are a subset of the NAS Parallel Benchmark suite 3.3 (NPB) [16].
We chosen codes with different structures, both perfectly (all statements are within
the innermost loop) and imperfectly nested loops. The second column in Table 1
presents the original order of loops in each examined loop nest. The third column
includes the order of the indices of arrays available in statements of the corresponding
loop nest body; “digit” means that a corresponding index is represented by a digit.
The last column demonstrates what is the permuted loop order in each tile of tiled
code.

Loop Nest
Original
Order
of Loops

Order of Array Indices
Permuted
Order
of Loops

BT rhs 1 k, j, i i, j, k; digit, i, j, k j, i, k

FT auxfnct 2 i, k, j j, k, i k, j, i

LU pintgr 2 j, i i, j; digit, i, j, digit i, j

SP nivr 1 k, j, i digit, i, j, k j, i, k

UA adapt 10 iz, ix, ip ix, digit, iz; ix, ip, iz; ip ip, ix, iz

UA diffuse 5 k, iz, i, j i, j, iz; i, j, k; k, iz k, j, i, iz

UA setup 16 i, j, ip i, j; ip, i; ip, j; ip i, ip, j

UA transfer 4 col, j, i digit, col; j, col; i, col; i− 1, j, digit j, i, col

Table 1. Original and permuted orders of loops

This permuted loop order is to be defined by the user. Being able to look
at code and get a qualitative sense of its locality is a key skill for a professional
programmer. Analyzing the content of Table 1, we can conclude that in each tiled
code (representing loop permutation in tiles) the last iterative variable, defining the
innermost loop, is the same as the variable defining the last dimension in most arrays
present in statements of a corresponding loop nest body.

The reason is the following. Programs tend to reuse data near those they have
used recently (spatial locality), or that were recently referenced themselves (temporal
locality). Data elements are brought into one cache line at a time and if one element

traco.sourceforge.net

Parallel Tiled Code Generation with Loop Permutation within Tiles 1275

Loop Nest
Dependence
Analysis

Transitive
Closure Calculation

ISL Code
Generation

Other
Time

Total

BT rhs 1 0.118 0.671 0.656 2.533 3.978

FT auxfnct 2 0.001 0.001 0.004 0.768 0.774

LU pintgr 2 0.277 0.251 1.126 0.858 2.462

SP nivr 1 0.300 0.220 0.004 1.327 1.887

UA adapt 10 0.030 0.021 0.557 1.575 2.183

UA diffuse 5 0.018 0.001 0.081 0.545 0.645

UA setup 16 0.010 0.001 0.047 0.495 0.553

UA transfer 4 0.002 0.002 0.114 0.594 0.748

Table 2. Time of particular stages of code generation (in seconds)

is referenced, a few neighboring elements will also be brought into cache. If these
neighboring elements will be referenced by successive instructions, there will be no
cache miss penalty, this reduces code execution time. For the C language, such
a situation takes place when both the last iterative variable defining the innermost
loop and the index defining the last array dimension in a corresponding loop nest
body are the same.

When we deal with multiple arrays, with some arrays accessed by rows and some
by columns, we choose the iterative variable available in statements of a correspond-
ing loop to be last in permuted tiled code that represents the last dimension in most
arrays available in statements of the loop nest body.

The goal of experiments was to evaluate the time of code generation according
to the introduced algorithm and compare speed-ups of original and permuted tiled
codes. To carry out experiments, we have used a computer with the following
features: 2 × Intel Xeon CPU E5-2695 v2, 2.40 GHz, 12 Cores, 24 Threads, 30 MB
Cache, 16 GB RAM.

Source and target codes of the examined programs are available at the web-
site [37].

Parallel code was generated automatically by TRACO with an option allowing
for extraction of synchronization-free parallelism based on the algorithm presented
in paper [14]. TRACO applies that algorithm to a dependence graph whose vertices
are target tiles while each directed edge points out a dependence between a pair of
corresponding target tiles. TRACO generates parallel code in the OpenMP stan-
dard [17].

Both original and tiled codes (with the tile side equal to 16) were compiled by
means of the GCC 4.8.3 compiler. The dimension of a tile including instances of
a loop nest statement is the same as the number of loops surrounding this statement.

Table 2 shows time of the particular stages of TRACO automatic code generation
for an Intel i5-4670 3.4 GHz computer. Column 2 presents time of dependence
analysis. Times of transitive closure calculation and code generation by means of
the ISL code generator are placed in columns 3 and 4, respectively. Column 5 informs
about time of other operations: dependence relations pre-processing, building sets

1276 M. Palkowski, W. Bielecki

L
o
o
p

P
erm

u
t.

C
P

U
s
→

1
2

4
8

1
6

3
2

l.i.u
.b

T
T

S
T

S
T

S
T

S
T

S

B
T

rh
s

1
Y

es
5
0
0

1
0
.5

0
3
.6

1
2
.9

1
1
.9

8
5
.3

0
1
.0

4
1
0
.1

1
0
.5

8
1
8
.0

1
0
.5

2
2
0
.0

4
1

0
0
0

1
6
5
.1

3
3
6
.0

4
4
.5

8
1
9
.2

5
8
.5

8
1
2
.4

7
1
3
.2

5
7
.3

5
2
2
.4

7
6
.0

7
2
7
.2

2

N
o

5
0
0

1
0
.5

0
1
3
.4

5
0
.7

8
1
3
.5

4
0
.7

8
1
4
.8

9
0
.7

1
1
7
.0

5
0
.6

2
1
8
.5

8
0
.5

7
1

0
0
0

1
6
5
.1

3
9
6
.5

1
1
.7

1
1
8
9
.5

4
0
.8

7
1
7
5
.1

1
0
.9

4
2
0
6
.3

3
0
.8

0
1
5
9
.6

2
1
.0

3

F
T

a
u
x
fn

ct
2

Y
es

5
0
0

8
.0

7
1
.2

5
6
.4

8
0
.6

8
1
1
.8

9
0
.3

8
2
1
.2

4
0
.2

3
3
5
.0

9
0
.2

2
3
7
.3

6
1

0
0
0

9
0
.4

0
7
.7

1
1
1
.7

3
6
.1

6
1
4
.6

8
3
.7

8
2
3
.9

4
1
.9

9
4
5
.4

3
1
.6

1
5
6
.0

8

N
o

5
0
0

8
.0

7
1
.6

5
4
.8

8
0
.7

8
1
0
.3

9
0
.4

4
1
8
.2

2
0
.2

8
2
8
.9

2
0
.2

7
2
9
.6

7
1

0
0
0

9
0
.4

0
1
2
.1

5
7
.4

4
8
.2

0
1
1
.0

3
5
.7

5
1
5
.7

2
2
.9

1
3
1
.0

8
2
.1

3
4
2
.4

2

L
U

p
in

tg
r

2
Y

es
5

0
0
0

0
.6

1
0
.3

5
1
.7

6
0
.1

5
4
.2

1
0
.1

2
5
.0

8
0
.0

6
9
.5

3
0
.0

6
9
.8

4
1
0

0
0
0

2
.4

6
1
.2

7
1
.9

4
0
.6

8
3
.6

1
0
.4

4
5
.5

9
0
.3

4
7
.3

5
0
.2

9
8
.3

7

N
o

5
0
0
0

0
.6

1
0
.7

9
0
.7

7
0
.7

9
0
.7

7
1
.5

7
0
.3

9
1
.9

5
0
.3

1
1
.0

6
0
.5

7
1
0

0
0
0

2
.4

6
2
.7

0
0
.9

1
3
.4

6
0
.7

1
3
.2

3
0
.7

6
3
.9

4
0
.6

2
3
.6

5
0
.6

7

S
P

n
in

v
r

1
Y

es
2
5
0

1
.3

4
0
.9

5
1
.4

1
0
.6

1
2
.2

1
0
.4

3
3
.1

0
0
.2

8
4
.8

1
0
.2

6
5
.0

8
5
0
0

4
1
.4

7
9
.0

6
4
.5

8
4
.3

4
9
.5

6
2
.4

4
1
6
.9

7
1
.6

5
2
5
.2

1
1
.2

8
3
2
.3

5

N
o

2
5
0

1
.3

4
1
.0

3
1
.3

1
0
.6

8
1
.9

7
0
.3

8
3
.4

9
0
.3

1
4
.3

5
0
.2

9
4
.5

9
2
5
0

4
1
.4

7
1
0
.1

2
4
.1

0
6
.2

9
6
.6

0
3
.7

0
1
1
.2

2
2
.2

3
1
8
.5

6
1
.5

9
2
6
.0

8

U
A

a
d
a
p
t

1
0

Y
es

5
0
0

0
.7

3
0
.5

4
1
.3

7
0
.5

1
1
.4

4
0
.3

3
2
.2

3
0
.3

4
2
.1

6
0
.2

5
2
.9

4
1

0
0
0

5
.1

6
3
.2

0
1
.6

1
2
.8

1
1
.8

3
2
.5

7
2
.0

1
2
.4

7
2
.0

9
1
.9

9
2
.6

0

N
o

5
0
0

0
.7

3
0
.4

0
1
.8

4
0
.5

4
1
.3

5
0
.4

5
1
.6

2
0
.3

4
2
.1

6
0
.3

1
2
.3

8
1

0
0
0

5
.1

6
2
.9

9
1
.7

3
3
.9

8
1
.3

0
2
.4

8
2
.0

8
2
.5

4
2
.0

3
1
.9

5
2
.6

5

U
A

d
iff

u
se

5
Y

es
2
0
0

7
.3

6
2
.8

4
2
.5

9
2
.5

4
2
.8

9
2
.0

6
3
.5

8
1
.8

3
4
.0

3
1
.8

1
4
.0

6
3
0
0

5
1
.1

0
1
3
.6

2
3
.7

5
1
1
.1

8
4
.5

7
1
0
.6

7
4
.7

9
1
0
.4

4
4
.9

0
9
.4

2
5
.4

2

N
o

2
0
0

7
.3

6
2
.6

9
2
.7

3
3
.0

9
2
.3

8
2
.5

5
2
.8

8
2
.2

1
3
.3

3
2
.1

7
3
.4

0
3
0
0

5
1
.1

0
1
5
.0

5
3
.4

0
1
3
.6

5
3
.7

4
1
2
.9

0
3
.9

6
1
1
.8

0
4
.3

3
1
3
.0

3
3
.9

2

U
A

setu
p

1
6

Y
es

7
0
0

0
.5

4
0
.5

0
1
.0

9
0
.4

6
1
.2

0
0
.3

8
1
.4

2
0
.3

7
1
.4

9
0
.3

2
1
.6

8
9
0
0

4
.7

1
1
.2

6
3
.7

5
0
.9

0
5
.2

4
0
.8

1
5
.8

1
0
.7

4
6
.3

5
0
.7

9
5
.9

5

N
o

7
0
0

0
.5

4
0
.7

8
0
.7

0
0
.5

1
1
.0

6
0
.4

3
1
.2

6
0
.5

0
1
.0

8
0
.4

2
1
.2

8
9
0
0

4
.7

1
1
.5

0
3
.1

4
1
.0

7
4
.4

1
1
.0

5
4
.4

8
0
.9

4
5
.0

0
0
.7

9
5
.9

8

U
A

tra
n
sfer

4
Y

es
1

2
5
0

2
.4

9
2
.0

1
1
.2

4
1
.9

6
1
.2

7
1
.8

6
1
.3

4
1
.6

6
1
.5

0
1
.5

6
1
.6

0
2

5
0
0

5
0
.4

2
1
9
.8

5
2
.5

4
1
7
.7

8
2
.8

4
1
5
.0

2
3
.3

6
1
4
.1

6
3
.5

6
1
2
.1

5
4
.1

5

N
o

1
2
5
0

2
.4

9
2
.3

0
1
.0

9
2
.2

8
1
.0

9
1
.9

6
1
.2

7
1
.9

4
1
.2

8
1
.8

1
1
.3

8
2

5
0
0

5
0
.4

2
2
0
.4

2
2
.4

7
1
8
.0

8
2
.7

9
1
6
.4

9
3
.0

6
1
5
.7

6
3
.2

0
1
5
.2

0
3
.3

2

T
ab

le
3.

T
im

e
(T

,
in

secon
d
s)

an
d

sp
eed

-u
p

(S
);

“l.i.u
.b

.”
d
en

otes
lo

op
in

d
ex

u
p
p

er
b

ou
n
d
s

d
efi

n
in

g
th

e
p
rob

lem
size

Parallel Tiled Code Generation with Loop Permutation within Tiles 1277

Loop Nest Type Speed-Up Reason

BT rhs 1 perf high

permutation increases both temporal and
spatial locality; computational work per
processor is enough to increase speed-up
with increasing the number of CPUs up to 32

FT auxfnct 2 perf high

permutation increases both temporal and
spatial locality; computational work per
processor is enough to increase speed-up
with increasing the number of CPUs up to 32

LU pintgr 2 perf

low for
the larger
number
of CPUs

permutation increases both temporal and
spatial locality; computational work per
processor is not enough to increase
considerably speed-up with increasing the
number of CPUs, from 8 up to 32

SP nivr 1 perf high

permutation increases both temporal and
spatial locality; computational work per
processor is enough to increase speed-up
with increasing the number of CPUs up to 32

UA adapt 10 imperf low

permutation does not increase locality, the
possible reason is that multiple inner loop
nests representing tiles are generated; while
execution, each such next loop nest destructs
cache data formed by the previous nest.

UA diffuse 5 perf

low for
the larger
number
of CPUs

permutation increases temporal locality for
array r[i][j][iz], but does not enhance locality
of array u[i][j][k]

UA setup 16 perf

low for
the larger
number
of CPUs

permutation increases both temporal and
spatial locality; computational work per
processor is not enough to increase
considerably speed-up with increasing the
number of CPUs from 8 up to 32

UA transfer 4 imperf

low for
the larger
number
of CPUs

permutation slightly increases locality;
computational work per processor is not
enough to increase considerably speed-up
with increasing the number of CPUs from
8 up to 32

Table 4. Types of loop nests and the explanation of the behavior of tiled code speed-up,
“perf” and “imperf” stand for perfectly and imperfectly nested loops, respectively

1278 M. Palkowski, W. Bielecki

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0

10

20

30

BT_rhs_1

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0

10

20

30

40

50

60

FT_auxfnct_2

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0

2

4

6

8

10

LU_pintgr_2

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0

10

20

30

40

SP_nivr_1

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

1.0

1.5

2.0

2.5

3.0

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

3.0

3.5

4.0

4.5

5.0

5.5

6.0

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

2.0

2.5

3.0

3.5

4.0

4.5

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

3.0

4.0

5.0

6.0

7.0

UA_adapt_10 UA_diffuse_5

UA_setup_16 UA_transfer_4

SP_ninvr_1

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0

10

20

30

BT_rhs_1

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0

10

20

30

40

50

60

FT_auxfnct_2

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

10

15

20

25

30

35

40
LU_HP_rhs_1

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0

2

4

6

8

10

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0

10

20

30

40

SP_nivr_1

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0.60

0.80

1.00

1.20

MG_mg_9

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

1.0

1.5

2.0

2.5

3.0

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

3.0

3.5

4.0

4.5

5.0

5.5

6.0
UA_adapt_10 UA_diffuse_5

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0

10

20

30

BT_rhs_1

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0

10

20

30

40

50

60

FT_auxfnct_2

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0

2

4

6

8

10

LU_pintgr_2

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0

10

20

30

40

SP_nivr_1

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

1.0

1.5

2.0

2.5

3.0

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

3.0

3.5

4.0

4.5

5.0

5.5

6.0

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

2.0

2.5

3.0

3.5

4.0

4.5

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

3.0

4.0

5.0

6.0

7.0

UA_adapt_10 UA_diffuse_5

UA_setup_16 UA_transfer_4

SP_nivr_1

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0

10

20

30

BT_rhs_1

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0

10

20

30

40

50

60

FT_auxfnct_2

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0

2

4

6

8

10

LU_pintgr_2

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

0

10

20

30

40

SP_nivr_1

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

1.0

1.5

2.0

2.5

3.0

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

3.0

3.5

4.0

4.5

5.0

5.5

6.0

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

2.0

2.5

3.0

3.5

4.0

4.5

2 CPUs 4 CPUs 8 CPUs 16 CPUs 32 CPUs

3.0

4.0

5.0

6.0

7.0

UA_adapt_10 UA_diffuse_5

UA_setup_16 UA_transfer_4

SP_nivr_1 LU_pintgr_2

Figure 5. Speed-up of tiled original (green bars) and permuted (red bars) codes

envisaged by the introduced algorithm, sets and relations simplification, and code
post-processing. The last column shows total time. As we can see from Table 2, the
time of the calculation of transitive closure takes less than 15 % of the total time for
each benchmark under experiments.

Table 3 presents execution time (T) in seconds and speed-up (S) for the studied
loop nests when the GCC compiler was applied with the -O3 optimization option.
All the values of upper loop index bounds were defined to be the same. Speed-
up was calculated as the ratio of an original sequential program execution time to
a corresponding tiled parallel program execution time on P processors.

Parallel Tiled Code Generation with Loop Permutation within Tiles 1279

Figure 5 shows speed-up of parallel tiled codes in a graphical way when each
loop index upper bound is equal to the maximal value presented in Table 3.

The conclusions of qualitative analysis of speed-up received are presented in
Table 4. The second column clarifies what is the type of a corresponding loop nest:
perfectly or imperfectly nested. The third column shows the character of speed-
up depending on the number of CPUs used. The last column, for each loop nest,
presents a reason of speed-up behavior.

For all codes being examined, except from the UA adapt 10 program, loop per-
mutation within tiles leads to increasing code locality and, as a consequence, to
increasing parallel code speed-up. For the UA adapt 10 program, because the loop
nest is imperfectly nested and includes multiple statements, while executing tiled
code each thread scans multiple tiles for a given value of the index of the outer-
most loop. Scanning each next tile leads to destructing data (associated with the
previous tile) in cache, this makes impossible increasing code locality due to loop
permutation.

6 CONCLUSION

In this paper, we presented an extended approach (in comparison with that outlined
in the paper [6]) allowing for parallel tiled code generation with permutation of loops
within tiles. It is based on a combination of the Polyhedral and Iteration Space
Slicing frameworks and allows for an arbitrary order of loops within tiles. This
new order is defined by the user as input data. The approach produces compilable
parallel tiled OpenMP C/C++ code representing a permuted order of loops within
tiles. We demonstrated by means of a subset of the NPB benchmark suite that
a proper order of loops within tiles improves code locality that leads to increasing
speed-up of tiled code.

In the future, we plan to combine iteration space slicing [14], free scheduling [15],
tiling, and permutation in one framework to allow users to manage the locality,
parallelism degree, and granularity of target parallel tiled code.

REFERENCES

[1] Bondhugula, U.—Hartono, A.—Ramanujam, J.—Sadayappan, P.: A Prac-
tical Automatic Polyhedral Parallelizer and Locality Optimizer. ACM SIGPLAN No-
tices – PLDI ’08, Vol. 43, 2008, No. 6, pp. 101–113, doi: 10.1145/1375581.1375595.

[2] Griebl, M.: Automatic Parallelization of Loop Programs for Distributed Memory
Architectures. Habilitation, University of Passau, 2004, 207 pp.

[3] Irigoin, F.—Triolet, R.: Supernode Partitioning. Proceedings of the 15th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’88), ACM, 1988, pp. 319–329, doi: 10.1145/73560.73588.

[4] Lim, A.—Cheong, G. I.—Lam, M. S.: An Affine Partitioning Algorithm to Max-
imize Parallelism and Minimize Communication. Proceedings of the 13th Interna-

https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/73560.73588

1280 M. Palkowski, W. Bielecki

tional Conference on Supercomputing (ICS ’99), ACM Press, 1999, pp. 228–237, doi:
10.1145/305138.305197.

[5] Xue, J.: Loop Tiling for Parallelism. Kluwer Academic Publishers, 2000, doi:
10.1007/978-1-4615-4337-4.

[6] Bielecki, W.—Palkowski, M.: Perfectly Nested Loop Tiling Transformations
Based on the Transitive Closure of the Program Dependence Graph. Soft Computing
in Computer and Information Science, Vol. 342, 2015, pp. 309–320, doi: 10.1007/978-
3-319-15147-2 26.

[7] Bielecki, W.—Palkowski, M.: Tiling of Arbitrarily Nested Loops by Means of
the Transitive Closure of Dependence Graphs. International Journal of Applied Math-
ematics and Computer Science, Vol. 26, 2016, No. 4, pp. 919–939.

[8] Banerjee, U.K.: Loop Parallelization. Kluwer Academic Publishers, 1994, doi:
10.1007/978-1-4757-5676-0.

[9] Bielecki, W.—Klimek, T.—Palkowski, M.—Beletska, A.: An Iterative Al-
gorithm of Computing the Transitive Closure of a Union of Parameterized Affine
Integer Tuple Relations. Fourth International Conference on Combinatorial Optimiza-
tion and Applications (COCOA 2010). Lecture Notes in Computer Science, Vol. 6508,
2010, pp. 104–113.

[10] Kelly, W.—Pugh, W.—Rosser, E.—Shpeisman, T.: Transitive Closure of In-
finite Graphs and Its Applications. International Journal of Parallel Programming,
Vol. 24, 1996, No. 6, pp. 579–598.

[11] Verdoolaege, S.—Cohen, A.—Beletska, A.: Transitive Closures of Affine In-
teger Tuple Relations and Their Overapproximations. Proceedings of the 18th Inter-
national Conference on Static Analysis (SAS 2011). Springer-Verlag, Lecture Notes in
Computer Science, Vol. 6887, 2011, pp. 216–232, doi: 10.1007/978-3-642-23702-7 18.

[12] Bielcki, W.—Kraska, K.—Klimek, T.: Using Basis Dependence Distance Vec-
tors to Calculate the Transitive Closure of Dependence Relations by Means of the
Floyd-Warshall Algorithm. Journal of Combinatorial Optimization, Vol. 30, 2015,
No. 2, pp. 253–275.

[13] Chen, C.: Omega+ Library. School of Computing University of Utah, 2011. Avail-
able on: http://www.cs.utah.edu/~chunchen/omega.

[14] Beletska, A.—Bielecki, W.—Cohen, A.—Palkowski, M.—Siedlecki,
K.: Coarse-Grained Loop Parallelization: Iteration Space Slicing vs. Affine
Transformations. Parallel Computing, Vol. 37, 2011, pp. 479–497, doi:
10.1016/j.parco.2010.12.005.

[15] Bielecki, W.—Palkowski, M.—Klimek, T.: Free Scheduling for Statement
Instances of Parameterized Arbitrarily Nested Affine Loops. Parallel Computing,
Vol. 38, 2012, No. 9, pp. 518–532, doi: 10.1016/j.parco.2012.06.001.

[16] NAS Benchmarks Suite, 2013. Available on: http://www.nas.nasa.gov.

[17] OpenMP Architecture Review Board, OpenMP Application Program Interface Ver-
sion 4.0, 2012. Available on: http://www.openmp.org/mp-documents/OpenMP4.

0RC1_final.pdf.

[18] Verdoolaege, S.: Integer Set Library – Manual. Technical report, 2011. Available
on: www.kotnet.org/~skimo/isl/manual.pdf.

https://doi.org/10.1145/305138.305197
https://doi.org/10.1007/978-1-4615-4337-4
https://doi.org/10.1007/978-3-319-15147-2_26
https://doi.org/10.1007/978-3-319-15147-2_26
https://doi.org/10.1007/978-1-4757-5676-0
https://doi.org/10.1007/978-3-642-23702-7_18
http://www.cs.utah.edu/~chunchen/omega
https://doi.org/10.1016/j.parco.2010.12.005
https://doi.org/10.1016/j.parco.2012.06.001
http://www.nas.nasa.gov
http://www.openmp.org/mp-documents/OpenMP4.0RC1_final.pdf
http://www.openmp.org/mp-documents/OpenMP4.0RC1_final.pdf
www.kotnet.org/~skimo/isl/manual.pdf

Parallel Tiled Code Generation with Loop Permutation within Tiles 1281

[19] Kelly, W.—Maslov, V.—Pugh, W.—Rosser, E.—Shpeisman, T.—
Wonnacott, D.: The Omega Library Interface Guide. Technical report, College
Park, MD, USA, 1995.

[20] Bondhugula, U.K.R.: Effective Automatic Parallelization and Locality Optimiza-
tion Using the Polyhedral Model. Ph.D. thesis, The Ohio State University, Columbus,
OH, USA, 2008.

[21] Wonnacott, D.G.—Strout, M.M.: On the Scalability of Loop Tiling Tech-
niques. Proceedings of the 3rd International Workshop on Polyhedral Compilation
Techniques (IMPACT 2013), 2013.

[22] Feautrier, P.: Some Efficient Solutions to the Affine Scheduling Problem: I. One-
Dimensional Time. International Journal of Parallel Programming, Vol. 21, 1992,
No. 5, pp. 313–347.

[23] Feautrier, P.: Some Efficient Solutions to the Affine Scheduling Problem: II. Multi-
dimensional Time. International Journal of Parallel Programming, Vol. 21, 1992,
No. 6, pp. 389–420.

[24] Bastoul, C.: Code Generation in the Polyhedral Model Is Easier Than You
Think. IEEE International Conference on Parallel Architecture and Compila-
tion Techniques (PACT ’13), Antibes Juan-les-Pins, France, 2004, pp. 7–16, doi:
10.1109/PACT.2004.1342537.

[25] Pugh, W.—Rosser, E.: Iteration Space Slicing and Its Application to Communi-
cation Optimization. Proceedings of the 11th International Conference on Supercom-
puting (ICS ’97), 1997, pp. 221–228, doi: 10.1145/263580.263637.

[26] The Polyhedral Benchmark Suite, 2012. Available on: http://www.cse.

ohio-state.edu/~pouchet/software/polybench/.

[27] Verdoolaege, S.: Barvinok: User Guide. Version: Barvinok-0.36. 2012. Available
on: http://garage.kotnet.org/~skimo/barvinok/barvinok.pdf.

[28] Lim, A.W.—Lam, M. S.: Communication-Free Parallelization via Affine Transfor-
mations. Languages and Compilers for Parallel Computing (LCPC 1994). Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 892, 1994, pp. 92–106,
doi: 10.1007/BFb0025873.

[29] Ramanujam, J.—Sadayappan, P.: Tiling Multidimensional Iteration Spaces for
Multicomputers. Journal of Parallel and Distributed Computing, Vol. 16, 1992, No. 2,
pp. 108–120, doi: 10.1016/0743-7315(92)90027-K.

[30] Wolf, M.E.—Lam, M. S.: A Data Locality Optimizing Algorithm. ACM SIG-
PLAN Notices, Vol. 26, 1991, No. 6, pp. 30–44.

[31] Wolf, M.E.—Lam, M. S.: A Loop Transformation Theory and an Algorithm to
Maximize Parallelism. IEEE Transactions on Parallel and Distributed Systems, Vol. 2,
1991, No. 4, pp. 452–471.

[32] Krishnamoorthy, S.—Baskaran, M.—Bondhugula, U.—Ramanujam, J.—
Rountev, A.—Sadayappan, P.: Effective Automatic Parallelization of Stencil
Computations. ACM SIGPLAN Notices – Proceedings of the 2007 PLDI Conference,
Vol. 42, 2007, No. 6, pp. 235–244, doi: 10.1145/1250734.1250761.

[33] Mullapudi, R.T.—Bondhugula, U.: Tiling for Dynamic Scheduling. Fourth In-
ternational Workshop on Polyhedral Compilation Techniques (IMPACT 2014), 2014.

https://doi.org/10.1109/PACT.2004.1342537
https://doi.org/10.1145/263580.263637
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://garage.kotnet.org/~skimo/barvinok/barvinok.pdf
https://doi.org/10.1007/BFb0025873
https://doi.org/10.1016/0743-7315(92)90027-K
https://doi.org/10.1145/1250734.1250761

1282 M. Palkowski, W. Bielecki

[34] Wonnacott, D.—Jin, T.—Lake, A.: Automatic Tiling of “Mostly-Tileable”
Loop Nests. Fifth International Workshop on Polyhedral Compilation Techniques
(IMPACT 2015), 2015.

[35] Bielecki, W.—Palkowski, M.—Klimek, T.: Free Scheduling of Tiles Based on
the Transitive Closure of Dependence Graphs. In: Wyrzykowski, R., Deelman, E.,
Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (Eds.): Parallel Processing
and Applied Mathematics. Springer, Cham, Lecture Notes in Computer Science,
Vol. 9574, 2015, pp. 133–142.

[36] Palkowski, M.—Klimek, T.—Bielecki, W.: TRACO: An Automatic Loop Nest
Parallelizer for Numerical Applications. Federated Conference on Computer Science
and Information Systems (FedCSIS), 2015, pp. 681–686, doi: 10.15439/2015F34.

[37] Source and Target Codes, http://sourceforge.net/p/traco/code/HEAD/tree/

trunk/examples/perm/.

Marek Palkowski graduated and obtained his Ph.D. degree
in computer science from the Technical University of Szczecin,
Poland. The main goal of his research is extraction of parallelism
available in program loop nests using the transitive closure of de-
pendence graphs, development of the publicly available TRACO
compiler implementing parallelization techniques based on the
transitive closure of dependence graphs.

Wlodzimierz Bielecki is Full Professor, Head of the Software
Technology Department of the West Pomeranian University of
Technology, Szczecin. His research interest includes parallel and
distributed computing, optimizing compilers, techniques of ex-
traction of both fine- and coarse-grained parallelism available in
program loop nests based on the transitive closure of dependence
graphs.

https://doi.org/10.15439/2015F34
http://sourceforge.net/p/traco/code/HEAD/tree/trunk/examples/perm/
http://sourceforge.net/p/traco/code/HEAD/tree/trunk/examples/perm/

