
Computing and Informatics, Vol. 36, 2017, 1063–1087, doi: 10.4149/cai 2017 5 1063

MODELING OF OBJECT-ORIENTED PROGRAMS
WITH PETRI NET STRUCTURED OBJECTS

Dmitriy Kharitonov, George Tarasov, Evgeniy Golenkov

Institute of Automation and Control Processes
Russian Academy of Sciences
5 Radio st., Vladivostok, Russia
e-mail: {demiurg, george, golenkov}@dvo.ru

Abstract. The article presents a method for constructing a model of an object-
oriented program in terms of multilabeled Petri nets. Only encapsulation – one of
the three concepts of object-oriented paradigm – is considered. To model a different
aspects of encapsulation a Petri net structured object is proposed. It consists of
a Petri net defining its behavior and a set of organized access points specifying
its structural properties. Formal composition operations to construct a program
model from the models of its methods, classes, objects, functions, and modules are
introduced and a source code translation algorithm to Petri net representation is
proposed. A special section of the article considers in detail a process of model
construction of a real object-oriented program (OOP). Source code of the program,
figures with Petri net objects modeling different elements of the program and the
resulting model of the program are presented.

Keywords: Place/transition nets, multilabeled Petri nets, program model, object-
oriented programming

Mathematics Subject Classification 2010: 68N30

1 INTRODUCTION

Petri net theory is widely used in modeling and analysis of programs. The most
prominent works in this scope deal with investigation of parallel program properties.
Deadlock search [1, 2], program performance analysis [3, 4], verification of message

1064 D. Kharitonov, G. Tarasov, E. Golenkov

passing [5] with the help of Petri nets are just some examples of Petri nets applica-
tion. We emphasize that in those and many others works, program models are of
great importance providing the formal basis for the analysis of the whole program or
some of its components characteristics. Alternatively, generation of an appropriate
model of program investigated is the most labour intensive step of all in the pro-
gram modeling process, and there was some of research about automatic creation
of program models [6, 7, 8]. Keeping in mind continuous development of program-
ming languages and environments, extensions of syntax and semantics of modern
languages, the task of automatic program model construction from its source text
becomes more and more significant in practice for program property analysis and
verification.

This paper describes an approach and an algorithm of automatic model construc-
tion of an object-oriented program. To achieve high level of automation, an aux-
iliary formal construction names tree is introduced. From the names tree a PNS-
object (Petri net structured object) is proposed that is assumed to be a basic unit
for the complex program model construction. On the example of a “set division”
program [9, 10] a step-by-step process generating a final model in terms of com-
positional multilabeled P/T nets is illustrated. This article deals with only one
of three conceptions of object-oriented programming – encapsulation. Definitions
of class declaration model, method and member declaration models and methods
and functions implementation models are given. Control flow transfer by methods
and function calls is considered. The proposed approach is a continuation and de-
velopment of an approach which addresses issues of building models of procedural
programs [11, 12].

2 C++ PROGRAM SAMPLE

To demonstrate the results of constructing a model the following real object-oriented
parallel program example will be used. It is a program that solves the “set division”
problem, proposed by Dijkstra in 1977 [9]. The problem was discussed in many
publications of different authors, and its partial correctness was proven in [13].
In 1996 Karpov has shown the absence of the property of total correctness [10].
The problem has the following description. There are two processes, Small and
Large, given sets of integers for each process, S for Small, L for Large, respectively.
Process Small finds in its set S a maximal element and sends it to process Large.
Simultaneously, process Large finds in its set L a minimal element and sends it to
process Small. Such interaction between two processes continues until S will consist
of all minimal elements, and L – all maximal elements. Cardinality of sets remains
constant. The model of the algorithm of processes interactions may be schematically
shown as a simple Petri net in which transitions represent transfer of minimal and
maximal elements (Figure 1) by the two independent channels a and b.

The problem implementation using C++ object-oriented programming language
is proposed in the Appendix. The program has two entities: the “set” and the

Modeling of Object-Oriented Programs with Petri Net Structured Objects 1065

Small:: Large::a !mx a ?y

b ?x b !mn

a !mx a ?y

b ?x b !mn

a

b

a

b

Figure 1. Schematic Petri net model of the “set division” problem

“process”. The “set” behavior is realized in class Set and behavior of “process” in
class DivProc. We use the MPI library for message passing between processes. It
is fixed that Small process has rank 0, and Large has rank 1.

The main goal of this article is to introduce Petri net structured object notation
and a set of operations, necessary for modeling of objects and their control flow in
the program. As stated earlier, we consider method calling as the only method of
object interaction.

When creating models of object-oriented software two technical problems should
be solved. First, OO programs have a more complicated name binding mechanism
than procedural programs. Any name in OOP code can be the name of a local
object, class or function, or that name can be a member or method of the class that
part of code belongs to, or it can be a global object or function. Thus, to build
a program model automatically we need to handle all this name locations. And
second, procedural programs have only function recursions while in OOP there can
also be recursion through data types; classes can have methods that have local vari-
ables of the same class. Recursions prevent us from modeling classes and methods
by always using copies of their models when they are used.

3 BASE DEFINITIONS

3.1 Set, Multiset, and Sequence

Let A = {a1, a2, . . . , ak} be a set. A Multiset on set A is defined as function µ :
A → N0, that associates with each element of the set A some non-negative integer
number. Multisets are conveniently written as a formal sum n1a1 +n2a2 + . . .+nkak
or Σniai, where ni = µ(ai) is the number of occurrences ai ∈ A in the multiset. As
a rule, elements with ni = 0 are omitted in formal sum. Union and subtraction of
two multisets µ1 = n1a1 +n2a2 + . . .+nkak and µ2 = m1a1 +m2a2 + . . .+mkak on set
A are defined accordingly as µ1 +µ2 = (n1 +m1)a1 +(n2 +m2)a2 + . . .+(nk +mk)ak
and µ1−µ2 = (n1−m1)a1 +(n2−m2)a2 + . . .+(nk−mk)ak, where the last operation
is performed only when ni > mi for all 1 ≤ i ≤ k. We say µ1 ≤ µ2, if ni ≤ mi for
each 1 ≤ i ≤ k, and µ1 < µ2, if µ1 ≤ µ2 and µ1 6= µ2. If ni = 0 for all i, then this

1066 D. Kharitonov, G. Tarasov, E. Golenkov

multiset is denoted as 0, while empty set is denoted as a ∅. Also we denote a ∈ µ if
∃n > 0 : (a, n) ∈ µ. Set of all finite multisets on set A is denoted as M(A).

The finite sequence s on a set A is defined as function s : N0 → A ∪ ∅ that
associates with non-negative integer number one element of the set A or element ∅
if number is greater than sequence size. Sequences are written as (ai)

n
i=0 or more

briefly (ai). The set of all finite sequences on set A is denoted as (A). Element b
belongs to sequence s, i.e. b ∈ s , if and only if ∃i ∈ N0 =⇒ s(i) = b. We will
denote (ai)

n
i=0 ⊆ (bj)

m
j=0 that sequence ai includes in sequence bi if m ≥ n and

i, j ∈ [0 . . . n] : ai = bj. When there is no ambiguity we will also denote an empty
sequence as ∅.

3.2 Names Tree

In order to deal with OOP object names that form quite complicated name spaces,
we introduce an auxiliary mathematical object – names tree. To avoid abundant
repetitions we shall think that there are two universal alphabets: A, a universal
alphabet for names and ∆, an alphabet for labeling functions. To designate empty
symbol, that 6∈ A and 6∈ ∆, the symbol of empty set ∅ is used.

Definition 1. Let us define names tree as a tuple Ψ = 〈v0,V , E , nm〉, where V is
a set of nodes, v0 ∈ V is a root node; E ⊆ V × V is a set of edges such, that

∀v′ ∈ V , v′ 6= v0 =⇒ ∃!path(v′) ≡ (ek)
n
k=0, ek = (vk, vk+1) ∈ E , vn+1 = v′,

nm : V → A – a function returning node name.
Let us also associate with names tree Ψ a function np : V → (A) returning

named path from root:

np(v) =

{
(nm(vk+1) | (vk, vk+1) ∈ path(v))nk=0, if v 6= v0,

∅, if v = v0.

When ∃!v ∈ V : (v0, v) ∈ E , then the tree can be referred to as a single-trunk
names tree.

Briefly, names tree is defined as a directed rooted graph, with each node having
a name from the universal alphabet A and a special function returning sequence of
node names in the path from the root.

Names trees have several operations:

• formal union,

• step growth,

• and single-trunk rename.

Examples of these operations are shown in the Figure 2.

Modeling of Object-Oriented Programs with Petri Net Structured Objects 1067

a

b c

d

e

f= a d f

b c e

a

b c
b c

a = a g=
b c

g

b c

Figure 2. Examples of operations on names trees

Definition 2 (Formal union of names trees). Given: Two names trees – Ψ1 and
Ψ2. Ψ1 = 〈v01,V1, E1, nm1, np1〉, and Ψ2 = 〈v02,V2, E2, nm2, np2〉. The formal union
of names trees Ψ1 and Ψ2 is the tree Ψ = Ψ1⊕Ψ2 = 〈v0,V , E , nm, np〉, where v0 the
new root node,

V = V1 \ {v01} ∪ V2 \ {v02} ∪ {v0},

E = {(v′, v′′) | (v′, v′′) ∈ E1 ∧ v′ 6= v01} ∪ {(v′, v′′) | (v′, v′′) ∈ E2 ∧ v′ 6= v02}

∪ {(v0, v
′′) | (v01, v

′′) ∈ E1} ∪ {(v0, v
′′) | (v02, v

′′) ∈ E2},

nm(v) =

∅, v = v0,

nm1(v), v ∈ V1,

nm2(v), v ∈ V2.

By definition, the formal union of names trees operation is commutative and
associative. Thus for a set of names trees Υ = {Ψ1,Ψ2 . . .Ψn} the formal union
operation can be in any order and we can write Ψ1 ⊕ Ψ2 ⊕ . . .⊕Ψn ≡

⊎
Ψi∈Υ Ψi ≡⊎

Υ.

Definition 3 (Step growth of names tree). Given: Names tree Ψ1 = 〈v01,V1, E1,
nm1, np1〉 and the name q ∈ A. Operation of step growth of the names tree builds
a new tree Ψ = Ψ1uq = 〈v0,V , E , nm, np〉, where v0 – new root node, V = V1∪{v0},
E = E1 ∪ {(v0, v01)},

nm(v) =

{
nm1(v), v ∈ V1 \ {v01},
q, v = v01.

Formal union of names trees combines two or more trees into one by joining
their root nodes, while the step growth of names tree operation gives a new name
to the initial root node and adds a new unnamed root to the resulting tree.

Definition 4 (Renaming a single-trunk names tree). Given: A single-trunk names
tree Ψ1 = 〈v0,V , E , nm1, np1〉, having ∃!v1 ∈ V : (v0, v1) ∈ E and the name q ∈ A.
Renaming this single-trunk names tree Ψ1 operation builds a new tree Ψ = Ψ1 . q =
〈v0,V , E , nm, np〉, where

nm(v) =

{
nm1(v), v ∈ V1 \ {v1},
q, v = v1.

1068 D. Kharitonov, G. Tarasov, E. Golenkov

4 PETRI NET OBJECTS AND OPERATIONS ON THEM

Using names tree introduced above, we define Petri net structured objects and op-
erations on them to construct a model of an object-oriented program.

Definition 5. A Petri net is defined as tuple Σ = 〈S, T, •(), ()•〉, where S – finite set
of places. T – finite set of transitions, with S ∩ T = ∅. •() : T →M(S) – incoming
incidence function, ()• : T → M(S) – outgoing incidence function. Multisets of
places •t and t• are referred to as incoming and outgoing multisets of transition
t ∈ T accordingly. Denotations •tΣ and t•Σ can be used to show the Petri net scope.

Definition 6. A Petri net structured object (PNS-object or just object, for short) is
a tuple E = 〈Σ,Ψ,Γ,M0〉, where Σ = 〈S, T, •(), ()•〉 – Petri net, determining object
behavior; Ψ = 〈v0,V , E , nm, np〉 – a names tree representing structural design of
a PNS-object; M0 ∈ M(S) – initial marking; Γ = {α1, α2, . . . , αn} – a set of access
points (AP), each αi = 〈idi, ini, outi, σi〉, where

• idi ≡ id(αi) – access point identifier,

• ini ≡ in(αi) ∈ V ∪ ∅ – input role of access point αi as position in names tree,

• outi ≡ out(αi) ∈ (A) ∪ ∅ – output role of access point αi as a named path in
names tree,

• σi ≡ σ(αi) : T →M(∆) – transitions labeling function.

The subset In(Γ) = {α ∈ Γ | in(α) 6= ∅ ∧ out(α) = ∅} of access points is called
object E input interface, and Out(Γ) = {α ∈ Γ | in(α) = ∅ ∧ out(α) 6= ∅} – output
interface.

The transition t label in the access point α is denoted for brevity as αΣ(t) ≡
σα(t) or just α(t). The labeling function σ is naturally extended to the multiset of
transitions σ :M(T)→M(∆) by the next way: ∀Θ = Σniti ∈ M(T) =⇒ σ(Θ) =
Σniσ(ti).

Less formally, PNS-object is a Petri net with a set of labeling functions which
are accessible via names and nodes in names tree.

Now we define a number of operations on objects that will be used later in the
construction of the program model.

Definition 7 (Union of access points). Given: A PNS-object E1 = 〈Σ1,Ψ1,Γ1,
M01〉, that has two access points α, β ∈ Γ1) with identical input and output iden-
tifiers: in(α) = in(β), out(α) = out(β). Operation uniting access points α and β
of E1 builds a new PNS-object E = (E1)γ=α+β = 〈Σ1,Ψ1,Γ,M01〉, so that Γ =
Γ1\{α, β} ∪ {γ} where γ = 〈〈id(α)id(β)〉, inα, outα, σγ = σα + σβ〉.

Access point union operation, instead of two initial access points, creates a new
access point that combines their labeling functions. This operation is required, for
example, when control flow models having calls to the same method or function
are united. By definition the union of access points operation is associative and
transitive.

Modeling of Object-Oriented Programs with Petri Net Structured Objects 1069

Definition 8 (Formal union of PNS-objects). Suppose we are given two objects E1

and E2. E1 = 〈Σ1,Ψ1,Γ1,M01〉, E2 = 〈Σ2,Ψ2,Γ2,M02〉, where Σ1 = 〈S1, T1,
•()1, ()

•
1〉

and Σ2 = 〈S2, T2,
•()2, ()

•
2〉. The result of PNS-objects E1 and E2 formal union is

the object E = E1 ⊕ E2 = 〈Σ,Ψ,Γ,M0〉, where Σ = 〈S, T, •(), ()•〉,

S = S1 ∪ S2, T = T1 ∪ T2, M0 = M01 +M02,

•() = •()1 ∪ •()2, ()• = ()•1 ∪ ()•2, Γ = Γ1 ∪ Γ2, Ψ = Ψ1 ⊕Ψ2.

By definition PNS-objects formal union operation is commutative and associa-
tive. So, for a set of PNS-objects G = {E1, E2, . . . , En}, the formal union operation
can be done in any order and we can write E1 ⊕ E2 ⊕ . . .⊕ En ≡

⊎
Ei∈GEi ≡

⊎
G.

Definition 9 (Restriction by access point). Consider PNS-object E1 = 〈Σ1,Ψ1,
Γ1,M0〉, where Σ1 = 〈S1, T1,

•()1, ()
•
1〉 and Ψ1 = 〈v01,V1, E1, nm1, np1〉. Restriction

of object E1 by access point α ∈ Γ1 forms a new object E = ∂α(E1) = 〈Σ,Ψ1,Γ,M0〉,
where Σ = 〈S1, T,

•(), ()•〉 and T = T1\{t ∈ T |α(t) > 0}, ∀t ∈ T |•(t) = •(t)1, (t)
• =

(t)•1, Γ = Γ1\{α}.

Restriction of a PNS-object by an access point deletes each transition labeled
nonempty by the access point with all adjacent arcs. The restriction operation is
associative: ∂α2(∂α1(E)) = ∂α1(∂α2(E)) and can be simply generalized to a subset
of access points used for restriction. E = ∂αn(. . . ∂α2(∂α1(E1))) ≡ ∂U(E1), where
U = {α1, α2, . . . , αn}.

Definition 10 (PNS-object normalization). For the given object E1 = 〈Σ1,Ψ1,Γ1,
M01〉, Σ = 〈S1, T1,

•()1, ()
•
1〉 we can construct the normalized PNS-object E =

norm(E1), where E = 〈Σ,Ψ,Γ,M0〉, Σ = 〈S, T, •(), ()•〉 and:

• S = S1 \ {si | ∀t ∈ T1 : si 6∈ •(t)1 ∧ si 6∈ (t)•1},
• T = T1 \ {ti | •(ti)1 = 0 ∧ (ti)

•
1 = 0},

• Γ = {α|∃α′ ∈ Γ′ : in(α) = in(α′), out(α) = out(α′)}, such that

– ∀α′ ∈ Γ′ =⇒ ∃!α ∈ Γ : in(α) = in(α′), out(α) = out(α′)

– ∀γ ∈ Γ =⇒ σγ =
∑

α′∈Γ′:in(α)=in(γ),out(α)=out(γ) σα.

Normalization removes unlinked places or transitions and unites access points
with the same roles. It is assumed, that all following objects being addressed are
either normalized or that a normalization operation can be applied to them.

Definition 11 (Simple composition). Given: A PNS-object E = 〈Σ1,Ψ,Γ,M0〉
and its access points α, β ∈ Γ1, where Σ1 = 〈S1, T1,

•()1, ()
•
1〉. Operation of sim-

ple composition by access points α and β of PNS-object E1 forms a new object
E = 〈Σ,Ψ,Γ,M0〉, Σ = 〈S1, T,

•(), ()•〉 where

1. T = T1 ∪ Tsyn, where Tsyn = {µ1 + µ2|µ1, µ2 ∈ M(T1), σα(µ1) = σβ(µ2) >
0, sum µ1 +µ2 is minimal, i.e. no sum µ′1 +µ′2 exists that µ′1 +µ′2 < µ1 +µ2 and
σα(µ′1) = σβ(µ′2)},

1070 D. Kharitonov, G. Tarasov, E. Golenkov

2. •() = •()1 ∪ {(•(µ1)1 + •(µ2)1, µ1 + µ2)|µ1 + µ2 ∈M(T), µ1, µ2 ∈M(T1)},
3. ()• = ()•1 ∪ {(µ1 + µ2, (µ1)•1 + (µ2)•1)|µ1 + µ2 ∈M(T), µ1, µ2 ∈M(T1)},
4. Γ = Γ1 ∪ {γ}, where γ = 〈idγ, in(α), ∅, σγ〉 and idγ = 〈id(α)id(β)〉,
5. ∀t ∈ T1, ξ ∈ Γ \ {γ} : ξΣ(t) = ξΣ1(t), γ(t) = 0,

6. ∀t = (µ1 + µ2) ∈ Tsyn,∀ξ ∈ Γ \ {α, β, γ} : ξ(t) = ξ(µ1) + ξ(µ2), σγ(t) = α(µ1),
σα(t) = 0, σβ(t) = 0.

Operation of simple composition for one object (unary form) and for two objects
(binary form) is denoted accordingly:

E = [E1]αβ , E = E1 α[]β E2 ≡ [E1 ⊕ E2]αβ .

Operation of simple composition adds to object E1 a number of new syn-
chronization transitions Tsyn. New transitions are defined by multisets of sym-
bols µ1 + µ2, where µ1, µ2 ∈ M(T). Incoming and outgoing multisets of the new
transitions are calculated from constituting multisets accordingly: •(µ1 + µ2) =
•(µ1) + •(µ1), (µ1 + µ2)• = (µ1)• + (µ2)•. Initial transitions preserve original label-
ing. Labeling for new transitions is calculated from constituting multisets for all
access points except those used in operation: σ(t) = σ(µ1) + σ(µ2). Operational
access points have empty labeling in new transitions. And one new access point is
added that designates synchronization with labeling used for multiset calculation:
σγ(t) = σα(µ1) = σβ(µ2).

Definition 12 (Structural composition (encapsulation)). Given: A PNS-object
E1 = 〈Σ1,Ψ1,Γ1,M0〉, Ψ1 = 〈v01,V1, E1, nm1, np1〉 and a name q ∈ A. The unary
form of structural composition operation constructs from the initial PNS-object E1,
a new object E ≡ h(q, E1) = 〈Σ,Ψ,Γ,M0〉 in the following steps:

1. Build the intermediate set of access point pairs SYNC = {〈αi, βi〉|i ∈ [1 . . . n],
αi ∈ In(Γ1), βi ∈ Out(Γ1), np1(in(αi)) = out(βi)}.

2. Build the access points set for further restriction W = {βi ∈ Out(Γ1)|∃〈αi, βi〉 ∈
SYNC}.

3. Make the simple composition for all intermediate access point pairs ∀i ∈ [1 . . . n]
=⇒ Ei+1 = [Ei]

αi
βi
, 〈αi, βi〉 ∈ SYNC.

4. Restrict the PNS-object by prepared access points set E ′ = ∂W (En+1) = 〈Σ,Ψ′,
Γ,M0〉.

5. Add the new root Ψ = Ψ′ u q.

For more than one object X = {E1, . . . , En}, the operation of structural com-
position is defined as

E = h(q, E1, . . . , En) ≡ h(q, (E1 ⊕ . . .⊕ En)) ≡ h(q,X).

Modeling of Object-Oriented Programs with Petri Net Structured Objects 1071

This definition implies that a unary structural composition performs a set of
simple composition operations on original object that are defined by matching pairs
of incoming access point identifier paths and outgoing access point names. Then it
deletes transitions of satisfied outgoing access points and finally regroups incoming
access points into a new structure.

Definition 13 (Absorption operation). Given: Two PNS-objects E ′ = 〈Σ′,Ψ′,Γ′,
M ′

0〉, Ψ′ = 〈v′0,V ′, E ′, nm′, np′〉 and E ′′ = 〈Σ′′,Ψ′′,Γ′′,M ′′
0 〉, Ψ′′ = 〈v′′0 ,V ′′, E ′′, nm′′,

np′′〉. Absorption operation of PNS-object E ′′ by PNS-object E ′ constructs a new
object E ≡ �(E ′, E ′′) = 〈Σ,Ψ,Γ,M0〉 in the following steps:

1. Build the intermediate set of access point pairs SYNC = {〈αi, βi〉|i ∈ [1 . . . n],
αi ∈ In(Γ2), βi ∈ Out(Γ1), np2(in(αi)) = out(βi)}.

2. Build the access points set for further restriction W = {βi ∈ Out(Γ1)|∃〈αi, βi〉 ∈
SYNC}.

3. Formally units given objects E1 = E ′ ⊕ E ′′.
4. Make the simple composition for all intermediate access point pairs ∀i ∈ [1 . . . n]

=⇒ Ei+1 = [Ei]
αi
βi
, 〈αi, βi〉 ∈ SYNC.

5. Restrict the PNS-object by prepared access points and by In(Γ2)E = ∂In(Γ2)

(∂W (En+1) = 〈Σ,Ψ,Γ,M0〉).

For more than one absorbed object X = {E1, . . . , En}, operation of structural
composition is defined as

E = �(E ′, E1, . . . , En) ≡ �(E ′, (E1 ⊕ . . .⊕ En)) ≡ �(q,X).

An absorption operation executes all compositions between host object and its
“guests”. Then “guest” objects are restricted by their input interfaces so that their
further synchronizations are possible only via output interface.

5 GRAPHICAL NOTATION

Graphical representation of PNS-objects and all rules necessary to draw operations
on them are shown in Figure 3. Each rule is marked by callout with an ordinal
number.

1. PNS-objects are drawn in rectangles bounding the area of objects contents. The
object name is placed inside the rectangle. Comments about the object are
placed in parentheses after to the name.

2. Inside the PNS-object a Petri net or a composition of other PNS-objects can be
drawn. Petri nets are drawn using standard graphical notation as a bipartite
directed graph.

3. PNS-object incoming and outgoing access points sets are represented by isosceles
triangles placed on rectangle borders. For incoming access points the base of

1072 D. Kharitonov, G. Tarasov, E. Golenkov

triangles is drawn outside the object bounding rectangle. For outgoing access
point – vice versa.

4. Link connecting access point sets represents operation of objects simple compo-
sition. A line over a triangle vertex opposite the base depicts the restriction by
an access point operation that is done by a certain set of access points in this
case by access points performing the simple composition operation.

5. A double border rectangle is used for structured PNS-object composition and ab-
sorption operations. A single border rectangle represents a formal PNS-objects
union operation.

6. A thick border rectangle around a PNS-object adjoining a double border rect-
angle represents a net performing absorption operation.

NresN12 (Absorption) N34

1

3

4

5

1

N2 (comment) N5

N4

N3N1

2

3

5

6

Figure 3. Graphical representation of PNS-objects and composition operations

6 MODELING OOP ELEMENTS

We identify OOP objects (methods, members, classes, functions and global vari-
ables) from some alphabet A and we do not distinguish the objects from their
identifiers. The ∆ alphabet defines “visible” actions of program behaviour. In this
article it is considered to consist of just two elements ∆ = {bgn, end}, that represent
actions of function start and function finish. There are some more actions that may
be of interest in modeling program behaviour such as reading from and writing to
variables and others.

Definition 14 (Model of a class method or global function declaration).
A PNS-object E ≡ Dcl(f) = 〈Σ,Ψ,Γ,M0〉 is called a model of a function or a class
method f declaration, if and only if

Modeling of Object-Oriented Programs with Petri Net Structured Objects 1073

1. Σ = 〈S = {s0}, T = {t1, t2}, ()• = {(t1, s0)}, •() = {(t2, s0)}〉;
2. Ψ = 〈v0f ,V = {v0f , v1}, E = {(v0f , v1)}, nm(v1) = f, np(v1) = f〉;
3. Γ = {αin, αout}, αin = 〈idin, v1, ∅, σi〉, αout = 〈idout, ∅, out = (f), σo〉 where
σi = σo = {(t1, bgn), (t2, end)};

4. M0 = 0.

Less formally, a model of a function or method declaration is unambiguously
built from two transitions and one place connected with each other and properly
labeled. For any method or function f a model of its declaration is denoted as
Dcl(f). We consider models of class methods and functions in OOP in the same
manner because their differences are revealed in composition of objects.

The next two definitions about classes and class members (or objects) are recur-
sive and support each other. This is similar to common object-oriented programming
languages where class members can be built from other classes.

Definition 15 (Model of a class declaration). For class C having a set of methods
Meth = {Fi} and a set of members Memb = {Dj} the PNS-object E is called
a model of the class declaration if and only if

E = h(C,Dcl(Meth)⊕ Dcl(Memb))

where Dcl(Meth) =
⊎

Dcl(Fi) is the formal union of the method declaration models,
and Dcl(Memb) =

⊎
Dcl(Dj) is the formal union of the member declaration models.

In other words, class declaration is the structural composition of all its method
and member declarations. A class declaration has a single-trunk names tree as it
follows from the definition of structural composition operation. For classes without
members, the model of its declaration can be built from the above definitions. We
must now define members.

Definition 16 (Model of an object declaration). For a global variable or a class
member D that is an instance of a class C with a declaration model Dcl(C) =
〈Σ,Ψ,Γ,M0〉 the PNS-object E is called a model of D declaration if it is built as

E ≡ Dcl(D) = 〈Σ,Ψ . v,Γ,M0〉.

An object or a member declaration model is just a copy of its class declaration
with a renamed single-trunk names tree representing the member structural design.
Members that are not class instances are not considered in this paper though we
can model read and write operations on them as functions.

Definition 17 (Model of a class method or global function implementation).
Given: A function or a class method f with a set of its variables Var = {Di} and
its control flow model as a PNS-object Ef = 〈Σf ,Ψf ,Γf ,Mf0〉. The PNS-object E

1074 D. Kharitonov, G. Tarasov, E. Golenkov

is called a model of the function or the class method f implementation, if it is built
as:

E ≡ Imp(f) = �(Ef ,Dcl(Var))

where Dcl(Var) =
⊎

Dcl(Di), the formal union of the variables declaration models.

The model of a class method (or function) implementation is an absorption of
its local variables declaration models by the method’s (or function’s) control flow
model. Examples of function declarations and implementations are shown in the
next Section. Control flow creation is not discussed here as it can be accomplished
automatically by syntax directed translation, and for our needs function calls are
the only constructions that must have labeling.

Definition 18 (Model of a class implementation). For a class C having a set of
methods Meth = {Fi} and a set of members Memb = {Dj} the PNS-object E is
called a model of the class implementation if and only if

E ≡ Imp(C) = h(C, Imp(Meth)⊕ Dcl(Memb))

where Imp(Meth) =
⊎

Imp(Fi) is the formal union of the class method implementa-
tion models and Dcl(Memb) =

⊎
Dcl(Dj) is the formal union of the class member

declaration models.

In the class implementation model, methods are presented by their implemen-
tation models and members by declaration models. This makes modeling methods
uniform for all objects in the program. Variables are also included through model
declaration that further will be synchronized with class model.

Definition 19 (Model of a module Q). For a module Q having a set of functions
F = {Fi}, a set of classes C = {Ci} and a set of global objects V = {Vi} the
PNS-object E is called a model of the Q module, if and only if

E ≡ Imp(Q) = Imp(F)⊕ Imp(C)⊕ Dcl(V)

where Imp(F) =
⊎

Imp(Fi) is the formal union of the function implementation mod-
els, Imp(C) =

⊎
Imp(Ci) is the formal union of the class implementation models,

and Dcl(V) =
⊎

Dcl(Vi) is the set of models of the global object declarations.

A module is considered as a translation unit in common object-oriented pro-
gramming languages (i.e. one source file) which may group classes, functions, and
global variables. In the same way, a module model can consist of at least one func-
tion or variable or class. Module models can be united by PNS-objects formal union
operation.

Definition 20 (A full model of an OO program). Given: A PNS-object Loader
and a module Q = 〈ΣQ,ΨQ,ΓQ,MQ0〉 containing all program functions, variables
and classes with ΨQ = 〈v0,V , E , nm, np〉. A PNS-object

E = 〈Σ,Ψ,Γ,M0〉 ≡ �(Loader, Imp(Q))

Modeling of Object-Oriented Programs with Petri Net Structured Objects 1075

is a full model of an OO program if and only if E has an empty input interface, i.e.
∀α ∈ Γ : out(alpha) = ∅.

The definition of a full program model supposes that all output interfaces are
resolved by composition operations. After absorption, there will be no input in-
terfaces because there is no further need of them. In practice we cannot resolve
all function calls in a program model because building a program does not require
source texts of libraries. Having them would require source texts of system functions
and so on. The only way to obtain a full program model is to use human-made mod-
els of all necessary library functions. Another way is to use an incomplete program
model resulting from an absorption operation of the program module by PNS-object
Loader.

The object Loader introduced here models the start of the program; we assume
that the model of Loader is defined and consists only from the call of the function
main. The other Loader roles, such as the variable initialization before and destruc-
tion after function roles such as variables initialization before and destruction after
function main, are not considered in this article.

Now we introduce an algorithm of object-oriented program model construction
in terms of structured Petri net objects. Assume that we have a translator from
an object-oriented programming language into some tree-like representation fur-
ther referred to as a parse tree. Tree nodes have names, types, roles and contents.
There are quite a lot of restrictions on the programs considered. Type of node in
the program parse tree represents one of several possibilities: global namespace,
class, method, function, variable and member. Nodes have either a declaration or
implementation role. We specify that the program has no class inheritance, no poly-
morphism and no static members. The program must compile successfully thereby
removing all the syntax errors and unresolved name problems. Algorithm 1, pre-
sented below, forms an OOP model in terms of PNS-objects. The overall algorithm
scheme is built in three stages. First a recursive procedure generates PNS-objects
for all declarations in the program and for all function and method implementa-
tions. As far as a class implementation is spread over its members implementations,
this stage also prepares content of class implementation PNS-objects. In the second
stage operation of structured composition makes class implementation models from
prepared contents. In the third stage, all generated PNS-objects are combined into
the program model by an absorption operation using a model of the program loader.

7 AN EXAMPLE OF OBJECT-ORIENTED C++ PROGRAM MODEL

Let us briefly describe the process of a C++ program model construction in terms
of structured Petri net objects on the “set division” problem example. The program
considered consists of three translation units. The first is divproc.cpp, with two
included headers divproc.h and set.h. The second unit is main.cpp file that
includes headers set.h, and divproc.h. And the third is set.cpp file with the
header set.h. Other header files listed in the source code are not questioned as

1076 D. Kharitonov, G. Tarasov, E. Golenkov

Algorithm 1 OOP model construction in terms of PNS-objects
Input: ParseTree is a tree of program units.
Output: PNS-object with empty input and output interface
1: function Translator(ParseTree)
2: Model← CreateNetForGobalNamespace()
3: List← CreateList()
4: for all node ∈ ParseTree do
5: ProcessUnit(node, Model, Model, List)

6: for all net ∈ Model ∧ net ∈ ClassImplementation do
7: StructuredComposition(net.Name, net)

8: Loader← GenerateLoader()
9: AbsorptionComposition(Loader, Model)

10: return Model
11: function ProcessUnit(Unit, Snet, Gnet, CDList)
12: switch type of Unit do
13: case ClassDeclaration:
14: CDnet← CreatePNSObject(Unit) . assigns name to net
15: for all node ∈ Unit do . Formal Union of content units models
16: ProcessUnit(node, CDnet, Gnet)

17: CDList << StructuredComposition(CDnet.Name, CDnet)

18: case MethodImplementation:
19: MInet← CreatePNSObject(Unit)
20: for all node ∈ Unit do . Formal Union of Var. declarations
21: ProcessUnit(node, MInet, Gnet)

22: CFnet← CreateControlFlowNet(Unit)
23: AbsorptionComposition(CFnet, MInet)
24: CInet← GetOrCreateClassImplementationNet(Unit, Gnet)
25: CInet << CFnet

26: case FunctionImplementation:
27: FInet← CreatePNSObject(Unit)
28: for all node ∈ Unit do . Formal Union of Var. declarations
29: ProcessUnit(node, FInet, Gnet)

30: CFnet← CreateControlFlowNet(Unit)
31: Gnet << AbsorptionComposition(CFnet, FInet)

32: case MethodDeclaration:
33: Snet << GenerateMethodDeclaration(Unit)

34: case FunctionDeclaration:
35: Snet << GenerateFunctionDeclaration(Unit)

36: case MemberDeclaration:
37: MDnet← GenerateMemberDeclaration(Unit, CDList)
38: Snet << MDnet
39: CInet← GetOrCreateClassImplementationNet(Unit, Gnet)
40: CInet << MDnet

41: case VariableDeclaration:
42: Snet << GenerateVariableDeclaration(Unit)

Modeling of Object-Oriented Programs with Petri Net Structured Objects 1077

we accept all third-party library functions as correct and therefore irrelevant to our
program execution.

The parse tree of the entire program is built by merging parse trees of all trans-
lations units. The merger is done by names and roles of the trees nodes which
unite all occurrences of the same function declaration or of the same variable dec-
laration. Removing set.h functions and stdio.h functions from consideration, the
resulting parse tree has the following list of units on the first level from root: class
Set declaration, class DivProc declaration, ten Set method implementations, eight
DivProc method implementations and the function main implementation. Accord-
ing to Algorithm 1 these units are translated into two PNS-objects modeling class
declarations, two PNS-objects modeling class implementations and the PNS-object
of main function implementation.

Large Small

Init Run

Send Recv

DivProc ~DivProc

m_Set

DivProc (Decl) DivProc (Decl)

...

Alloc

...

DivProc

Init Large
...m_SET

Small

v0

ClearUp Print

bgn endbgn end bgn end bgn end

bgn end

bgn end bgn end

bgn end

Figure 4. Model of DivProc class declaration in “DivSet” program example

Consider a model of the class DivProc declaration shown in the Figure 4. The
left side of the figure depicts compositional representation of the declaration model
made from declaration models of all members and methods. All Petri nets of meth-
ods in this composition are triples of begin transition, inner state and end transition.
They differ by incoming and outgoing access points. Input access points of these
objects are identified by their names in the program. Output access points are iden-
tified by the fully qualified names of the modeled methods in the program, including
the name of the class. Input access point identifiers are transferred in the names
tree after composition operations, while output access points identifiers remain con-
stant thereby postponing actual binding of object method calls to the final stage of
program model construction. The only member declaration model included in the
DivProc class declaration is PNS-object modeling access to member m Set. Double
borders surrounding all inner objects depict encapsulation operations modifying ac-
cess to members and methods so that their names are moved inside the class name
scope. Non-compositional representation of the PNS-object and its names tree are
shown in the right side of Figure 4.

1078 D. Kharitonov, G. Tarasov, E. Golenkov

end

bgn

Small:bgn Small:end

Large:bgn Large:end

m_SET.Print:bgn

m_SET.Print:end

printf:bgn

printf:end

printf:bgn

printf:end

m_SET.Print:bgn

m_SET.Print:end

printf:bgn printf:end

printf:bgn

printf:end

Run (Imp)

m_Set (Decl)

~DivProc

(Imp)

DivProc

(Imp)

Recv (Imp)

Small (Imp)

Send (Imp)

Large (Imp)

Init (Imp)

DivProc (Imp)

Figure 5. Model of DivProc class implementation in “DivSet” program example

Figure 5 shows a compositional model of DivProc class implementation. This
model is obtained by encapsulation of all method implementation models and all
member declaration models in class context. As an example, method Run is shown
with a Petri net describing its control flow behavior. While the algorithm of this
Petri net construction is not the topic of this article, we mention that it basically uses
paired transitions to simulate control flow transfer between caller and callee functions
and methods. So, the first transition simulates control flow entrance to the method
Run. Then three pairs of transitions correspond to Line 8 of file divproc.cpp and
model sequential calls to function print and method Print of object m SET. Then
two pairs of transition model choice between calls to method Small and method
Large in lines 9–10. Then again, three pairs of transitions for line 11 are exactly
the same like for line 8. The final transition simulates exit from the method.

MPI_Init:bgn MPI_Init:end proc.Init:bgn

proc.Init:end

bgn

end MPI_Finalize:bgn

MPI_Finalize:end

proc.Run:bgn

proc.Run:end

int main(…) (control flow)

proc (Decl)
Loader

main:end

program start program finish

main:bgn

Set (Imp)

DivProc (Imp)

MPI_Init:end

MPI_Init:bgn

MPI_Finalize:end

MPI_Finalize:bgn

MPI_Send:

end

MPI_Send:bgn

MPI_Recv:

end

MPI_Recv:bgn

MPI

Figure 6. Model of “DivSet” program

The input interface in the method’s PNS-object consists of a single access point

Modeling of Object-Oriented Programs with Petri Net Structured Objects 1079

and the output interface of the three access points. The input access point labels
the outermost transitions of the PNS-object. Output access points label transition
pairs corresponding to function and method calls. The method Run has no internal
variables and no absorption operation was shown.

The full “set division” program model is produced by the absorption operation
shown in the Figure 6 consisting of five PNS-objects. Two PNS-objects represent
DivProc and Set class implementation models. Also there is the function main im-
plementation model, where the control flow model, shown with a Petri net, absorbs
the variable proc declaration model. Our model requires an MPI model to simu-
late process interaction; it is presented as a PNS-object that simplistically models
MPI Init, MPI Finalize, MPI Send and MPI Recv functions for the case of two pro-
cesses in the “set division” program. And finally the Loader object is an initialization
code model for this object-oriented program. The Loader model is presented in the
most simplified form, having only one pair of transitions for a call of function main

and two tokens in the start place to initiate two processes (Small and Large). The
resulting PNS-object simulates behaviour of the entire program in terms of visible
function calls. This is a raw model that can be refined by adding data inscriptions
or guarding against impossible transition firings. This object can be automatically
constructed on the base of syntax directed parsing process, excepting system library
models (MPI, etc.) that need to be prepared manually.

8 RELATED WORK

The problem of program modeling in terms of Petri nets has a long history. For
example in 1981 Peterson [14] wrote: “Petri nets can best represent the control
structure of programs. Petri nets are meant to model sequences of instructions
and the flow of information and computation but not the actual information values
themselves”. He showed that program control flow can be represented as a flowchart,
which may in turn be represented in the form of Petri nets. Reisig [15] formulated
this idea more straightforwardly. Program instructions are depicted as events (tran-
sition), and possible program states as conditions (places). Program process states
are marked by tokens and the movement of the tokens represents program execution.
With an extension of Petri nets called Coloured Petri Nets [16] it became possible
to use simple variables in program models in a way close to the real programs.

In the 1990’s programming languages supporting object-oriented concepts be-
came widely available. Petri nets were subjected to the influence of ideas quite like
programming languages. Lakos [17] showed how a set of Petri Net extensions arose.
The concept of Coloured Petri Nets was extended to Hierarchical Coloured Petri
Nets (HCPNs) by introducing transitions substitution, then to Modular Coloured
Petri Nets (MCPNs) by substitution of places. Object-Based Petri Nets (OBPNs)
enhanced MCPNs by allowing tokens to be subnets encapsulating their own activity.
Object-Oriented Petri Nets were derived from Object-Based Petri Nets by including
the notion of inheritance together with the associated polymorphism and dynamic

1080 D. Kharitonov, G. Tarasov, E. Golenkov

binding. And finally Object Petri Nets were derived from Object-Oriented Petri
Nets by inclusion of test and inhibitor arcs. A similar approach closer to program-
ming languages was used in [18] where Object Coloured Petri Nets (OCP-Nets) were
introduced as an extension of Coloured Petri Nets. An OCP-Net is a set of class
nets which offers services to other class nets by encapsulating it within a pair of
IN- and OUT-transition. Other class nets call a service via a pair of an INV- and
REC-transition. This corresponds to methods and method calls in object oriented
programming languages. Another way of dealing with object-oriented concepts was
presented in [19], where OB(PN)2 language was introduced that has syntax close
to programming languages while its semantics were defined in terms of Petri Nets
extension M-nets and operations on them.

Despite many extensions of Petri nets supporting object-oriented concepts, there
are only a few works related to automated program model construction in terms of
Petri nets. Voron and Kordon [8] proposed automation of program model construc-
tion with GCC to understand and simplify program sources mainly from C lan-
guage. It produces program descriptions in terms of blocks and links where blocks
are grouped to form function control flow graphs. In [7] Westergaard considered
translation process as syntax-directed translation using templates for each program-
ming language syntax construct. This work used simplified procedural programming
language assuming that the approach could be adjusted for real programming lan-
guages by only rewriting the grammar rules. At the same time other authors [6]
proposed a guideline for object-oriented program modeling with simple human in-
volvement in model construction. Moreover, they supposed that no automation for
a high level object oriented language, such as Python, was available.

In summary, there are no discrepancies in building pure control flow models,
so that procedural program models in terms of Petri nets produced by different
tools are not very different from each other. The object-oriented paradigm with its
declarative nature of notions introduces a new challenge in program modelling. It
is possible to integrate object-oriented concepts in modelling languages as shown
above, but it does not result in new analytical techniques. In this article we tried to
preserve the simplicity of multi-labeled Petri nets while describing object-oriented
properties of programs.

9 CONCLUSION

This paper describes a method designed for automated construction of object-
oriented program models in terms of multilabeled Petri nets. We focused on en-
capsulation – one of the three concepts of object-oriented paradigm. To model
encapsulation we built a program model from models of its object-oriented com-
ponents: objects, methods, members and functions. The variety of object-oriented
components form a space of names that actually has a tree like form. To deal with
this variety we introduced names tree formal objects that can unite and grow mak-
ing complex structures from simple ones. We then introduce a Petri net structured

Modeling of Object-Oriented Programs with Petri Net Structured Objects 1081

object with a set of incoming and outgoing access points. Each incoming access
point can be considered as a representation of a method or function. Each outgoing
access point refers to a method or function when modeling the calls. Employing
PNS-objects created defined models of declarations and implementations of func-
tions, variables, classes and methods. Each definition implies an algorithm to build
the appropriate model, and we introduced the algorithm of the entire program model
construction.

There are many questions closely related to OOP modeling remaining outside
our article that require further research. The first question is to cover inheritance
and polymorphism concepts of object oriented paradigm in the OOP model. The
second is to introduce proper representations of dynamic object creation and object
pointers. A third question relates to detailed modeling of the Loader which was
designed to deal with global object initializations performed prior to the call of the
function main.

Acknowledgements

This work was supported by the research program “Fundamental Problems of Math-
ematical Modeling” of the Presidium of the Russian Academy of Sciences (Project
0262-2015-0139) and state funding (Project 0262-2014-0003).

10 APPENDIX: SAMPLE PROGRAM SOURCE CODE

We use the following real parallel program to demonstrate essentials of compositional
model construction in terms of structured Petri net objects. The program consists of
five files: set.h, set.cpp, divprocess.h, divprocess.cpp, and main.cpp. Where
set.* files contain class declaration and implementation for a set of integer numbers.
divprocess.* files contain declaration and implementation of two MPI-processes
for the “set division” problem, and main.cpp is an entry point to the program.

set.h

1 #ifndef __SET_H__

2 #define __SET_H__

3

4 class Set {

5 private: // Internal data

6 int count;

7 int *data;

8 private: // Internal behaviour

9 int *Alloc(int cnt) { return new int[cnt]; };

10 void ClearUp(void) { delete data; count = 0; };

11 public: // Constructor/destructor

12 Set() { data = 0; count = 0; };

1082 D. Kharitonov, G. Tarasov, E. Golenkov

13 ~Set() { ClearUp(); };

14 public: // Public methods

15 void InitCmdLine(int argc, char *argv[]);

16 void Print(void);

17 int min();

18 int max();

19 void operator+(int value);

20 void operator-(int value);

21 };

22

23 #endif

set.cpp

1 #include "set.h"

2 #include <stdio.h>

3 #include <stdlib.h>

4

5 void Set::InitCmdLine(int argc, char *argv[]) {

6 count=argc-1; data=Alloc(count);

7 for (int i=1; i<argc; i++) data[i-1]=atoi(argv[i]);

8 }

9 void Set::Print(void) {

10 for (int i=0; i<count; i++) printf("%i ",data[i]);

11 }

12 int Set::min() {

13 int mn=data[0];

14 for (int i=1; i<count; i++) if (data[i]<mn) mn=data[i];

15 return mn;

16 }

17 int Set::max() {

18 int mx=data[0];

19 for (int i=1; i<count; i++) if (data[i]>mx) mx=data[i];

20 return mx;

21 }

22 void Set::operator+(int value) {

23 int *ptr=Alloc(count+1);

24 for (int i=0; i<count; i++) ptr[i]=data[i];

25 ptr[count++]=value; delete data; data=ptr;

26 }

27 void Set::operator-(int value) {

28 int *ptr=Alloc(count-1);

29 for (int i=0, j=0; i<count; i++, j++)

30 if (data[i]!=value) ptr[j]=data[i]; else j--;

Modeling of Object-Oriented Programs with Petri Net Structured Objects 1083

31 count--; delete data; data=ptr;

32 }

divproc.h

1 #ifndef __DIVPROC_H__

2 #define __DIVPROC_H__

3

4 #include "set.h"

5 #include <mpi.h>

6

7 class DivProc {

8 private: // Internal data

9 int rank;

10 Set m_SET;

11 private: // Internal behaviour

12 void Send(int dst, int value) {

13 MPI_Send(&value,1,MPI_INT,dst,100,MPI_COMM_WORLD);

14 printf("Proc#%i: sent = %i\n",rank,value);

15 };

16 void Recv(int dst, int& value) {

17 MPI_Status status;

18 MPI_Recv(&value,1,MPI_INT,dst,100,MPI_COMM_WORLD,&status);

19 printf("Proc#%i: received = %i\n",rank,value);

20 };

21 void Small();

22 void Large();

23 public: // Constructor/destructor

24 DivProc() {};

25 ~DivProc() {};

26 public: // Public methods

27 void Init(int argc, char *argv[]) {

28 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

29 m_SET.InitCmdLine(argc, argv);

30 };

31 void Run(void);

32 };

33

34 #endif

divproc.cpp

1 #include "divproc.h"

2 #include <stdio.h>

3

1084 D. Kharitonov, G. Tarasov, E. Golenkov

4 #define SMALL_PROC 0

5 #define LARGE_PROC 1

6

7 void DivProc::Run(void) {

8 printf("Proc#%i (before): ",rank); m_SET.Print(); printf("\n");

9 if (rank==SMALL_PROC) Small(); else

10 if (rank==LARGE_PROC) Large();

11 printf("Proc#%i (after) : ",rank); m_SET.Print(); printf("\n");

12 }

13 void DivProc::Small() {

14 int mx, x;

15 mx=m_SET.max(); Send(LARGE_PROC,mx); m_SET-mx;

16 Recv(LARGE_PROC,x); m_SET+x; mx=m_SET.max();

17 while (mx>x) {

18 Send(LARGE_PROC,mx); m_SET-mx;

19 Recv(LARGE_PROC,x); m_SET+x; mx=m_SET.max();

20 }

21 }

22 void DivProc::Large() {

23 int mn, y;

24 Recv(SMALL_PROC,y); m_SET+y; mn=m_SET.min();

25 Send(SMALL_PROC,mn); m_SET-mn; mn=m_SET.min();

26 while (mn < y) {

27 Recv(SMALL_PROC,y); m_SET+y; mn=m_SET.min();

28 Send(SMALL_PROC,mn); m_SET-mn; mn=m_SET.min();

29 }

30 }

main.cpp

1 #include <mpi.h>

2 #include "divproc.h"

3

4 int main(int argc, char *argv[]) {

5 DivProc proc;

6 MPI_Init(&argc, &argv);

7 proc.Init(argc, argv);

8 proc.Run();

9 MPI_Finalize();

10 return 0;

11 }

Modeling of Object-Oriented Programs with Petri Net Structured Objects 1085

REFERENCES

[1] Lafortune, S.—Wang, Y.—Reveliotis, S.: Eliminating Concurrency Bugs
in Multithreaded Software: An Approach Based on Control of Petri Nets. In:
Colom, J.-M., Desel, J. (Eds.): Application and Theory of Petri Nets and Concur-
rency (PETRI NETS 2013). Lecture Notes in Computer Science, Vol. 7927, 2013,
pp. 21–28, doi: 10.1007/978-3-642-38697-8 2.

[2] Wang, Y.—Kelly, T.—Kudlur, M.—Lafortune, S.—Mahlke, S.: Gadara:
Dynamic Deadlock Avoidance for Multithreaded Programs. Proceedings of the 8th

USENIX Conference on Operating Systems Design and Implementation (OSDI ’08),
Berkeley, CA, USA, USENIX Association, 2008, pp. 281–294.

[3] Böhm, S.—Běhálek, M.—Meca, O.—Šurkovský, M.: Kaira: Development
Environment for MPI Applications. In: Ciardo, G., Kindler, E. (Eds.): Application
and Theory of Petri Nets and Concurrency (PETRI NETS 2014). Lecture Notes in
Computer Science, Vol. 8489, 2014, pp. 385–394.

[4] Pelayo, F. L.—Cuartero, F.—Valero, V.—Macia, H.—Pelayo, M. L.:
Applying Timed-Arc Petri Nets to Improve the Performance of the MPEG-2
Encoding Algorithm. Proceedings of the 10th International Multimedia Mod-
elling Conference (MMM’04), Washington, DC, USA, 2004, p. 49, doi:
10.1109/MULMM.2004.1264966.

[5] Kristensen, L. M.: An Approach for the Engineering of Protocol Software from
Coloured Petri Net Models: A Case Study of the IETF WebSocket Protocol. Inter-
national Workshop on Petri Nets and Software Engineering (PNSE 2014). CEUR
Workshop Proceedings, Vol. 1160, 2014, pp. 13–14.

[6] Dedova, A.—Petrucci, L.: From Code to Coloured Petri Nets: Modelling Guide-
lines. In: Koutny, M., van der Aalst, W. M. P., Yakovlev, A. (Eds.): Transactions
on Petri Nets and Other Models of Concurrency VIII. Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 8100, 2013, pp. 71–88.

[7] Westergaard, M.: Verifying Parallel Algorithms and Programs Using Coloured
Petri Nets. In: Jensen, K., van der Aalst, W. M., Ajmone Marsan, M., Franceschi-
nis, G., Kleijn, J., Kristensen, L. M. (Eds.): Transactions on Petri Nets and Other
Models of Concurrency VI. Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 7400, 2012, pp. 146–168, doi: 10.1007/978-3-642-35179-2 7.

[8] Voron, J. B.—Kordon, F.: Transforming Sources to Petri Nets: A Way to An-
alyze Execution of Parallel Programs. Proceedings of the 1st International Confer-
ence on Simulation Tools and Techniques for Communications, Networks and Sys-
tems & Workshops (Simutools ’08), ICST, Brussels, Belgium, 2008, Art. No. 13, doi:
10.4108/ICST.SIMUTOOLS2008.3055.

[9] Dijkstra, E. W.: A Correctness Proof for Communicating Processes: A Small Exer-
cise. Selected Writings on Computing: A Personal Perspective. Texts and Monographs
in Computer Science, Springer, New York, NY, 1982, pp. 259–263.

[10] Karpov, Yu. G.—Borshchev, A. V.: On the Correctness of Parallel Algorithms.
Programming and Computer Software, Vol. 22, 1996, pp. 164–171.

https://doi.org/10.1007/978-3-642-38697-8_2
https://doi.org/10.1109/MULMM.2004.1264966
https://doi.org/10.1007/978-3-642-35179-2_7
https://doi.org/10.4108/ICST.SIMUTOOLS2008.3055

1086 D. Kharitonov, G. Tarasov, E. Golenkov

[11] Anisimov, N. A.—Golenkov, E. A.—Kharitonov, D. I.: Compositional Petri
Net Approach to the Development of Concurrent and Distributed Systems. Program-
ming and Computer Software, Vol. 27, 2001, No. 6, pp. 309–319.

[12] Kharitonov, D.—Tarasov, G.: Modeling Function Calls in Program Control
Flow in Terms of Petri Nets. ACSIJ Advances in Computer Science: An International
Journal, Vol. 3, 2014, No. 6, pp. 82–91.

[13] Apt, K. R.—Francez, N.—de Roever, W. P.: A Proof System for Commu-
nicating Sequential Processes. ACM Transactions on Programming Languages and
Systems (TOPLAS), Vol. 2, 1980, No. 3, pp. 359–385.

[14] Peterson, J. L.: Petri Net Theory and the Modeling of Systems. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1981.

[15] Reisig, W.: Petri Nets: An Introduction. Springer-Verlag New York, Inc., New York,
NY, USA, 1985, doi: 10.1007/978-3-642-69968-9.

[16] Jensen, K.: Coloured Petri Nets. In: Brauer, W., Reisig, W., Rozenberg, G. (Eds.):
Petri Nets: Central Models and Their Properties: Advances in Petri Nets 1986, Part I
Proceedings of an Advanced Course, Bad Honnef, September 8–19, 1986. Lecture
Notes in Computer Science, Vol. 254, 1987, pp. 248–299, doi: 10.1007/978-3-540-
47919-2 10.

[17] Lakos, C.: From Coloured Petri Nets to Object Petri Nets. In: De Michelis, G.,
Diaz, M. (Eds.): Application and Theory of Petri Nets 1995 (ICATPN 1995). Lecture
Notes in Computer Science, Vol. 935, pp. 278–297, doi: 10.1007/3-540-60029-9 45.

[18] Maier, C.—Moldt, D.: Object Coloured Petri Nets – A Formal Technique for
Object Oriented Modelling. In: Agha, G. A., De Cindio, F., Rozenberg, G. (Eds.):
Concurrent Object-Oriented Programming and Petri Nets. Springer, Berlin, Heidel-
berg, Lecture Notes in Computer Science, Vol. 2001, 2001, pp. 406–427.

[19] Lilius, J.: OB(PN)2: An Object Based Petri Net Programming Notation. Technical
Report, Turku Centre for Computer Science, 1999.

https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-540-47919-2_10
https://doi.org/10.1007/978-3-540-47919-2_10
https://doi.org/10.1007/3-540-60029-9_45

Modeling of Object-Oriented Programs with Petri Net Structured Objects 1087

Dmitriy Kharitonov is a senior research fellow at Institute of
Automation and Control Processes (IACP), Russian Academy of
Sciences, Vladivostok, Russian Federation. He received his M.Sc.
degree in applied mathematics from Moscow Institute of Physics
and Technologies in 1996 and his Ph.D. degree in software of
computational networks and systems from IACP in 2001. He
is interested in program verification, program modeling, parallel
programming languages and translators.

George Tarasov is a research fellow at IACP. He received his
M.Sc. degree in automation control systems from Far-Eastern
Federal University, Vladivostok, Russia in 1999. Since 2001
he teaches courses at Far-Eastern Federal University on parallel
programming and theory of computing processes and structures.
He is interested in parallel programming, program verification
and performance analysis.

Evgeniy Golenkov is a senior research fellow at IACP. He has
worked in the field of information technologies since 1971 when
he graduated from the Moscow Institute of Physics and Technol-
ogy (MIPT). He received his Ph.D. degree from the Institute of
Cybernetics (Ukraine) in 1975. From 1976 up to 1990 he taught
at MIPT. Since 1990 till now he has taught at Far-Eastern Fed-
eral University. He is interested in computer network software
and supercomputing technologies. He took part in 15 science
and educational projects, and published more than 80 articles.

