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Abstract. Multiple kernel learning (MKL) has recently received significant atten-
tion due to the fact that it is able to automatically fuse information embedded in
multiple base kernels and then find a new kernel for classification or regression.
In this paper, we propose a coupled multiple kernel learning method for super-
vised classification (CMKL-C), which comprehensively involves the intra-coupling
within each kernel, inter-coupling among different kernels and coupling between
target labels and real ones in MKL. Specifically, the intra-coupling controls the
class distribution in a kernel space, the inter-coupling captures the co-information
of base kernel matrices, and the last type of coupling determines whether the new
learned kernel can make a correct decision. Furthermore, we deduce the analytical
solutions to solve the CMKL-C optimization problem for highly efficient learning.
Experimental results over eight UCI data sets and three bioinformatics data sets
demonstrate the superior performance of CMKL-C in terms of the classification
accuracy.

Keywords: Multiple kernel learning, non-IIDness, coupled kernels, supervised clas-
sification

1 INTRODUCTION

In the big data era, it is vital to extract and aggregate diverse information that is
embedded in a huge volume of data with different characteristics in order to de-
duce some high-level knowledge. For example, the sentiment of a person can be
determined via jointly analyses of his/her published texts, pictures, and videos in
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social media. Among a variety of machine learning tools, multiple kernel learning
(MKL) is good at knowledge discovery from heterogeneous big data. The MKL is
a novel machine learning paradigm that enables classifiers or regression functions
to utilize different kinds of information embedded in multiple base kernels. Given
a set of base kernels, the goal of MKL is to construct a new kernel, which is more
suitable to address the problem at hand, through learning the optimal combination
coefficients of multiple base kernels. Due to the high classification performance of
MKL in a variety of application scenarios, such as image classification [1], bioinfor-
matics [2] and video event detection [3], numerous researchers have been devoting
themselves to not only the theoretical research but also the application of the MKL
to further improve its overall performance. However, existing MKL methods gener-
ally made an assumption of IIDness, i.e., independent and identically distributed.
The assumption means that all kernels, attributes and their values are indepen-
dent and follow identical distributions. However, the IIDness assumption ignores
lots of coupling relationships [14] embedded in multiple kernels, including the intra-
coupling within each base kernel, the inter-coupling between base kernels and the
coupling between learning objectives and base kernels. Therefore, introducing the
above three coupling relationships into the MKL method is beneficial for capturing
complex relationships among data and can further improve the learning perfor-
mance.

To overcome the weakness of conventional learning methods that were based
on the IIDness assumption, some non-IIDness learning methods were proposed for
advanced big data analytics, for example the non-IIDness learning in behavioral and
social data [15]. As stated in [15], the main task of non-IIDness learning was to learn
complex couplings and heterogeneity, which were two significant features of non-IID
data. Therefore, we argue that the overall performance of the MKL method for clas-
sification can be further improved by releasing the IIDness assumption and jointly
considering the intra-coupling within each base kernel, the inter-coupling between
base kernels and the coupling between learning objectives and base kernels. Hence,
we propose a coupled multiple kernel learning method for classification (CMKL-C)
in this paper to meet the above mentioned requirement. Specifically, we present
a new CMKL-C objective function that jointly considers the above three couplings
to learn a more powerful kernel. Then, we deduce the analytical solution of optimiz-
ing the CMKL-C objective function, which guarantees the high learning efficiency
of CMKL-C. The coupling relationships include the following three aspects:

The intra-coupling within each kernel: Such coupling embodies the sample
distribution. Specifically, it measures both the sample within-class variance and
the sample-class center distance at the same time in order to reflect whether
a kernel has the separable ability. For kernel based classification, the more sepa-
rable ability a kernel has, the higher performance it can achieve. Thus, CMKL-C
adjusts the weights of multiple base kernels based on their intra-couplings so that
the weights of those kernels with more separable ability can be assigned with
larger values.
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The inter-coupling among different kernels: Such coupling reflects the co-
information shared among different base kernels. Specifically, it utilizes a kernel
alignment method to calculate the similarities among base kernels. Then, it
treats the nearing density of each kernel in the multiple kernel space as the
inter-coupling metric according to their similarities. A kernel that has a higher
inter-coupling value shares more common information with other kernels. Since
the MKL aims to fuse heterogeneous information involved in these base kernels,
it should balance the weights of base kernels to make sure that the common
information is not unique to any kernel. Therefore, CMKL-C regulates base
kernels via combining coefficients with other kernels.

The coupling between target labels and real ones: Such coupling represents
the similarities between the target labels of sample data determined by MKL
and their real labels. It is worth noticing that the goal of MKL is to learn a new
kernel that can predict the right labels of all sample data. Therefore, CMKL-C
utilizes such coupling to optimize the learning performance of MKL. As far as
we know, the proposed CMKL-C is the first non-IIDness learning method that
couples multiple kernels for supervised classification. To validate the superior
performance of the proposed CMKL-C method, eight UCI classification data sets
and three bioinformatics benchmark data sets are used to test the performance of
the proposed CMKL-C method. Experimental results demonstrate that CMKL-
C significantly outperforms the state-of-the-art MKL methods in terms of the
classification accuracy.

The rest of this paper is organized as follows: Section 2 briefly reviews the
state-of-the-art work regarding the MKL and the non-IIDness learning. Section 3
introduces the formal definitions with respect to three coupling relationships in
MKL. Then, Section 4 shows the proposed coupled multiple kernel learning method
for classification (CMKL-C). After that, Section 5 evaluates the performance of
CMKL-C over eight UCI classification data sets and three bioinformatics benchmark
data sets. Finally, Section 6 gives some conclusion remarks and presents our future
work.

2 RELATED WORK

2.1 Multiple Kernel Learning

In recent years, multiple kernel learning (MKL) has made significant progress, such
as high classification accuracy, automatic kernel parameter setting, and multi-source
information fusion, etc. Therefore, an increasing number of researchers focus on
not only the theoretical research but also the application of MKL. For example,
Harchaoui et al. applied MKL into image classification [1], Liu et al. introduced
MKL into Alzheimer’s disease prediction [2], and Vahdat et al. adopted MKL into
video event detection [3], etc. Typically, the MKL work can be categorized into two
groups as per its learning approaches:
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1. One-stage approach. The one-stage MKL method jointly learns the combination
coefficients of multiple base kernels and the classifier parameters by seeking
a jointly optimization objective function. The one-stage MKL method was firstly
investigated in [4]. Then, numerous one-stage MKL methods were proposed to
improve its classification capacity and its efficiency further, e.g. [5, 6, 7, 8, 9, 10].

2. Two-stage approach. The two-stage MKL method [11, 12, 13] first finds a suit-
able combination strategy of multiple base kernels, and then it uses the com-
bination strategy to construct a new kernel that serves as the resulting classi-
fier/regression function.

Although the state-of-the-art MKL methods achieved considerable performance
in different application scenarios, they all made the above mentioned IIDness as-
sumption. Therefore, the conventional MKL methods ignored the intra-coupling
within each base kernel, the inter-coupling between base kernels and the coupling
between learning objectives and base kernels.

2.2 Non-IIDness Learning

Non-IIDness is a brand new learning paradigm, which was proposed for high per-
formance big data analytics [15] by capturing the intrinsic data characteristics and
complexities. The authors in [15] analyzed the characteristics of non-IID data and
pointed out that coupling and heterogeneity were two significant characteristics of
non-IID data, and the main task of non-IIDness learning was to learn complex
couplings and heterogeneity, which laid a solid theoretical framework for the non-
IIDness learning study. Meanwhile, the author discussed problems that may be
caused by adopting classical learning approaches based on the IIDness assumption
to learn non-IID data, revealing the advantages of the non-IIDness learning research.
The formal definition of coupled behaviors in non-IID data was first proposed on
the basis of coupled hidden Markov model [16]. After that, a coupling learning
method with more complex interactions was proposed in [14]. Different coupling
measuring methods had been proposed for different kinds of data in [17, 18]. In [17],
a coupled nominal similarity was introduced into unsupervised learning, while the
similarity metric proposed in [18] captured the coupled attributes of numerical data
via a Taylor expansion likely method, which delicately combined the intra-coupling
in each attribute and the inter-coupling among different attributes. At a higher
level, coupled ensemble clustering in [19] used coupling relationships among both
base clustering results and objects to merge different clustering results.

3 PRELIMINARIES

3.1 Intra-Coupling within Each Kernel

In kernel-based learning, a kernel is generally used to map features into a high di-
mensional space such that different classes can be separated linearly. In other words,
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for a certain set of samples, the samples within a class will locate in a similar distri-
bution while the samples from different classes will locate in different distributions
after mapping by a well-defined kernel. Such distribution information contained in
each kernel matrix reflects the intra-coupling of the kernel, which is the coupling
relationship among samples’ classes. It is clear that the intra-coupling of each kernel
reflects the goodness of the kernel.

We measure the intra-coupling of each kernel by considering the distribution
of samples in a kernel space. On one hand, we emphasize the concentration of
samples within the same class after kernel mapping. For a well-defined kernel,
the samples in the same class should be as concentrated as possible. Here, we
introduce the variance to measure such a characteristic. On the other hand, we are
also concerned about the separation of samples from different classes after kernel
mapping. A suitable kernel can always guarantee large distance between two samples
from different classes. Therefore, we use the distance between two classes to reflect
the dispersion in CMKL-C. Overall, the intra-coupling of each kernel is measured
by combining the variance of samples within a class with the distance between two
classes, which can also be seen as the intra-coupling and the inter-coupling of classes,
respectively.

In this paper, we follow the measurement proposed in [20], in which the distribu-
tion mentioned above is used to evaluate the goodness of the kernel matrix. Firstly,
we consider how to measure the variance of samples within a class in a kernel space
for binary classification. Typically, the standard deviation is used to measure the
variance of a distribution. However, the variance in the direction of separating
hyperplane does not affect the classification performance. A good measurement
that is suitable for classification task is the standard deviation in the direction of
between-class centers. We denote this standard deviation as std in this paper. In
each class, we can also calculate the standard deviation of data distribution in this
direction and denote them as std+ and std− for the first and second class of data
respectively. Hence, given a kernel k(·, ·) = 〈φ(·), φ(·)〉, where φ(·) is a feature
mapping function, we can calculate the data center of two classes φ+ and φ− via
φ+ =

∑n+

i=1 φ(xi)/n+ and φ− =
∑n

i=n++1 φ(xi)/n−, respectively. Since the unit vec-

tor in the direction of between-class centers is u = φ−−φ+
‖φ−−φ+‖ , the std+ and std− can

be calculated as

std+ =

√∑n+

i=1〈φ(xi)− φ+,u〉2
n+ − 1

=

√∑n+

i=1〈φ(xi)− φ+, φ− − φ+〉2
(n+ − 1)(φ− − φ+)2

=

√∑n+

i=1(φ(xi)φ− + φ2
+ − φ(xi)φ+ − φ+φ−)2

(n+ − 1)(φ− − φ+)2
, (1)

and
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std− =

√∑n
i=n++1〈φ(xi)− φ−,u〉2

n− − 1
=

√∑n
i=n++1〈φ(xi)− φ−, φ− − φ+〉2

(n− − 1)(φ− − φ+)2

=

√∑n
i=n++1(φ(xi)φ+ + φ2

− − φ(xi)φ− − φ−φ+)2

(n− − 1)(φ− − φ+)2
. (2)

For the convenience of description, we define some auxiliary variables as follows,

ai = φ(xi)φ+ =

∑n+

j=1 φ(xi)φ(xj)

n+

=

∑n+

j=1 kij

n+

,

(i = 1, . . . , n+),

bi = φ(xi)φ− =

∑n
j=n++1 φ(xi)φ(xj)

n−
=

∑n
j=n++1 kij

n−
,

(i = 1, . . . , n+),

ci = φ(xi)φ+ =

∑n+

j=1 φ(xi)φ(xj)

n+

=

∑n+

j=1 kij

n+

,

(i = n+ + 1, . . . , n),

di = φ(xi)φ− =

∑n
j=n++1 φ(xi)φ(xj)

n−
=

∑n
j=n++1 kij

n−
, (3)

(i = n+ + 1, . . . , n),

A = φ+φ+ =

∑n+

i=1 ai
n+

,

B = φ+φ− =

∑n+

i=1 bi
n+

,

C = φ−φ+ =

∑n
i=n++1 ci

n−
,

D = φ−φ− =

∑n
i=n++1 di

n−
.

After that, the total standard deviation in the direction of between-class centers
can be written as

std = std+ + std−

=

√ ∑n+

i=1(bi − ai + A−B)2

(n+ − 1)(A+D −B − C)
+

√∑n
i=n++1(ci − di +D − C)2

(n− − 1)(A+D −B − C)
. (4)
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Regarding the distance between binary classes, we select the distance between
centers of two classes as the inter-class distance. This distance is suitable for re-
flecting the inter-class distance for classification task when the standard deviation
in the direction of between-class centers is used to measure the variance of class.
The inter-class distance can be calculated as follows,

dist = ‖φ− − φ+‖. (5)

As we discussed above, a well-defined kernel should map samples into a space
in which the variance of samples within the same class is small while the inter-
class distance is large. Thus, we measure the intra-coupling of kernel for the binary
classification case by calculating the ratio of the total standard deviation in the
direction of between-class centers of the class-pair to the distance between the centers
of two classes:

intra =
std

dist
. (6)

Regarding multiple classification case, we use (6) to calculate such ratio for all class-
pairs and denote the intra-coupling as the mean value of them. Assuming there are
m base kernels, we can calculate intra-coupling for each of them and construct
a m-dimension intra-coupling vector:

intra = {intra1, . . . , intram}>. (7)

Since the intra-coupling of a kernel reflects the goodness of the kernel, we can use
it to guide MKL design. If a base kernel matrix has a small intra-coupling value, we
regard it as an important kernel in learning, because it either corresponds to a sepa-
rable space or owns important information for the classification task. Therefore, one
of the optimization objectives is to minimize the intra-coupling of multiple kernels.

3.2 Inter-Coupling Among Different Kernels

Currently, most of MKL approaches treat base kernels independently when learning
their combinations. However, inter-coupling among base kernels is important to be
considered in the learning approach. In the following part, we will firstly discuss
the inter-coupling among base kernels and then describe how to measure the inter-
coupling and use it in MKL.

We consider three types of multiple kernel matrix generation methods:

1. using different kernel functions to map the same channel of samples;

2. using one kernel function to map different channels of samples;

3. using different kernel functions to map different channels of samples.

No matter what the generation method is, we can see that these kernel matrices
all reflect a profile of the same samples using the same or different measurements.
Thus, the same samples inevitability originate the coupling relationship among base
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kernels. These inter-couplings represent that base kernel matrices share parts of
the same sample information. The more information the kernel matrices share, the
larger degree of inter-coupling they have.

To measure the inter-coupling among base kernels, we first calculate the co-
information of kernels through kernel alignment [11], which has great theoretical
properties for measuring kernel matrix similarity. Given two kernel matrices K1

and K2, which both map the sample set S, the alignment between them can be
calculated as follows,

Â(S,K1,K2) =
〈K1,K2〉F√

〈K1,K1〉F 〈K2,K2〉F
(8)

where 〈K1,K2〉F =
∑n

i,j=1 K1(xi, xj)K2(xi, xj) and n is the number of samples.
Assuming that there are m base kernel matrices {K1, . . . ,Km}, we define the inter-
coupling of Ki with others as follows,

inter i =
m∑
j=1

e

(
−

1−Â(S,Ki,Kj)

σ

)2

(9)

where e is the mathematical constant and σ is a parameter that control the nearing
distance. Equation (9) uses Gaussian function to calculate the distance between each
base kernel in kernel spaces. As a result, for a specific kernel Ki, other kernels near
to it will induce a large value of inter i. Moreover, the value of inter i significantly
decreases along with the increase of the distance between Ki and other kernels.
In this case, the kernel with more nearing kernels will have larger inter-coupling
value. Thus, the inter-coupling measures the density of the kernel in multiple kernel
spaces.

Then we can get the inter-coupling vector of base kernels:

inter = (inter 1, . . . , interm)>. (10)

MKL expects to confuse all information that contented by base kernels. Typi-
cally, it linearly combines base kernel matrices to capture all information. However,
some information that is shared by kernel matrices may be aggregated using linear
combination. Consequently, this information may include the unique information
that is contained in few kernels. Hence, a consideration solution is to regulate
the kernel weights by considering their inter-coupling. Specifically, we should en-
sure that the weights of those kernels with low inter-coupling are large while the
weights of the kernels with high inter-coupling are small. By this method, the
MKL approach can simultaneously capture the common information and preserve
the unique information, resulting in a more powerful kernel. In CMKL-C, the inter-
coupling of base kernel matrices should be also minimized in the objective func-
tion.
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3.3 Coupling Between Target Labels and Real Ones

Finally, we consider the coupling between the new kernel, which is learned through
MKL and real labels. Obviously, a label represents the category of a group of
samples. Different categories will have different labels. Moreover, the kernel matrix
also implies the category information of samples. Specifically, the kernel matrix
entry with a small value means that two samples come from the same category. On
the contrary, a large value of the kernel matrix entry suggests that the corresponding
samples come from different categories. Thus, the real labels reflect the real category
information while the target labels determine the categories that are classified by
the new learned kernel. Hence, if the coupling between target labels and real ones
is stronger, the classification result will be better. In this paper, we consider this
coupling in multiple kernel learning.

For the binary classification case, the label gives the binary information of cat-
egories, i.e. either 1 or −1. Accordingly, the kernel matrix involves two classes
in kernel space and represents it as its entry values. The objective is to make the
learned kernel determine the same category information with respect to the samples
as their real labels. In other words, if two samples are from the same category, the
entry values with respect to them should be 1, which means they are extremely
similar in the kernel space. Otherwise, we hope the values be −1. Thus, we define
the coupling between target labels and real ones as

between i,j = 1− |ki,j − ti,j| (11)

where ki,j is the entry value of the new kernel with respect to sample i and sample j,
ti,j corresponds to the label-pair as follows,

ti,j =

1 label i = label j,

−1 label i 6= label j.
(12)

Therefore, one of the optimization objectives is to maximize the coupling between
target labels and real ones.

For the multiple classification case, the label can be seen as a nominal value
that reflects the information of categories. Labels can give the information that
whether samples are from the same category but cannot tell us that how similar
two categories are. Fortunately, kernel matrix can display this similarity directly.
Therefore, for a pair of samples from the same category, the coupling between
target labels and real ones can be defined similar to the case of binary classifi-
cation:

between i,j = 1− |ki,j − 1|,

s.t. label i = label j.
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For a pair of samples from different categories, we assume that their similarity
should be extremely small. Thus, the smaller a kernel entry value is, the larger
the corresponding coupling value will be. Hence, we define the coupling as fol-
lows:

between i,j = 1− |ki,j|,

s.t. label i 6= label j.

4 THE PROPOSED COUPLED MULTIPLE KERNEL
LEARNING METHOD FOR CLASSIFICATION

Based on the three coupling relationships mentioned above, we construct an objec-
tive function to minimize the former two types of coupling but maximize the last
type of coupling. The objective function is defined as follows:

minµ
1
2
‖µ‖2 + C1Intra>µ + C2Inter>µ

+ 1
2
C3

∑n
i=1 ξ

2
i ,

s.t. z>i µ = ti − ξi, i = {1, 2, . . . , n}.
(13)

In Equation (13), µ, which needs to be learned, is the combination coefficient of
base kernels. Intra is the intra-coupling vector and Inter is the inter-coupling

vector. Meanwhile, zi = (k
(1)
ik , k

(2)
ik , . . . , k

(m)
ik )> is a vector containing values from

the same entry of different base kernels. Thus, ziµ equals to the entry value of
the new kernel. We also denote the coupling between the target label and the real
one as ξ. In addition, C1, C2 and C3 are trade-off parameters that control the
weights of these three coupling relationships. For the multiple classification case,
the objective function is similar to Equation (13) but has some differences in the
part of the coupling relationship between target labels and real ones. Accordingly,
the objective function is defined as

minµ
1
2
‖µ‖+ C1Intra>µ + C2Inter>µ

+ 1
2
C3

(∑same
i=1 ξ2i +

∑n
i=same+1 γ

2
i

)
,

s.t. z>i µ = 1− ξi, i = {1, . . . , same},
z>i µ = γi, i = {same+ 1, . . . , n}.

(14)

Here, we reorder the kernel entries. Entries for samples from the same category are
reordered to the first same positions while others are reordered to the same + 1
to n positions. In this case, ξ is the coupling between target labels and real ones
with respect to the sample pairs from the same category while γ is the coupling of
samples pairs from different categories.
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Both Equation (13) and Equation (14) have analytical solutions and can be
solved efficiently. Regarding Equation (13), solving it is equivalent to solving its
dual optimization problem Equation (15) according to the KKT theorem [21].

L = 1
2
‖µ‖2 + C1Intra>µ + C2Inter>µ

+ 1
2
C3

∑n
i=1 ξ

2
i −

∑n
i=1 αi

(
z>i µ− ti + ξi

) (15)

where αi is the Lagrange multiplier with respect to the ith sample-pair. In this case,
the KKT optimality conditions can be written as follows:

∂L

∂µ
= 0→ µ = −C1Intra− C2Inter +

n∑
i=1

αizi, (16)

∂L

∂ξi
= 0→ αi = C3ξi, i = 1, . . . , n, (17)

∂L

∂αi
= 0→ ξi = ti − z>i µ, i = 1, . . . , n. (18)

By substituting (18) into (17), we have

α = C3t− C3Zµ : αi = C3ti − C3z
>
i µ,

(i = 1, . . . , n)
(19)

where Z = [z1, z2, . . . , zn]>, α = [α1, α2, . . . , αn]> and t = [t1, t2, . . . , tn]>. Moreover,
Equation (16) can be equivalently written as

µ = −C1Intra− C2Inter + Z>α. (20)

By substituting (19) into (20), we have the analytical solution of (13) as follows:

µ = (I + C3Z
>Z)−1

(
−C1Intra− C2Inter + C3Z

>t
)

(21)

where I is a n-dimensional identity matrix. Similarly, solving Equation (14) is
equivalent to solving its dual optimization problem Equation (22).

L = 1
2
‖µ‖2 + C1Intra>µ + C2Inter>µ + 1

2
C3

∑same
i=1 ξ2i

+ 1
2
C3

∑diff
i=same+1 γ

2
i −

∑same
i=1 αi

(
z>i µ− 1 + ξi

)
−
∑n

i=same+1 βi
(
z>i µ− γi

) (22)
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where αi and βi are the Lagrange multiplier with respect to the ith sample pair. In
this case, the KKT optimality conditions can be written as follows:

∂L

∂µ
= 0→ µ =− C1Intra− C2Inter

+
same∑
i=1

αizi +
n∑

i=same+1

βizi,
(23)

∂L

∂ξi
= 0→ αi = C3ξi, i = 1, . . . , same, (24)

∂L

∂αi
= 0→ ξi = 1− z>i µ, i = 1, . . . , same, (25)

∂L

∂γi
= 0→ βi = −C3γi, i = same+ 1, . . . , n, (26)

∂L

∂βi
= 0→ γi = z>i µ, i = same + 1, . . . , n. (27)

By substituting (25) into (24), we have

α = C31− C3Zsameµ : αi = C3 − C3z
>
i µ,

(i = 1, . . . , same)
(28)

where Zsame = [z1, z2, . . . , zsame]
> and 1 = [1, 1, . . . , 1]> and α = [α1, α2, . . . , αsame]

>.
By substituting (27) into (26), we have

β = −C3Zdiffµ : βi = −C3z
>
i µ,

(i = same + 1, . . . , n)
(29)

where Zdiff = [zsame+1, zsame+2, . . . , zn]> and β = [βsame+1, βsame+2, . . . , βn]>. In
addition, Equation (23) can be equivalently written as

µ = −C1Intra− C2Inter + Z>sameα + Z>diffβ. (30)

By substituting (28) into (30), we have the analytical solution of (14) as follows:

µ = (I + C3Z
>
sameZsame + C3Z

>
diffZdiff )

−1

·(−C1Intra− C2Inter + C3Z
>
same1).

(31)

After optimizing the combination coefficient µ, CMKL-C generates a new kernel
by combining base kernel matrices according to µ as follows:

Knew = µ1K1 + . . .+ µmKm. (32)
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Similarly, for each sample-pair (xi, xj), its new optimal kernel function can be written
as:

knew(xi, xj) = µ1k1(xi, xj) + . . .+ µmkm(xi, xj). (33)

For the classification problem, CMKL-C first considers the intra-coupling of each
kernel, inter-coupling of different kernels and the coupling between target labels and
real ones. Then, it learns the base kernel combination coefficient according to these
three coupling relationships. Finally, it generates a new kernel by combining base
kernels according to the above coefficient. The algorithm of CMKL-C is illustrated
as Algorithm 1.

Algorithm 1 CMKL-C

1: Input: base kernel matrices K ∈ Rp×p×m and sample labels Y ∈ Rp×1.
2: Output: the learned new kernel Knew.
3: Calculate the intra-coupling of base kernels Intra using Equation (6).
4: Calculate the inter-coupling of base kernels Inter using Equation (9).
5: Learn the base kernel combing coefficient µ using Equation (21) for binary

classification case or Equation (31) for multiple classification case.
6: Generate new kernel Knew using Equation (32) according to the combing coef-

ficient µ.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of CMKL-C by comparing it with un-
weighted sum of kernel methods (UW) and some other state-of-the-art multiple ker-
nel learning methods, including SimpleMKL [5], DBMK-ELM [13], l1-MK-ELM [22]
and radius-incorporated MK-ELM [22]. Considering the computational efficiency
and classification performance, we adopt extreme learning machine (ELM) as the
classifier in our experiments. Specifically, the output function of ELM with CMKL-C
can be written as follows:

f(x) =

 knew(x,x1)
...

knew(x,xN)


>(

I

C
+ Knew

)−1
Y (34)

where Y = [y1, . . . , yp]
> is the label vector, Knew and knew(·, ·) is the new training

kernel matrix and the new kernel learned by CMKL-C, respectively.

5.1 Benchmark Data Sets

We chose eight classification benchmark data sets including bupa, ionosphere, sonar,
wpbc, wine, glass, breast and vowel from UCI Machine Learning Repository [23].
Table 1 shows the number of training samples, testing samples, features and classes
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in these data sets. We also evaluate CMKL-C over three bioinformatics benchmark
data sets following the experimental setup that was stated in [13]. The first two
data sets are about bacterial protein locations [24] while the third data set is the
original plant data set of TargetP [25]. The detailed information of these data sets
are summarized in Table 2. For each data set, we randomly selected two-thirds
of data samples as training data and the remaining part of the data set as testing
data. Moreover, we conducted 20 independent trails of experiments for each data
set and then compared the average results of different learning methods over the
data set.

Data Sets # train # test # features # classes

bupa 230 115 6 2
ionosphere 234 117 34 2
sonar 138 70 60 2
wpbc 129 65 33 2
wine 118 60 13 3
glass 142 72 9 6
breast 70 36 9 6
vowel 660 330 13 11

Table 1. Summary of the UCI classification data sets

Data Sets # train # test # kernels # classes

PsortPos 361 180 69 4
PsortNeg 963 481 69 5
plant 627 313 69 4

Table 2. Summary of the bioinformatics benchmark data sets

5.2 Parameters Setting and Evaluation Criteria

Regarding UCI benchmark data sets, 20 Gaussian kernels (e−γ‖xi−xj‖
2
) with γ =

{2−10, 2−9, . . . , 29} and 3 polynomial kernels of degree 1, 2 and 3 are used to generate
23 base kernels on full feature vector. Regarding bioinformatics benchmark data sets,
we use the same 69 kernels in [12]. Specifically, we use 2 kernels on phylogenetic trees,
3 kernels from BLAST E-values and 64 sequence motif kernels. For all algorithm, the
regulation parameter is selected from {10−1, 100, . . . , 107} via 3-fold cross validation
on training data.

In this paper, the classification accuracy is selected as the performance evalu-
ation criteria. We report the results of experiments on each benchmark by using
the mean value and the standard deviation of criteria in 20 partitions. We also
use the paired student’s t-test to measure the statistical significance for the accu-
racy improvement. In paired student’s t-test, p-value means the probability that
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two compared sets coming from the same distribution with equal mean. Typically,
if the p-value is less than 0.05, it can be said that the compared sets are having
statistically a significant difference.

5.3 Performance Comparison

The classification accuracy of different methods in UCI data sets and bioinformatics
data sets are shown in Table 3 and Table 4. The first part of the content in the
following table is the mean ± standard deviation and the second part is the p-va-
lue calculated by the paired student’s t-test. We denote the highest accuracy and
the results that have no significant difference compared to the highest one as bold
style.

From the results, CKML-C achieves the highest classification accuracy compared
with other state-of-the-art methods. Regarding to UCI benchmarks, CMKL-C sig-
nificantly outperforms SimpleMKL [5] in the following data sets: bupa, wpbc, glass,
breast and vowel. It is also statistically different from DBMK-ELM [13] in data set
vowel and has big difference in data sets glass and breast. Compared with `-MK-
ELM and R-MK-ELM [22], CMKL-C appears as significant improvement in most
of data set. The result demonstrates the superiority of CKML-C, especially in data
sets with multiple classes. It is because CMKL-C considers intra-kernel information
and jointly leverages inter-kernel couplings. The intra-kernel information captures
the standard deviation in the between-class center direction. It forces the optimal
kernel to fit the characteristics of multiple class distribution, thus guarantees the su-
periority performance when learning multiple class data. The inter-kernel couplings
reduce the effect of redundant kernels and enhance the impact of unique information.
Therefore, it induces a promising performance for CKML-C compared with other
methods. Regarding to the bioinformatics benchmarks, CKML-C dramatically im-
proves state-of-the-art classification performance. On one hand, it shows that the
CMKL-C has an appropriate design that drives a better classification performance.
On the other hand, it reflects that the bioinformatics benchmarks have strong intra-
and inter-kernel couplings, which can feed our proposed CKML-C and should be
considered in other analytics tasks.

Overall, the empirical results demonstrate that the proposed CKML-C method
overcomes the weakness of existing multiple kernel learning methods, resulting in
better classification performance.

6 CONCLUSIONS

In this paper, we have proposed a coupled multiple kernel learning method for su-
pervised classification in the perspective of non-IIDness. The proposed CMKL-C
method learns a new kernel by jointly considering intra-coupling within each kernel,
inter-coupling among different kernels, and coupling between target labels and real
ones. The notable merit of the proposed learning method is that it can fully ex-
ploit and fuse information embedded in multiple kernels. Therefore, it can achieve
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Data CMKL-C SimpleMKL [5] DBMK-ELM [13] `1-MK-ELM [22] R-MK-ELM [22] UW

bupa
68.91± 3.68 63.78± 3.23 67.48± 3.58 64.39± 3.71 67.65± 3.36 68.13± 2.92

(1.00) (0.00) (0.15) (0.00) (0.14) (0.37)

ionosphere
95.34± 1.37 95.21± 1.83 94.96± 1.68 95.04± 1.77 95.09± 1.66 94.36± 1.70

(1.00) (0.71) (0.16) (0.38) (0.19) (0.00)

sonar
86.21± 4.23 85.29± 4.89 85.93± 3.60 85.00± 4.00 84.36± 4.36 83.00± 4.72

(1.00) (0.25) (0.56) (0.00) (0.00) (0.00)

wpbc
79.54± 5.02 77.15± 4.27 79.31± 5.15 77.15± 4.27 77.31± 4.84 78.08± 5.18

(1.00) (0.00) (0.64) (0.00) (0.00) (0.02)

wine
98.67± 1.59 98.58± 1.46 98.42± 1.98 98.25± 1.91 98.25± 1.75 97.58± 2.51

(1.00) (0.75) (0.27) (0.02) (0.02) (0.01)

glass
68.75± 4.74 55.97± 5.54 67.99± 5.60 66.32± 4.66 67.92± 4.62 66.39± 6.46

(1.00) (0.00) (0.24) (0.00) (0.34) (0.00)

breast
70.69± 6.71 67.08± 8.17 69.31± 6.77 68.61± 6.75 69.17± 6.80 70.14± 6.10

(1.00) (0.01) (0.09) (0.04) (0.10) (0.43)

vowel
97.70± 1.02 89.09± 1.38 97.14± 1.17 96.83± 1.07 96.85± 1.37 91.20± 2.25

(1.00) (0.00) (0.00) (0.00) (0.00) 0.00
AVG 73.98 70.23 73.39 72.40 72.96 72.09

Table 3. UCI benchmarks: Classification accuracy (%). Boldface means no statistical
difference from the best one (p-val ≥ 0.05).

Data CMKL-C SimpleMKL [5] DBMK-ELM [13] `1-MK-ELM [22] R-MK-ELM [22] UW

PsortPos
88.31± 1.99 80.22± 2.91 87.92± 2.03 70.31± 3.35 84.14± 2.12 81.03± 2.69

(1.00) (0.00) (0.04) (0.00) (0.00) (0.00)

PsortNeg
91.81± 1.29 84.80± 1.74 91.52± 0.86 73.78± 1.82 89.75± 1.23 87.31± 1.42

(1.00) (0.00) (0.05) (0.00) (0.00) (0.00)

plant
91.88± 1.22 67.38± 3.43 91.82± 1.43 58.85± 2.96 85.32± 2.56 74.79± 2.55

(1.00) (0.00) (0.76) (0.00) (0.00) (0.00)
AVG 90.67 77.47 90.42 67.64 86.40 81.04

Table 4. Bioinformatics benchmarks: Classification accuracy (%). Boldface means no
statistical difference from the best one (p-val ≥ 0.05).

higher classification accuracy compared to the existing MKL methods. Numeri-
cal results demonstrate that CMKL-C significantly outperforms the state-of-the-art
MKL methods in terms of the classification accuracy. In future, we plan to do
more in-depth studies regarding non-IIDness based semi-supervised and unsuper-
vised classification/regression methods.
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