
Computing and Informatics, Vol. 36, 2017, 386–404, doi: 10.4149/cai 2017 2 386

AUTOMATIC GENERATION OF BASIS COMPONENT
PATH COVERAGE FOR SOFTWARE ARCHITECTURE
TESTING

Lijun Lun, Shaoting Wang, Xin Chi

College of Computer Science and Information Engineering
Harbin Normal University
150080 Harbin, China
e-mail: lunlijun@yeah.net, 736620872@qq.com, xinc1990@163.com

Hui Xu

Library
Heilongjiang University of Chinese Medicine
150040 Harbin, China
e-mail: xuhui8413@163.com

Abstract. Architecture-centric development is one of the most promising methods
for improving software quality, reducing software cost and raising software produc-
tivity. Software architecture research not only focuses on the design phase, but also
covers every phase of software life cycle. Software architecture has characteristics
different from traditional software, conventional testing methods do not apply di-
rectly to software architecture. Basis path testing is a very simple and efficient
white-box testing method. Traditional methods generate basis path according to
the control flow graph, they are not suitable for generating component path when
we detect more software architecture errors. This paper presents a new concept –
Basis Component Path (BCP) for C2-style architecture, and proposes a method to
generate the BCPs. C2-style architecture is represented by components, connectors,
and interfaces, and uses an architecture component interaction graph (CIG) to de-
scribe interface connection relationship. We also provide an algorithm to generate
BCP set. Experiments apply the proposed method in a typical C2-style architec-
ture and the result shows that the proposed method can generate BCP set which
contains as many BCPs as possible efficiently, and it meets the requirements of the
basis component path testing.

Basis Component Path for Software Architecture Testing 387

Keywords: Software architecture testing, C2-style architecture, component inter-
action graph, basis component path generation

Mathematics Subject Classification 2010: 68N30

1 INTRODUCTION

Software architecture [1] represents the earliest software design decisions. These
design decisions are the most critical to get right, and the most difficult to change
downstream in the software development life cycle. Software architectures are nowa-
days used for different purposes, including driving analysis techniques [2]. Software
architecture testing is an important technique for validating and checking the cor-
rectness of software architecture. Formalization testing [3, 4] based on software
architecture has improved the quality of the software products. Automatic test cov-
erage generation is a hotspot and a difficulty in the field of software architecture
testing [5]. Current research is divided into two categories [6]. One is to improve
the traditional software testing techniques and methods, so that they service for
software architecture testing. The other is to develop new testing techniques and
methods, so that it can better solve problems of software architecture testing.

The software architecture is the foundation for any software system. It represents
the earliest design decisions that are both the most difficult to get right and the
hardest to change downstream.

Path coverage is one of the most important criteria that investigate the suf-
ficiency of software testing. It requires that every path in a program should be
executed at least once. Basis path testing is a structural testing technique. It
is a technology of reducing the scale of path testing, which reduces not only test
operation amount but also the repeated generation of test suite.

This paper tries to focus on simplification of the CIG in order to generate the
BCP, how many BCPs are required? The reason why we consider such a question
is as follows.

First, a component has to take help of other component(s) to perform its func-
tionality. In this way, testing activity between components is a time- and labor-
consuming process. Test requirements can be used as a well accepted measure for
selecting test suites, reducing test suites and deciding when to stop testing. In
this paper, BCP can be regarded as test requirements. When we obtain the BCPs
required, the costs for testing the C2-style architecture application will be reduced.

Secondly, the selection of test suites should guarantee that each test requirement
is satisfied by at least one test suite. Thus, test requirement reduction can help to
reduce the number of test suites and avoid redundant test suites.

So, we propose the BCP to describe the interaction relationships between com-
ponents, and propose algorithm to generate BCP. We apply our method to a typical
C2-style architecture, and experiments show that our method can generate BCP.

388 L. Lun, S. Wang, X. Chi, H. Xu

2 BACKGROUND

We will give some backgrounds in this section, mainly about some notations and
the basis component path testing.

2.1 C2-Style Architecture

The C2-style architecture is primarily concerned with high-level system composi-
tion issues [7]. The C2-style architecture consists of components and connectors,
which transmit messages between components. Components maintain state, per-
form operations, and exchange messages with other components via two interfaces
(named top and bottom). Each interface consists of a set of messages that may be
sent or received. Inter-component messages are classified into two types, requests
to a component to perform an operation, and notifications that a given component
has performed an operation or changed state. In the C2-style architecture, both
components and connectors have a top and a bottom interface. Systems are com-
posed in a layered style, where a component’s top interface may be connected to the
bottom interface of a connector, and its bottom interface may be connected to the
top interface of another connector. Each side of a connector may be connected to
any number of components or connectors.

We represent a component as Compi, where Compi ∈ Comp indicates ith com-
ponent of C2-style architecture and Comp represents a set of components. Ip rep-
resents the set of interfaces of component, it consists of the set of top interfaces Ipt
and the set of bottom interfaces Ipb. Ipt consists of the top output interface Ipt o
and top input interface Ipt i, Ipb consists of the bottom output interface Ipb o and
bottom input interface Ipb i. Compi through interface Compi.Ipt o or Compi.Ipb o
to send an event request, and through interface Compi.Ipt i or Compi.Ipb i to re-
ceive other component or connector to send messages. If Compi does not have the
top or bottom output interface, then Compi cannot send messages from its top or
bottom output interface. Similarly, if Compi does not have the top or bottom in-
put interface, then Compi cannot receive messages from its top or bottom input
interface.

We represent a connector as Connj, where Connj ∈ Conn indicates jth connector
of C2-style architecture and Conn represents a set of connectors. In represents the
set of interfaces of connector, it consists of the set of top interfaces Int and the
set of bottom interfaces Inb. Int consists of the top output interface Int o and top
input interface Int i, Inb consists of the bottom output interface Inb o and bottom
input interface Inb i. Connj through interface Connj.Int o or Connj.Inb o to send
an event request, and through interface Connj.Int i or Connj.Inb i to receive other
component or connector to send messages.

We represent constraint as Compi.Ipt o → Connj.Inb i means that there exists
path from the top output interface of component Compi to the bottom input in-
terface of connector Connj. On the other hand, Compi.Ipb o → Connj.Int i means
that there exists path from the bottom output interface of component Compi to

Basis Component Path for Software Architecture Testing 389

the top input interface of connector Connj. Conn i.Int o→ Compj.Ipb i means that
there exists path from the top output interface of connector Conn i to the bottom
input interface of component Compj. Conn i.Inb o→ Compj.Ipt i means that there
exists path from the bottom output interface of connector Conn i to the top input
interface of component Compj. Conn i.Int o→ Connj.Inb i means that there exists
path from the top output interface of connector Conn i to the bottom input inter-
face of connector Connj. Conn i.Inb o → Connj.Int i means that there exists path
from the bottom output interface of connector Conn i to the top input interface of
connector Connj.

2.2 Component Interaction Graph

The C2-style architecture control flow is usually represented by a digraph. We use
the CIG model to represent interaction relationships between interface of compo-
nents and interface of connectors, and between interface of connectors.

Definition 1 (CIG). CIG is a digraph CIG = 〈V,E, Vstart, Vend〉, where V is the set
of nodes, which represent the interface of the components and the interface of con-
nectors, that is ∀Compi ∈ Comp ∧ Connj ∈ Conn, V = {Compi.Ipt i,Compi.Ipt o,
Compi.Ipb i,Compi.Ipb o,Connj.Int i,Connj.Int o,Connj.Inb i,Connj.Inb o}. The
interface of component nodes are expressed with hollow circular and the interface
of connector nodes are expressed with solid circular. E ⊆ V × V is the set of edges,
which represent the message interaction relationships between interface of compo-
nents and interface of connectors, and between interface of connectors. Vstart =
{Compi.Ipt o | Compi.Ipb i = ∅, Compi ∈ Comp} is the initial node, this node
transmit messages only. Vend = {Compi.Ipb i | Compi.Ipt o = ∅, Compi ∈ Comp} is
the terminal node, this node receive messages only.

There are three types of edges in the CIG of a C2-style architecture specification,
namely, edge from component to connector, edge from connector to component,
and edge from connector to connector, which represents information flows between
component and connector.

Definition 2 (Edge). Given a component interaction graph CIG = 〈V,E, Vstart,
Vend〉, where V = {Compi.Ipt i,Compi.Ipt o,Compi.Ipb i,Compi.Ipb o,Connj.Int i,
Connj.Int o,Connj.Inb i,Connj.Inb o} and E ⊆ V ×V . If there exists (Compi.Ipt o,
Connj.Inb i) ∨ (Compi.Ipb o,Connj.Int i) ∈ E, then (Compi.Ipt o,Connj.Inb i) and
(Compi.Ipb o,Connj.Int i) are edge from component to connector, called eComp−Conn

for short. If there exists (Connj.Int o,Compi.Ipb i)∨(Connj.Inb o,Compi.Ipt i) ∈ E,
then (Connj.Int o,Compi.Ipb i) and (Connj.Inb o,Compi.Ipt i) are edge from con-
nector to component, called eConn−Comp for short. If there exists (Conn i.Int o,
Connj.Inb i) ∨ (Conn i.Inb o,Connj.Int i) ∈ E, then (Conn i.Int o,Connj.Inb i) and
(Conn i.Inb o,Connj.Int i) are edge from connector to connector, called eConn−Conn

for short.

390 L. Lun, S. Wang, X. Chi, H. Xu

In order to illustrate the C2-style architecture, we consider a simple C2-style
architecture in Figure 1. There are seven components Ci (i = 1, . . . , 7) and four
connectors Bj (j = 1, . . . , 4).

C1 C2

C3

C6 C4 C5

B1

B3 B2

C7

B4

Figure 1. A simple C2-style architecture

The CIG of Figure 1 can be seen in Figure 2, there are 36 interfaces, for ex-
ample, C2.Ipt o is an interface that represents the top output of the component
C2, B3.Inb i is an interface that represents the bottom input of the connector B3.
The top interface C1.Ipt o of component C1 transmits messages to the bottom inter-
face B1.Inb i of connector B1, the top interface B2.Int o of connector B2 transmits
messages to the bottom interface C6.Ipb i of component C6, and the bottom inter-
face C7.Ipb o of component C7 transmits messages to the top interface B4.Int i of
connector B4.

Path coverage is a kind of important standard that investigates the sufficiency
of software testing. Component path coverage technology in software architecture is
a structural testing method that involves using the architecture elements to attempt
to find every possible executable path.

Definition 3 (Component path). Given a component interaction graph CIG =
〈V,E, Vstart, Vend〉, where Vi.Ipt o, Vi.Ipt i, Vi.Ipb o, Vi.Ipb i, Vi.Int o, Vi.Int i, Vi.Inb o,
Vi.Inb i ∈ V (i = 1, 2, . . . , k), Vi ∈ Comp ∪Conn (i = 1, 2, . . . , k). A path from node
V1 to Vk is a sequence of nodes V1 → V2 → . . .→ Vk, such that for i = 1, 2, . . . , k−1:

• (Vi.Ipt o, Vi+1.Inb i) ∨ (Vi.Int o, Vi+1.Ipb i) ∨ (Vi.Int o, Vi+1.Inb i) ∈ E, or

• (Vi.Ipb o, Vi+1.Int i) ∨ (Vi.Inb o, Vi+1.Ipt i) ∨ (Vi.Inb o, Vi+1.Int i) ∈ E

if V1 ∈ Comp ∧ Vk ∈ Comp, then the path is a component path for the CIG, called
CP for short.

From the definition 3, we can see that the CP has two forms according to the
type of edges, one is all edges from the beginning of top interface of component and
connector to the end of bottom interface of component and connector, other is all
edges from the beginning of bottom interface of component and connector to the
end of top interface of component and connector.

Basis Component Path for Software Architecture Testing 391

C1.Ipt_o

B1.Inb_i

B1.Int_o

C3.Ipb_i

C2.Ipt_o

C3.Ipt_o

B3.Inb_i B3.Int_o

C4.Ipb_i C4.Ipt_o

C5.Ipb_i C5.Ipt_o

B4.Inb_i B4.Int_o

C7.Ipb_i

C7.Ipb_o

B4.Int_i

B4.Inb_o

C4.Ipt_i

C4.Ipb_o

C5.Ipt_i

C5.Ipb_o

B3.Int_i

B3.Inb_o

C3.Ipb_o C3.Ipt_i

B2.Inb_i
B2.Int_o

C6.Ipb_i

C6.Ipt_o

B2.Inb_i

B2.Int_o

B1.Int_i

B1.Inb_o

C1.Ipt_i C2.Ipt_i

Figure 2. CIG of Figure 1

To understand concept of CP, let us consider again an example shown in Fig-
ure 2. We can see that (C1.Ipt o,B1.Inb i) is a eComp−Conn , (B1.Int o, C3.Ipb i) is
a eConn−Comp , (C3.Ipt o,B3.Inb i) is a eComp−Conn , (B3.Int o, C4.Ipb i) is a eConn−Comp ,
(C4.Ipt o,B4.Inb i) is a eComp−Conn , (B4.Int o, C7.Ipb i) is a eConn−Comp , (B1.Int o,
B3.Inb i) is a eConn−Conn , (B3.Int o, C5.Ipb i) is a eConn−Comp , and (C5.Ipt o,B4.Inb i)
is a eComp−Conn . Thus there are four CPs from component C1 to component C7 are
shown as follows.

• C1 → B1 → C3 → B3 → C4 → B4 → C7.

• C1 → B1 → C3 → B3 → C5 → B4 → C7.

• C1 → B1 → B3 → C4 → B4 → C7.

• C1 → B1 → B3 → C5 → B4 → C7.

Similarly, these two CPs from component C4 to component C2 are shown as
follows.

• C4 → B3 → C3 → B1 → C2.

• C4 → B3 → B1 → C2.

392 L. Lun, S. Wang, X. Chi, H. Xu

CP means computing every single component path through the CIG. But, as the
size and complexity of software system increases, the number of CPs gives rise to
an infinite numbers of CPs, we cannot test all the CPs through a nontrivial software
architecture. To reduce the number of CPs, we can test many partial component
paths.

2.3 Basis Component Path

Basis path is a testing technique which is first introduced by McCabe [8]. Basis path
testing enables the designer to derive a logical complexity measure of procedural
design and then uses it as a guide for defining a basic set of execution paths. Test
suites that exercise the basis set are guaranteed to execute every statement in the
program at least once during testing. We define BCP according to the component
path.

Definition 4 (Basis component path). Given a component interaction graph CIG
= 〈V,E, Vstart, Vend〉, where Vi.Ipt o, Vi.Ipt i, Vi.Ipb o, Vi.Ipb i, Vi.Int o, Vi.Int i,
Vi.Inb o, Vi.Inb i ∈ V (i = 1, 2, . . . , k), Vi ∈ Comp ∪ Conn (i = 1, 2, . . . , k). If
V1 → V2 → . . .→ Vk is the CP which covers all nodes from V1 to Vk and at least one
edge of this CP never appears in any other CP from V1 to Vk, then the CP is a basis
component path, called BCP for short. All of BCPs make up the basis component
path set.

From the definition of BCP, a BCP can be differentiated from all other BCPs
by at least one edge. Let us consider again an example shown in Figure 2. We can
see that there are three BCPs from component C1 to component C7 are shown as
follows.

• C1 → B1 → C3 → B3 → C4 → B4 → C7.

• C1 → B1 → C3 → B3 → C5 → B4 → C7.

• C1 → B1 → B3 → C4 → B4 → C7.

McCabe [8] proved that the size of basis path set is unique for any given control
flow graph and is called the cyclomatic complexity V(G) of the program. The
cyclomatic complexity can be easily computed by the following formula:

V (G) = e− n + 2

where e is the number of edges in the control flow graph, n is the number of nodes
in the control flow graph. The formula indicates that the cyclomatic complexity
depends only on the structure of program.

Because there may be a BCP between any two component nodes, in order to
make the cyclomatic complexity suitable for calculating the number of BCPs, we
modify the cyclomatic complexity formula as the number of BCPs through its CIG
and calculate it as follows:

Basis Component Path for Software Architecture Testing 393

|BCP
Vj

Vi
| =

 Vj∑
Vi

|eComp−Conn |+
Vj∑
Vi

|eConn−Comp|+
Vj∑
Vi

|eConn−Conn |


−

 Vj∑
Vi

|n(Comp)|+
Vj∑
Vi

|n(Conn)|

 + 2 (1)

where |BCP
Vj

Vi
| represents the number of BCPs from component Vi to component Vj,∑Vj

Vi
|eComp−Conn | represents the number of edges from component to connector from

Vi to Vj,
∑Vj

Vi
|eConn−Comp| represents the number of edges from connector to compo-

nent from Vi to Vj,
∑Vj

Vi
|eConn−Conn | represents the number of edges from connector

to connector from Vi to Vj,
∑Vj

Vi
|n(Comp)| represents the number of components

from Vi to Vj, and
∑Vj

Vi
|n(Conn)| represents the number of connectors from Vi to Vj.

Consider the BCP from component C1 to component C4 of Figure 2. There
are two edges from component to connector (C1, B1) and (C3, B3), two edges from
connector to component (B1, C3) and (B3, C4), one edge connector to connector (B1,
B3), three component nodes C1, C3, and C4, and two connector nodes B1 and B3.
Thus, the number of BCPs from C1 to C4 is: |BCPC4

C1
| = (2+2+1)−(3+2)+2 = 2,

such that:

• BCP 1: C1 → B1 → C3 → B3 → C4.

• BCP 2: C1 → B1 → B3 → C4.

Thus, we can see that the number of BCPs is less than or equal to the number
of component paths. We need a method to find the basis component path set.

3 BASIS COMPONENT PATH GENERATION METHOD

This section describes our proposed technique to generate BCP for C2-style archi-
tecture. The technique performs two tasks in two phases as follows:

• Generating the CIG according to the C2-style architecture specification.

• Generating the basis component path set based on CIG.

We give a detailed description of these two phases of the technique in the fol-
lowing subsections.

3.1 CIG Generation Phase

In order to generate CIG, we propose an algorithm GenCIG to generate CIG. The op-
eration of our GenCIG algorithm outlines the different steps in constructing the CIG
for each component and connector definition. First, the component and connector
are created. Subsequently, edges are analyzed between component and connector.

394 L. Lun, S. Wang, X. Chi, H. Xu

Then, after performing components, connectors, and edges analysis, components,
connectors, edges between component and connector are added.

We present the algorithm GenCIG of our proposed technique to generate the
CIG is illustrated in Algorithm 1.

Algorithm 1 GenCIG

Input: C2-style architecture specification
Output: component interaction graph
begin
1: the architecture of each component and connector, an increase in the corre-
sponding node;
2: if exists the message interaction from the interface Ip of component Comp1 to
the interface In of connector Conn2 then
3: add an edge from Ip to In;
4: end if
5: if exists the message interaction from the interface In of connector Conn2 to
the interface Ip of component Comp1 then
6: add an edge from In to Ip;
7: end if
8: if exists the message interaction from the interface In1 of connector Conn1 to
the interface In2 of connector Conn2 then
9: add an edge from In1 to In2 ;
10: end if
11: if exists the message interaction from the interface Ip1 to Ip2 of component
Comp1 then
12: add a additional edge from Ip1 to Ip2 in Comp1;
13: end if
14: if exists the message interaction from the interface In1 to In2 of connector Conn2

then
15: add a additional edge from In2 to In1 in Conn2;
16: end if
17: return CIG;
end

We now illustrate the construction of the CIG with the help of an example shown
in Figure 2. The component C1 and connector B1 are created in line 1. The edges
(C1, B1) and (C4, B4) are created in lines 2–4. The edges (B1, C3) and (B2, C6) are
created in lines 5–7. The edges (B1, B2) and (B3, B1) are created in lines 8–10. The
interfaces of C5 and B4 are created in lines 11–16. Finally, generate CIG (line 17).

3.2 BCP Set Generation Phase

In order to generate BCP set, we propose an algorithm BCPA to generate BCP
set. The operation of our BCPA algorithm outlines the different steps in construct-

Basis Component Path for Software Architecture Testing 395

ing the basis component path set. The basis component path set is associated with
an empty set before applying the algorithm (line 1). Then generate basis component
path set (lines 2–34), where edge graph (EG) is constructed by the CIG to deter-
mine whether the generating component paths in CIG are the BCPs. The Boolean
variable breakForFlag is used to determine whether obtaining a BCP, if yes, set up
breakForFlag = true, do not search the next edge of the destination node, otherwise,
set up breakForFlag = false, continue to search the next edge. Finally, output basis
component path set (lines 35–36), where line 35 is used to replace the number of
basis component path set with the component name and connector name.

We present the BCPA algorithm of our proposed technique to generate the basis
component path set as illustrated in Algorithm 2.

3.3 Illustration of Working of BCPA Algorithm

We explain the working of BCPA algorithm by using the example from component
C1 to component C7. First, we replace the component name and connector name
with number of the CIG as shown in Table 1.

Node Name Number Node Name Number
C1 1 C7 7
C2 2 B1 8
C3 3 B2 9
C4 4 B3 10
C5 5 B4 11
C6 6

Table 1. Number of component and connector

First N ← 1, Ci ← 1, Cj ← 7, EG ← CIG. And then add Ci (number = 1) to
the set of current path BCP[1], so, BCP[1] = {1}. Search the next node Ck of Ci

(number = 1) in CIG. Because Ck (number = 8) exists, then add Ck (number = 8)
to the set BCP[1], so, BCP[1] = {1, 8}. Determine the last node of BCP[1] is 8,
not the destination node Cj (number = 7), then Ci ← 8. Search the next node Ck

of Ci (number = 8) in CIG. Because Ck (number = 3, 9, 10) exists, then add Ck

(number = 3) to BCP[1], so, BCP[1] = {1, 8, 3}. Determine the last node of BCP[1]
is 3, not the destination node Cj (number = 7), then Ci ← 3. Search the next
node Ck of Ci (number = 3) in CIG. Because Ck (number = 10) exists, then add Ck

(number = 10) to BCP[1], so, BCP[1] = {1, 8, 3, 10}. Determine the last node of
BCP[1] is 10, not the destination node Cj (number = 7), then Ci ← 10. Search the
next node Ck of Ci (number = 10) in CIG. Because Ck (number = 4, 5) exists, then
add Ck (number = 4) to BCP[1], so, BCP[1] = {1, 8, 3, 10, 4}. Determine the last
node of BCP[1] is 4, not the destination node Cj (number = 7), then Ci ← 4. Search
the next node Ck of Ci (number = 4) in CIG. Because Ck (number = 11) exists, then
add Ck (number = 11) to BCP[1], so, BCP[1] = {1, 8, 3, 10, 4, 11}. Determine the
last node of BCP[1] is 11, not the destination node Cj (number = 7), then Ci ← 11.

396 L. Lun, S. Wang, X. Chi, H. Xu

Algorithm 2 BCPA
Input: CIG
Output: basis component path set
begin
1: BCPS = ∅;
2: foreach component Ci in CIG do
3: foreach component Cj in CIG do
4: EG← CIG;
5: N ← 1
6: add Ci to the set of current path BCP[N];
7: foreach component Ck in CIG do
8: breakForFlag← false;
9: if (edge (Ci, Ck) exists in CIG) then
10: add Ck to the current path BCP[N];
11: if (Ck is the destination node Cj) then
12: foreach component Cm in EG do
13: foreach component Cn in EG do
14: if (edge (Cm, Cn) exists in EG) then
15: if (edge (Cm, Cn) exists in BCP[N]) then
16: add the current path BCP[N] to the set of BCPS;
17: delete the edges of the EG corresponding to the edges in BCP[N];
18: N ← N + 1;
19: BCP[N]← BCP[N − 1];
20: breakForFlag← true;
21: end if
22: end if
23: end for
24: if (breakForFlag == true) then
25: break;
26: end if
27: end for
28: else
29: Ci ← Ck;
30: end if
31: end if
32: end for
33: end for
34: end for
35: replace the number of BCPS with the component name and the connector name;
36: output BCPS;
end

Basis Component Path for Software Architecture Testing 397

Search the next node Ck of Ci (number = 11) in CIG. Because Ck (number = 7)
exists, then add Ck (number = 7) to BCP[1], so, BCP[1] = {1, 8, 3, 10, 4, 11, 7}.
Determine the last node of BCP[1] = {1, 8, 3, 10, 4, 11, 7} is 7, that is the destination
node Cj (number = 7). In addition, there is an edge from EG which existed in the
BCP[1], so, BCP[1] = {1, 8, 3, 10, 4, 11, 7} is a BCP from node 1 to node 7. Add the
BCP[1] = {1, 8, 3, 10, 4, 11, 7} to the set of BCPs.

After that delete the edges of the EG corresponding to the edges of BCP[1]
and delete the last node (destination node) of BCP[1]. Calculate the number of
next BCP after N ← N + 1 and obtain BCP[N] after BCP[N]← BCP[N − 1], so,
BCP[2] = {1, 8, 3, 10, 4, 11}, then Ci ← 11 (the last node of BCP[2]). Continue to
search the other next node Ck of Ci (number = 11) in CIG. Because other Ck does
not exist, then delete the last node of BCP[2], so, BCP[2] = {1, 8, 3, 10, 4}, then
Ci ← 4 (the last node of BCP[2]). The algorithm will repeat the steps to get other
two independent BCPs from node 1 to node 7 as shown as follows:

BCP[2] = {1, 8, 3, 10, 5, 11, 7}
BCP[3] = {1, 8, 10, 4, 11, 7}

Finally, convert each number of the BCP[1], BCP[2], and BCP[3] into its corre-
sponding component name and connector name, thus, obtain the basis component
path set from component C1 to C7 is shown as follows:

BCPS = {C1 → B1 → C3 → B3 → C4 → B4 → C7,

C1 → B1 → C3 → B3 → C5 → B4 → C7,

C1 → B1 → B3 → C4 → B4 → C7}.

By calculating according to Equation (1), we get the number of BCPs which is:
|BCPC7

C1
| = (4 + 4 + 1)− (5 + 3) + 2 = 3. So, the BCPA algorithm can generate the

basis component path set from component C1 to component C7.

4 CASE STUDY

We developed a tool based on C2-style architecture to generate BCPs. In this
section, we use an example to show performance of our method.

4.1 KLAX System

To validate the proposed method, we choose KLAX [7] system as a case study
to generate BCPs. The CIG is shown in the Figure 3, it illustrates basis in-
teraction between 16 components GraphicsBinding and LayoutManager, etc. and
6 connectors ALAConn and LTConn, etc. where are 72 interfaces, for example,
GraphBinding .Ipt o is an interface that represents the top output of the component
GraphsBinding , ALAC.Inb i is an interface that represents the bottom input of the
connector ALAConn.

398 L. Lun, S. Wang, X. Chi, H. Xu

GB.Ipt_o

GLC.Inb_i

GLC.Int_o

LM.Ipb_i

LM.Ipt_o

LTC.Inb_i

LTC.Int_o

TA.Ipb_i TA.Ipt_o

TAC.Inb_i

TAC.Int_o

SA.Ipb_i

WA.Ipb_i

CA.Ipb_i

PA.Ipb_i

SA.Ipt_o

WA.Ipt_o

CA.Ipt_o

PA.Ipt_o

ALAC.Inb_i

ALAC.Int_o

SL.Ipt_o

LLC.Inb_i LLC.Int_o
TML.Ipb_i

RPL.Ipb_i

TML.Ipt_o

RPL.Ipt_o

NTPL.Ipt_o

LAC.Inb_i

LAC.Int_o

SADT.Ipb_i

CADT.Ipb_i

WADT.Ipb_i

PADT.Ipb_i

SADT.Ipb_o

CADT.Ipb_o

WADT.Ipb_o

PADT.Ipb_o

LAC.Int_i

LAC.Inb_o

ALAC.Int_i

ALAC.Inb_o

SA.Ipt_i

WA.Ipt_i

CA.Ipt_i

PA.Ipt_i

SA.Ipb_o

WA.Ipb_o

CA.Ipb_o

PA.Ipb_o
TAC.Int_i

TAC.Inb_o

NTPL.Ipt_i

TML.Ipt_i

RPL.Ipt_i

TML.Ipb_o

RPL.Ipb_o

LLC.Int_iLLC.Inb_o

SL.Ipt_i

TA.Ipt_iTA.Ipb_o

LTC.Int_i

LTC.Inb_o

LM.Ipt_i

LM.Ipb_o

GLC.Int_i

GLC.Inb_o

GB.Ipt_i

CL.Ipb_i CL.Ipb_o

Figure 3. CIG of KLAX system

4.2 Experiment Results

Results of the BCPs are listed for KLAX system in Table 2, where the first column
represents component. The second column represents the number of BCPs from
the component to another component. In the case of component GraphicsBinding,
the last 2 in |BCP| represents that there exists two BCPs from GraphicsBinding
to PaletteArtist, the first 5 in |BCP| represents that there exists five BCPs from
GraphicsBinding to ClockLogic, and 0 represents that there does not exist any BCP
between components.

From Table 2, the less 0 in |BCP|, the more basis component path exists be-
tween components, the more component path exists between components. We can
obtain the basis component path set from a component to another component ac-
cording to the BCPA algorithm, and the number of BCPs is less than or equal to
the number of component paths. So, the test scale is significantly reduced after
applying basis component path coverage criteria. This method can be achieved

Basis Component Path for Software Architecture Testing 399

Component |BCP|
GraphicsBinding 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 5, 5, 5, 5, 5

LayoutManager 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 5, 5, 5, 5, 5

TileArtist 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 4, 4, 4, 4, 4

StatusArtist 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1

ChuteArtist 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1

WellArtist 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1

PaletteArtist 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1

StatusLogic 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 3, 3, 3, 3

NextTilePlacingLogic 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1

TileMatchLogic 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1

RelativePosLogic 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1

ClockLogic 5, 5, 4, 1, 1, 1, 1, 3, 1, 1, 1, 0, 0, 0, 0

StatusADT 5, 5, 4, 1, 1, 1, 1, 3, 1, 1, 1, 0, 0, 0, 0

ChuteADT 5, 5, 4, 1, 1, 1, 1, 3, 1, 1, 1, 0, 0, 0, 0

WellADT 5, 5, 4, 1, 1, 1, 1, 3, 1, 1, 1, 0, 0, 0, 0

PaletteADT 5, 5, 4, 1, 1, 1, 1, 3, 1, 1, 1, 0, 0, 0, 0

Table 2. Results of number of BCPs for KLAX system

with less test suites to find more architecture specification errors. Testers can cover
all of the component paths in software architecture with smaller number of test
suites.

5 RELATED WORK

The paths that will be tested must be generated or determined before path testing.
Some kinds of path generating methods and software architecture coverage methods
have been discussed in this section.

Bertolino and Marré provided a path generation method [9] by using a reduced
Control Flow Graph (CFG). Although all the statements and branches can be cov-
ered by the set of paths, it cannot be assured that the set of paths generated by
this method is a basis set of paths. Poole discussed a basis set of paths generation
method [10] on the depth first search in CFG. It uses a recursive search in the CFG.
As Poole’s method, the loop is not taken into account. In addition, this method did
not consider how to choose the successor of multiple-successors node in a CFG to
build a basis path during the construction of the basis set of paths.

A testing mechanism proposed by McCabe [8], aim is to derive the cyclomatic
complexity measure of a procedural design and use this as a guide for defining a basic
set of execution paths. He also proved that the cyclomatic complexity of a section
of source code is the count of the number of linearly independent paths through
the source code. The baseline method is different from the basis path testing, it
is a technique to derive a set of basis paths through the CFG generated from the
tested program, and it is equal to the cyclomatic complexity. The idea is to start with

400 L. Lun, S. Wang, X. Chi, H. Xu

a baseline path, then very exactly one decision outcome to generate each successive
path until all decision outcomes have been varied, at which time a basis path would
have been generated [11].

Zhang and Mei analyzed dependence relationship of the predicate [12]; pick
the shortest path as the baseline path instead of the longest path which has much
branch nodes. In this way, using “baseline path+flip” to generate set of independent
paths, may avoid selecting infeasible paths. Yan and Zhang presented a method for
generating a finite set F of feasible paths which satisfies the basis path coverage
criterion [13]. Then, they found a minimal subset S of set F such that S satisfies the
test coverage criterion. The first step should check the feasibility of all paths and
feasibility checking is quite time-consuming.

Du and Dong used cyclomatic complexity in generating a set of linearly inde-
pendent paths [14]. Many basis paths are infeasible because of data dependences
exist in variables involved in decision node. They combine the baseline method with
the dependence relationship to avoid selecting infeasible paths. These methods did
not handle loops.

Rosenblum defined two formal adequate test models for component-based soft-
ware [15]. The first model is known as C-adequate-for-P , which is defined for ade-
quate unit testing of a component where C refers to test adequacy criteria and P
refers to a program. The other model is known as C-adequate-on-M, which is de-
fined for adequate integration testing of component based system. Both test models
are defined based on subdomain-based test adequacy criteria defined by Frankl and
Weyuker [16].

Jin and Offutt proposed a technology of generating test cases [17] in view of
architecture description language Wright, according to Interface Connectivity Graph
(ICG) and Behavior Graph (BG). And developed testing criteria for generating
software architecture level tests from software architecture descriptions.

Gao et al. focused on component test coverage issues, and proposed test models
(CFAGs and D-CFAGs) [18] to represent a component’s API-based function access
patterns in static and dynamic views. A set of component API-based test criteria
is defined based on the test models, and a dynamic test coverage analysis approach
is provided.

Hashim et al. presented Connector-based Integration Testing for Component-
based Systems (CITECB) with an architecture test coverage criteria [19], and
describe the test models used that are based on probabilistic deterministic finite
automata which are used to represent gate usage profiles at run-time and test exe-
cution. It also provides a measuring mechanism of how well the existing test suite
are covering the component interactions and provides a test suite coverage moni-
toring mechanism to reveal the test elements that are not yet covered by the test
suites. The model extraction technique used to generate the CITECB test models is
a simple and less time consuming process. In addition to that, these test models are
able to closely represent the component interactions as they are extracted directly
from the system.

Basis Component Path for Software Architecture Testing 401

Muccini et al. proposed a specialization and refinement of general approach for
software architecture based conformance testing [20], he deals with the software
architecture to code mapping rules imposed by the C2 framework helps to limit the
mapping problem, and allows a systematic testing approach.

Lun et al. presented a dependency edge coverage method [21] for software ar-
chitecture. We described three types of dependency edge, named dependency edge
from component to connector, dependency edge from connector to component, and
dependency edge from connector to connector. We used the dependency coverage
of component to connector, the dependency coverage of connector to component,
the dependency coverage of connector to connector, and the dependency coverage of
C2-style architecture metrics standard to evaluate the effectiveness of dependency
edge coverage criteria.

6 CONCLUSION

We analyzed the problem of BCP for C2-style architecture. To develop the test
model, CIG is constructed from components, connectors, interfaces, and relation-
ships between components and connectors abstracted the behavior of interactive
between components and connectors for C2-style architecture, and BCP is formal-
ized based on the CIG. We propose an automatic method to generate BCPs. For
verifying the method, the KLAX system is illustrated as an example. The exper-
iment results reveal that the C2-style architecture realizable the number of BCPs
|BCP

Vj

Vi
| accordance with modified the cyclomatic complexity V (G). The BCP on

C2-style architecture testing can be useful to predict how much effort should be
expected to be necessary for testing given a C2-style architecture.

Much work also remains to be done to validate the practical results. It is our plan
to apply model in new cases and in new domains. In addition, we need to consider
the impact with respect to the C2-style architecture quality when we introduce
measurement mechanism and technique. Thus, another research area that is of
interest is to investigate the impact of the choice of measurement mechanisms for
analysis.

Acknowledgement

The authors are grateful to the anonymous referees for their detailed comments and
insightful suggestions, which helped in refining and improving the presentation of
the paper. Part of this work is supported by the Natural Science Foundation of
Heilongjiang Province of China under Grant No. F201036, the Scientific Research
Foundation of Heilongjiang Provincial Education Department of China under Grant
No. 12541250.

402 L. Lun, S. Wang, X. Chi, H. Xu

REFERENCES

[1] Perry, D. E.—Wolf, A. L.: Foundations for the Study of Software Architecture.
ACM SIGSOFT Software Engineering Notes, Vol. 17, 1992, No. 4, pp. 40–52, doi:
10.1145/141874.141884.

[2] Malavolta, I.—Lago, P.—Muccini, H.—Pelliccione, P.: What Industry
Needs from Architectural Languages: A Survey. IEEE Transactions on Software En-
gineering, Vol. 39, 2013, No. 6, pp. 869–891, doi: 10.1109/tse.2012.74.

[3] Muccini, H.—Bertolino, A.—Inverardi, P.: Using Software Architecture for
Code Testing. IEEE Transactions on Software Engineering, Vol. 30, 2004, No. 3,
pp. 160–171, doi: 10.1109/tse.2004.1271170.

[4] Chen, J. F.—Lu, Y. S.—Wang, H. H.: Component Security Testing Approach
Based on Extended Chemical Machine. International Journal of Software En-
gineering and Knowledge Engineering, Vol. 22, 2012, No. 1, pp. 59–83, doi:
10.1142/s0218194012500039.

[5] Lun, L. J.—Chi, X.—Ding, X. M.: Edge Coverage Analysis for Software Ar-
chitecture Testing. Journal of Software, Vol. 7, 2012, No. 5, pp. 1121–1128, doi:
10.4304/jsw.7.5.1121-1128.

[6] Bertolino, A.—Inverardi, P.—Muccini, H.: An Explorative Journey from Ar-
chitectural Tests Definition down to Code Test Execution. Proceedings of the 23rd

International Conference on Software Engineering, May 2001, pp. 211–220.

[7] Taylor, R. N.—Medvidovic, N.—Anderson, K. M.—Whitehead, E. J.—
Robbins, J. E.: A Component- and Message-Based Architecture Style for GUI Soft-
ware. IEEE Transactions on Software Engineering, Vol. 22, 1996, No. 6, pp. 390–406.

[8] McCabe, T. J.: A Complexity Measure. IEEE Transactions on Software Engineer-
ing, Vol. 2, 1976, No. 4, pp. 308–320, doi: 10.1109/tse.1976.233837.

[9] Bertolino, A.—Marré, M.: Automatic Generation of Path Covers Based on
the Control Flow Analysis of Computer Programs. IEEE Transactions on Software
Engineering, Vol. 20, 1994, No. 12, pp. 885–899, doi: 10.1109/32.368137.

[10] Poole, J.: A Method to Determine a Basis Set of Paths to Perform Program Testing.
Available on: http://hissa.nist.gov/publications/nistir5737, 1995.

[11] Watson, A. H.—McCabe, T. J.: Structured Testing: A Testing Methodology Us-
ing the Cyclomatic Complexity Metric. Technical Report NIST Special Publication
1996.

[12] Zhang, Z. L.—Mei, L. X.: An Improved Method of Acquiring Basis Path for Soft-
ware Testing. Proceedings of 5th International Conference on Computer Science and
Education, August 2010 pp. 1891–1894.

[13] Yan, J.—Zhang, J.: An Efficient Method to Generate Feasible Paths for Basis Path
Testing. Information Processing Letters, Vol. 107, 2008, No. 3, pp. 87–92.

[14] Du, Q. F.—Dong, X.: An Improved Algorithm for Basis Path Testing. Interna-
tional Conference on Business Management and Electronic Information, May 2011,
pp. 175–178.

[15] Rosenblum, D. S.: Adequate Testing of Component-Based Software. Technical Re-
port TR97-34, 1997.

https://doi.org/10.1145/141874.141884
https://doi.org/10.1109/tse.2012.74
https://doi.org/10.1109/tse.2004.1271170
https://doi.org/10.1142/s0218194012500039
https://doi.org/10.4304/jsw.7.5.1121-1128
https://doi.org/10.1109/tse.1976.233837
https://doi.org/10.1109/32.368137
http://hissa.nist.gov/publications/nistir5737

Basis Component Path for Software Architecture Testing 403

[16] Frankl, P. G.—Weyuker, E. J.: An Applicable Family of Data Flow Test-
ing Criteria. IEEE Transactions on Software Engineering, Vol. 14, 1988, No. 10,
pp. 1483–1498, doi: 10.1109/32.6194.

[17] Jin, Z. Y.—Offutt, J.: Deriving Tests from Software Architectures. Proceedings
12th International Symposium on Software Reliability Engineering, November 2001,
pp. 308–313.

[18] Gao, J.—Espinoza, R.—He, J.: Testing Coverage Analysis for Software Com-
ponent Validation. 29th Annual International Computer Software and Applications
Conference, July 2005, pp. 463–470.

[19] Hashim, N. L.—Ramakrishnan, S.—Schmidt, H. W.: Architectural Test Cover-
age for Component-Based Integration Testing. Seventh International Conference on
Quality Software, October 2007, pp. 262–267, doi: 10.1109/qsic.2007.4385505.

[20] Muccini, H.—Dias, M.—Richardson, D. J.: Systematic Testing of Software Ar-
chitectures in the C2 Style. Lecture Notes in Computer Science, Vol. 2984, 2004,
pp. 295–309, doi: 10.1007/978-3-540-24721-0 22.

[21] Lun, L. J.—Chi, X.—Ding, X. M.: C2-Style Architecture Testing and Metrics
Using Dependency Analysis. Journal of Software, Vol. 8, 2013, No. 2, pp. 276–285.

Lijun Lun is Professor of computer science and information engineering at Harbin Normal
University of Harbin. He received his B.Sc. and Master’s degree in computer science and
technology from Harbin Institute Technology of Computer Science and Technology, China,
in 1986 and 2000, respectively. He has published more than 70 papers in international
conferences and journals. Currently, he teaches and conducts research in the areas of
software architecture, software testing and software metrics, etc.

Shaoting Wang received her B.Sc. in computer science and technology from Harbin
Normal University of Computer Science and Information Engineering, China, in 2012.
Now she is studying for her Master’s degree in Harbin Normal University of Computer
Science and Information Engineering, China. Currently, her research interest includes
software architecture testing.

Xin Chi received her B.Sc. in computer science and technology from Harbin Normal
University of Computer Science and Information Engineering, China, in 2013. She has
published more than 10 papers in international conferences and journals. Currently, her
research interests include software architecture testing and software metrics, etc.

https://doi.org/10.1109/32.6194
https://doi.org/10.1109/qsic.2007.4385505
https://doi.org/10.1007/978-3-540-24721-0_22

404 L. Lun, S. Wang, X. Chi, H. Xu

Hui Xu received her Master’s degree in computer science and technology from Harbin
Normal University, China, in 2009. Now she is studying for her Ph.D. in Harbin Engi-
neering University of Computer Science and Technology, China. She has published more
than 10 papers in international conferences and journals. Currently, her research interests
include social networks and social computing.

