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Abstract. Two well-known approaches for modelling virtual vegetation are gram-
mar-based methods (L-systems) and the Xfrog method, which is based on graph
transformations expanding “multiplier” nodes. We show that both approaches can
be unified in the framework of “relational growth grammars”, a variant of parallel
graph grammars. We demonstrate this possibility and the synergistic benefits of the
combination of both methods at simple plant models which were processed using
our open-source software GroIMP.
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1 INTRODUCTION

Modelling the detailed structures of plants with a custom interactive 3D modeller
is very time-consuming. Several algorithmic solutions have been implemented using
general-purpose programming languages to construct realistic vegetation structures
automatically. Beyond these ad-hoc solutions, there are two approaches offering
a more generic framework for the specification of the architecture of individual
plants: the string-based formalism of Lindenmayer systems, realized, e.g., in the
software LStudio [18], and the graph-based interactive approach proposed by Lin-
termann and Deussen [16] and realized in the software Xfrog [7].

Other approaches for modelling trees, like the one introduced by Pirk [19], use
skeleton-based geometries extracted from images or laser scanners to generate 3D
structures. The produced dynamic models can react on environmental influences,
a feature which was in the past only possible when using growth models such as
L-systems. On the other hand the simplicity of the models allows a creation on the
fly so that they can be used in real-time scenarios such as games or simulations.

Ijiri [11] presented a sketch-based technique, a combination of rule-based and
image-based techniques on procedurally created trees. Stroke inputs are used in
L-systems to control the overall model appearance and the depth of recursion.

These approaches are mainly focused on fast production of realistically looking
images of plants. They work with interactive design tools and simplified structures
and do not claim to be botanically correct in any case. Modelling plant functions
like transport processes is not considered.

Here we present a combination of the object instancing approach, as imple-
mented in Xfrog, and rule-based modelling. Our modelling system consists of three
components: Relational Growth Grammars (RGG) as formal basis, the program-
ming language XL (eXtended L-system language) enabling an easy use of RGG and
at the same time extending the well-known object-oriented language Java, and the
software GroIMP (Growth-grammar related Interactive Modelling Platform), pro-
viding interactive facilities, rendering, and a full-scale development environment for
XL.

2 STATE OF THE ART

Lindenmayer systems (L-systems for short) are systems of replacement rules op-
erating on strings. Developed in the context of formal grammar theory, they can
be used to specify the growth of vegetative structures according to botanical rules,
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which has been demonstrated in various papers and books, the most prominent by
Prusinkiewicz and Lindenmayer [20]. To this purpose, the strings generated by the
grammar mechanism have to be traversed from left to right and must undergo an
interpretation by turtle geometry (see [20] for details).

Sequential graph grammars have previously been used in various fields of ap-
plication, most often in software engineering, but also in pattern recognition and
image analysis. Graph grammars with parallel mode of operation, as in our case,
were theoretically investigated in the seventies (for references see [12]), but then got
out of focus for a while, and their use to generate 3D scene graphs is new. Besides L-
systems with interpretation [12] and structural factorization [21] the Xfrog multiplier
nodes are another concept for object instancing that can be used within GroIMP.
With the combination of these concepts we provide new ways for fast prototyping
and model development.

The Xfrog approach, on the other hand, allows to interactively edit a graph made
up of component prototypes, the so-called p-graph (see [3] for details). Among the
nodes of this graph there are not only shape nodes representing graphical primitives,
but also various sorts of multipliers which have the semantics of copying the struc-
tures encoded by their descendant nodes and placing them in specified positions.
E.g., a “Wreath” node generates a circular arrangement of copies. The p-graph
is then expanded to a tree, the so-called i-tree, having instances of the prototypes
as nodes, and this tree is then traversed, similar to a scene graph [6], in order to
build the geometrical model of the plant (Figure 1, cf. [3]). The interactive access
to the p-graph requires a medium level of abstraction and allows a quick feedback
from the resulting rendered model to the editing process, thus enabling a quite in-
tuitive working. The portfolio of components (node types) is, however, restricted,
and there is no natural way to simulate processes of growth and development in
this framework – or even to include biologically-inspired process-based models (e.g.,
of plant hormonal effects controlling flowering), which is relatively easy in L-systems
(cf. [20]). The current version of Xfrog is implemented as plugin for the 3D computer
graphics softwares Cinema 4D and Maya.

3 METHODS

In the following, an introduction of Relational Growth Grammars (RGG) is given
and the application of two sorts of RGG rules, generative and instantiation rules, will
briefly be explained. After that, a short introduction of the interactive modelling
platform GroIMP is given.

3.1 Relational Growth Grammars

While L-systems are widely used, they have still some drawbacks – not so much
concerning their theoretical power, but with respect to transparency and simple
use when complex, multi-level plant models including functional aspects and/or
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Figure 1. The Xfrog workflow. In this example the nodes B and D have a geometric
interpretation while the node C is a replicator without a geometry. The node C repli-
cates its subgraph three times. In this case the subgraph consists only of node D. The
node D replicates itself also three times. a) i-tree, b) p-graph, c) one possible geometrical
interpretation; colouring is in the corresponding graph colours.

genetic control are required. One critical feature is: L-systems operate basically
on strings, which have to be translated into 3D-structures (representing plants
or plant communities), the latter being the actual objects of modelling (see Fig-
ure 2 a)).

We use the concept of RGG, a graph grammar formalism, and its implementation
in the language XL (eXtended L-Systems) to overcome this and other drawbacks. In
XL, nodes are objects in the sense of object-oriented programming, they generalize
the symbols in classical L-system strings and can be associated with Java classes.
Edges can represent arbitrary, user-defined relations, they generalize the sequential
order of symbols in strings. Hence the extra description level of strings can be
dispensed of in the rewriting process (Figure 2 b)); we use strings only for writing
down the rules.

Advantages:

• Complex relationships such as genotype-phenotype relations can now be rep-
resented with the same simplicity as a topological neighbourhood in classical
L-systems,

• the same holds for multiscale plant descriptions [17],

• arbitrary sorts of context can easily be defined,

• the representation of networks, including feed-back loops, is possible in our
formalism in an intuitive way (as graphs),

• the interface between rule-based model description and procedural modelling
becomes more elegant by incorporating Java classes (as nodes) and scripts in
the rules,
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• strings, trees and multisets are subcases of our graph data structure, thus
our RGG have at least the same descriptive power as the rewriting systems
operating on these restricted structures.

α . . .

S1 S2 S3

3D-structure 3D-structure 3D-structure

string string string

L-system rule application

interpretation
by turtle

a)

α S1 S2 S3
. . .

3D-structure 3D-structure 3D-structure

graph grammar rule application

b)

Figure 2. Functioning of a) a classical L-system, compared with b) a relational growth
grammar. α is the start symbol (axiom). The developmental steps of a plant or plant
community are represented by 3D-structures S1, S2, . . .

Details about RGG, XL and GroIMP have been described in a thesis [12] and
are used in the field of biological modelling of plants [2, 9, 23]. RGGs are parallel
rewriting systems operating on typed attributed graphs (instead of strings) and form
thus a variant of graph grammars. Their exact definition can be given in terms of
algebraic graph-grammar theory [13] and captures the “dynamic component” which
is inherent in L-systems but lacking in the Xfrog approach. For instance, an RGG
rule given in XL in the form

Axiom ==> Cyl inder (2 , 3 ) Cyl inder (20 ,1 ) Sphere ( 3 ) ;

will replace a default initial node called Axiom by a graph consisting of three suc-
cessive nodes (connected by successor edges – the blanks delimiting the components
of the right-hand side of the rule are used to construct edges of type “successor”),
and these nodes are interpreted as parts of a scene graph, namely as a cylinder with
length 2 and radius 3, on top a cylinder with length 20 and radius 1, on top a sphere
with radius 3. All three nodes can again be replaced by other nodes if there are
corresponding additional rules. Furthermore, auxiliary nodes like A or B(1) without
geometrical meaning are allowed, similar to L-systems. Edges of other types than
“successor” can be specified using the notation “-edgetype->”.

3.2 Generative Rules within XL

The “normal” type of rules used in an XL program is a generative RGG rule,
a straightforward generalization of an L-system rule. In the example given above in
the Introduction, one node of type Axiom is replaced by a new subgraph, consisting
of two nodes of type Cylinder and one of type Sphere. These node types are prede-
fined as Java classes for the scene graph of the modelling platform GroIMP; as Java
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classes they have encapsulated attributes, amongst them radius and (for Cylinder)
length, and their appearance as part of the right-hand side of a rule is analogous to
a constructor invocation in Java. Node types can also be defined by the user, and
they can inherit from other node types. Besides conventional Java class declarations,
a shorthand notation called module declaration is possible: for instance,

module A( i n t i , super . r ad iu s ) extends Sphere ( rad iu s ) ;

defines a new user-defined extension of the Sphere node class inheriting the radius

parameter but with an additional parameter i with integer values as well as the
geometrical shape of the Sphere node class.

In XL it is possible to insert imperative commands in right-hand sides of rules;
thus an alternative, but equivalent rule to the example given in the Introduction
would be

Axiom ==> Cyl inder (2 , 3 ) Cyl inder (20 ,1 )
s : Sphere { s . setRadius ( 3 ) ; } ;

where the created Sphere node is labelled s and the assignment of its radius

attribute is done a posteriori. (It is also possible to have more than one node
on the left-hand side of an RGG rule and thus to replace non-trivial subgraphs,
but we will not use this possibility in the following.) Transformation nodes like
Translate(x,y,z) or Scale(u), as known from scene graphs, are also defined.
With rules of this sort, classical L-systems as well as many of their extensions pub-
lished in the plant-modelling literature can be emulated. However, what is still
missing is the possibility to copy whole subgraphs, as it is required during the trans-
formation of the Xfrog p-graph to the i-tree. This can be done in a generative
XL rule like that shown above by introducing a user-defined node type (here called
Replicator) and invoking the cloneSubgraph method provided by GroIMP. To
connect the subgraph which is to be replicated to the replicator, we use an extra
edge type called multiply. The method getFirst yields the subgraph beginning
with the first node accessible via this edge from the replicator. Figure 3 shows the
respective graphs where the initial state consists only of a default node (Root) and
the initial node Axiom.

module Rep l i c a to r ;

pub l i c void run ( ) [
Axiom ==>

Cyl inder (2 , 3 ) Rep l i c a to r −mult ip ly−>
Cyl inder (20 ,1 ) Sphere ( 3 ) ;

r : Rep l i c a to r ==>
[ c loneSubgraph ( r . g e t F i r s t ( mult ip ly ) ) ]
Trans late (10 , 0 , 0)
[ c loneSubgraph ( r . g e t F i r s t ( mult ip ly ) ) ] ;

]
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Figure 3. Graphs produced by the “Replicator” grammar from the text, a) for the initial
state, b) after a single time step and c) after two time steps. Dashed nodes are not visible
in the 3D view of the structure.

The visible result of this small XL program (Figure 4), consisting of two RGG
rules which are first applied to the default start node Axiom, is after the first time
step only the first cylinder (with length 2 and radius 3), because the Replicator

node has no visual interpretation and the multiply edge is not traversed dur-
ing geometrical interpretation of the graph (see Figure 4 a)). In the second time
step, however, the replicator is replaced via application of the second rule by two
copies of the subgraph consisting of the long cylinder and the sphere, which are
separated (because of the Translate node) by 10 units in x direction, see Fi-
gure 4 b).

3.3 Instantiation Rules

By using relational growth grammars as described above, we can construct a scene
graph consisting of nodes for geometric primitives and further nodes which may
describe non-geometric states of the underlying (botanical) model. However, there
are cases where it is advantageous to assign a set of primitives to a single node of
the graph. For example, a single entity of the model may need several primitives
for its 3D representation, and then it would be cumbersome, a waste of memory
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a) b)

Figure 4. Graphical result of the “Replicator” grammar from the text, a) after a single
time step and b) after two time steps

and a violation of the principle of separation of concerns if one has to include these
primitives in the same graph as the entities of the model.

Therefore, the language XL defines instantiation rules which can be assigned
to node classes and which may expand a single node to a set of primitives when
they are invoked by GroIMP as part of the 3D visualization of the node. Although
these rules resemble generative rules in syntax, they do not modify the graph and
are only activated during visualization. A formal definition is given in [21]. For
an instantiation rule, we have to use a module declaration and add the nodes which
shall be used for visualization after an arrow symbol as in

module Stem ( f l o a t l en ) ==> Cyl inder ( len , 1 ) ;

which represents a stem as a cylinder without the requirement that the class Stem

inherits from Cylinder. The right-hand side may also contain references to other
parts of the graph so that instantiation rules provide a simple means to specify
object instancing, i.e. multiple occurrences of the same 3D structure at different
locations. This can be used for the replicator example from above: if we use for the
Replicator node an instantiation rule instead of the simple generative rule, we can
dispose of the cloneSubgraph invocation.

module Rep l i c a to r ==>
[ g e t F i r s t ( mul t ip ly ) ]
Trans late (10 , 0 , 0)
[ g e t F i r s t ( mul t ip ly ) ] ;

pub l i c void run ( ) [
Axiom ==>

Cyl inder (2 , 3 ) Rep l i c a to r −mult ip ly−>
Cyl inder (20 ,1 ) Sphere ( 3 ) ;

]

The graphical result of this XL program is the same as above in Figure 4 b).
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3.4 The Software GroIMP

The open-source 3D modelling platform GroIMP [8] has been developed together
with the formalism of relational growth grammars and the language XL to have
an integrated environment for rule-based 3D modelling. GroIMP provides a rich set
of 3D node classes including simple ones like spheres, boxes and cylinders, but also
NURBS surfaces, height fields and CSG operations. GroIMP maintains a current
graph which is interpreted as a scene graph for visualization and may be transformed
by rules specified in the language XL. The user may select a node in the 3D visu-
alization and inspect or modify its attributes. Depending on the underlying rules
of the model, interactive modifications by the user like the removal of branches of
a plant may influence the further development of the structure. GroIMP contains
an OpenGL visualization and an integrated raytracer with the option to use path
tracing. Besides being a 3D modelling platform, GroIMP also contains a source
code editor and an XL compiler to facilitate rule-based modelling with the language
XL. Figure 5 shows a screenshot of the GroIMP modelling platform.

Figure 5. Screenshot of the GroIMP software displaying an “alien plant” in the 3D-view.
The editor window on the right hand side displays the corresponding model code.

4 APPLICATIONS

This section will demonstrate the emulation of Xfrog’s multiplier components in
the language XL, but also some extensions of the Xfrog functionality which result
in a natural way from the embedding in the new framework. A discussion of the
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advantages, possible applications and future extensions of our modelling approach
will close the paper.

4.1 Simple Models

At the example of the Wreath component of Xfrog we want to show how to put into
practice the Xfrog components in the modelling language XL. The Wreath compo-
nent multiplies its child structure in a ring around a centre point. The radius of the
ring where the instances are generated as well as their number can be controlled by
the user. In our implementation of a wreath instantiation module we will use the
following four attributes:

number number of generated instances
rX radius in x direction
rY radius in y direction
scale a uniform scaling factor

These attributes are included in line 1 of the following code specifying an instan-
tiation rule. In the body of the subsequent loop we have two parts: one Java part
(lines 3–10) with some calculations and one instancing part (lines 11–14) which pro-
duces the geometry. Like in the replicator example in the Introduction, the method
getFirst (line 13) returns the first node which is attached to the current Wreath

node by a multiply edge. This node represents the root of the subgraph to be
multiplied.

1 module Wreath ( i n t number , f l o a t rX , f l o a t rY , f l o a t s c a l e )
2 extends Point ==> {
3 f l o a t de l t a = ( f l o a t ) (2 ∗ PI / number ) ;
4 }
5 f o r ( i n t i = 0 ; i < number ; i++) (
6 { // java part
7 f l o a t w = i ∗ de l t a ;
8 f l o a t x = rX ∗ ( f l o a t ) Math . cos (w) ;
9 f l o a t y = rY ∗ ( f l o a t ) Math . s i n (w) ;

10 }
11 [ // graph part
12 Trans late (x , y , 0) Sca l e ( s c a l e )
13 g e t F i r s t ( mul t ip ly )
14 ]
15 ) ;

The following XL code produces an elliptic distribution of 15 cone nodes as
shown in Figure 6, using the Wreath class defined above. The elliptic shape depends
on the different radii for x and y axis, here 6 for x and 4 for y. The scaling factor
in this example is for all instances one.

Axiom ==> Wreath (15 , 6 , 4 , 1 ) −mult ip ly−> Cone ;
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Figure 6. Graphical result of the application of the Wreath class to a cone, demonstrating
the possibility to model an Xfrog component using the language XL.

In [10] the main Xfrog components were made available for GroIMP: Tree, Horn,
Hydra, Wreath and PhiBall. As extensions there are also some new components:
Variation, BlockScale, BlockColor and Arrange.

Because the user does not need to care about the technical realization of these
multiplier nodes, they were predefined and collected in a “3D-construction-set pack-
age” (3D-CS) which is integrated as a library in the modelling platform GroIMP.
They are called instantiation components or blocks. The following instantiation
components are available in GroIMP:

Tree: Basic component for trees, creates the geometry of a stem and multiplies sub-
sequent components as branches. Parameters are the distribution of branches,
their scale, angle etc.

Horn: A component that places other components on a user-defined curve. It is
used for stems, twigs, etc.

Hydra: Multiplies subsequent components on a curve with any direction relative
to the direction of the parent component.

Wreath: The functionality is integrated in the Hydra component (as in Xfrog
v.4.0.).

PhiBall: Multiplier that distributes all connected structures on a section of an el-
lipsoid according to the golden angle.

Arrange: Main component for arranging large numbers of instances on an area
according to user-defined terrain data.

Variation: Allows in combination with any multiplier to vary the generated in-
stances in a sequential, spread, exceptional or random way.

BlockScale: Scaling component, enables scaling depending on internal variables.

BlockColor: Enables colouring depending on internal variables.
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With this set of instantiation components it is possible to model a huge number
of not only organic structures. Such models are specified by two parts. The first
part is a graph whose nodes are instantiation components and graphical primitives
and the second part is a set of attributes for each component. The graph describes
the physical structure of the model. For example, a tree consists of a stem with
some levels of branches, and on the last level the leaves are located. The attribute
set determines the properties of a component, e.g., for the tree, the number of leaves
that a branch generates.

4.2 The Arrange Component

With great amounts of objects to be distributed on a terrain in a realistic manner,
only in the rarest cases an individual positioning can be done manually. Hence
efficient procedures for modelling of whole populations must be found. [4] already
introduced a system built around a pipeline of tools that address this task. However,
it was never implemented as Xfrog component. The Arrange component offers
a wide range of possibilities to specify distributions on a terrain. They can be
separated into four classes:

geometric arrangement generates a strict geometric arrangement, e.g., following
lines or circles.

probability arrangement arranges the objects according to probability distribu-
tions (Poisson or normal distribution).

halftoning arranges the objects according to halftoning methods allowing for
a user-defined density field [22, 15].

additional operations collection of operations like tilings or iterative methods like
Voronoi-Lloyd [5].

In addition to arrangements of objects on a plane, the user can define terrain
data and location parameters for the whole area to be filled. The information is
available in every multiplied structure and can easily be changed just by exchanging
an underlying image file.

The following small example generates an Arrange field with 50 uniformly dis-
tributed Horn instances.

Axiom ==>
Arrange (50) −mult ip ly−>
BlockSca le (”0.01+ n1 ” , ”0.01+n1 ” , ”0 . 5” )
BlockColor (”10” , ”n2∗256” , ”10”)
Horn ( 5 ) . ( setLength (”0.05+ n3 ∗ 0 . 2 ” ) ) ;

Scaling, colouring and length of instances depend on user-defined location pa-
rameters, which are given by an image (see Figure 7). Each channel of this image,
usually interpreted as RGB colour specification, can be accessed by using one of the
variables n1, n2 or n3, and so they can easily be fed into a model. In the above



Realization and Extension of the Xfrog Approach 45

example, the colour of the instances depends on the variable n2 which is used in the
BlockColor component to set the green channel multiplied by 256.

a) height field b) density field c) location parameter field

Figure 7. User-defined location parameters for an Arrange component are defined by
image files

The attributes as well as the inclusion of the location parameter field can be
inspected and modified in an attribute editor. A part of the attribute editor for the
arrange component is shown in Figure 8. In the lower part one can see how the
location parameter field is included.

Starting from the initial state shown in Figure 9 a) we can now utilize the user-
defined fields shown in Figure 7. Figures 9 b), 9 c) and 9 d) show the individual
applications of user-defined fields. Figure 9 e) reflects the joint application of all
three fields.

Besides the already mentioned attributes of the Arrange component, the possi-
bility of scaling, rotation as well as random modification of positions of the produced
instances is implemented.

4.3 Combination with Grammar-Based Models

Modelling with the 3D-construction set permits a fast and easy way to produce
attractive models. However, because instantiation rules are a purely structural con-
cept, modelling of functionality with them is not possible. Functional-structural
models of plants, including dynamics of growth, can be obtained by a combination
of our 3D-CS with generative RGG rules. So it is possible to instantiate complex
plant organs like blossoms and use them in generated structures. They do not have
to be generated using a complex derivation process. On the other hand, structures
described by RGG-based models can be multiplied and/or positioned by instantia-
tion components.

The first example does not use generative rules at all, but only a conventional
control structure for iteration. The XL code “for ( int i :(1: n)) (X)” generates
n replications of X, where X can be any object or graph structure. Thus the following
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Figure 8. Panel for the attributes of the Arrange component

code section generates 15 Horn instances and arranges them at random positions on
a 10× 10 square field (Figure 10).

Axiom ==> f o r ( i n t i : ( 1 : 1 5 ) ) (
[

Trans late ( random (0 , 10) , random (0 , 10) , 0)
Horn ( ) . ( setLength (0.01+ i /30))

]
) ;

Additionally the length of the generated instance depends on its iteration index.
The next example demonstrates how a blossom produced by instantiation can

be used as a module in an RGG generated structure. The branching structure is
derived from these generative rules:

Axiom ==> Shaft ( 3 . 5 , 0 ) ;

Shaft (x , a ) ==>
D( x/5) F( x )
[
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a) initial base b) height field

c) density field d) location parameter field

e) result, all fields applied

Figure 9. Example of a configuration of parameterised objects generated with the Arrange
component and employing the user-defined fields from Figure 7. Figures a)–e) show vari-
ants where different parameter fields are switched on or off.



48 M. Henke, O. Kniemeyer, W. Kurth

Figure 10. Graphical result of the simple “for” loop example: 15 randomized arranged
Horn instances with increasing length

RH( a ) RU(45) LeafA ( x ) Branch (0 . 3∗ x , 20)
]
Shaft ( x ∗0 .9 , a +137 .5) ;

Branch (x , age ) ==>
D(0 . 6∗ x ) F( x ) RU(−3) Branch ( x ∗0 .9 , age +5);

LeafA ( x ) ==> LeafA ( x ∗ 1 . 1 2 ) ;

The rule for Shaft generates the shaft and arranges the branches around it.
There we use two parameters x and a. x is the actual length and a the actual
branching angle. The next two rules for Branch and LeafA define instantiation
modules. LeafA just generates the green leaf and lets it grow by a factor of 1.12 per
step. The Branch module instantiates a branch-like structure:

module Branch ( f l o a t x , i n t age ) ==> {
makeGraph ==>

rootS : Sca l e ( age /50)
PhiBal l ( age / 3 ) . ( setRadius ( 0 . 5 ) ,

setFan1 ( 0 . 2 ) , s e t S c a l e ( 1 . 0 , 0 ) , useLod ( f a l s e )
) −mult ip ly−> Rotate (0 , age , 90) Peta l ( ) ;

}
rootS ;
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Starting with a Scale node a PhiBall multiplies a Rotate node followed by
a Petal. The important parameter to control the blossom is the age. It controls
the scaling factor, the number of petals as well as their opening angle. A petal itself
generates a bent NURBS surface with a petal texture (code not shown). The result
of the model is shown in Figure 11.

Figure 11. Blossoms generated by instantiation rules

The last example demonstrates the reverse method, an instantiation component,
in this case an Arrange component, multiplies a generated structure. Here we
used a biological model of a young unbranched poplar taken from [1]. This model
includes methods for biosynthesis and transportation of phytohormones as well as
process-based calculations of photosynthesis depending on light interception. The
instantiation is quite easy: In a first initial step five different trees will be instantiated
and saved in an array. To arrange them, all to do is to place an Arrange component
before the tree model. In XL code, this could look like

Axiom ==> Arrange . (
setWidth (2 , 2 ) ,
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setArrangeMethod (new Addit ionalArrange (30 ) )
) −mult ip ly−> PoplarTree ;

With setArrangeMethod we define the arrange method. The class Additional-
Arrange includes some additional methods available in the arrangement process,
where the default method is “DartThrowing”, a random based distribution. The
constructor argument 30 sets the number of generated instances. The module
PoplarTree finally returns one of the predefined trees depending on the location
parameters of the current position.

As a modification of the output of the original poplar model, the growth potential
of the initial meristem of each individual is made dependent on its height over
ground level, which can be determined by the location parameters of the Arrange

component. Thus, small trees appear in lower regions and larger trees in the higher
parts.

Figure 12 b) shows the result: 30 poplars arranged by an Arrange component.

a) original single tree model b) arranged trees; using the new Arrange component

Figure 12. Model of young unbranched poplar taken from [1]

5 CONCLUSION

Modelling with instantiation components is a powerful technique to get results
quickly. Although this modelling technique has no botanical basis as it does not
capture the growth process, the results are visually satisfying. It is hard to trans-
late data taken form nature to the parameters of the component. A relation be-
tween reality and model can only be subsequently produced by measurements at
the archetype and comparison with the model. In the rarest cases this gives botan-
ically correct models. The degree of lifelikeness lies completely in the responsibility
of the modeller.
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The generated graphical results are nevertheless more than only nice pictures.
With them, new possibilities arise for example in the visualisation of ecological
data. In landscape planning, the results of interventions in ecological systems can
be represented using the Arrange component. Decision makers are thus put into
the situation to move around in a planned virtual landscape and then to consider
the alternatives.

Further fields where the potential applications are promising are architecture,
driving and flight simulators, films as well as games.

Using the combination of instantiation with generative relational growth gram-
mars, some of the restrictions of pure instantiation-based modelling can be compen-
sated. It is now possible to model significant causal aspects of processes of growth,
their control being realized by a botanically-tested growth grammar. In this frame-
work it is, e.g., possible to represent biochemical reactions and metabolic reaction
networks; see [14, 2] for details. These highly-detailed modelling approaches can
now easily be combined with the instantiation-based Xfrog approach for specifying
virtual plants.

As further extension, an interactive graphical rule editor would be one next step
to develop. This would free the user from the necessity to specify the rules and
instantiation components by writing XL code.

Acknowledgements

Research was partially funded by the German Research Foundation (DFG) under
the project identifier Ku 847/6-1. All support is gratefully acknowledged.

REFERENCES

[1] Buck-Sorlin, G. H.—Kniemeyer, O.—Kurth, W.: A Model of Poplar (Pop-
ulus Sp.) Physiology and Morphology Based on Relational Growth Grammars. In:
Deutsch, A., Parra, R. B., de Boer, R., Diekmann, O., Jagers, P., Kisdi, E., Kret-
zschmar, M., Lansky, P., Metz, H. (Eds.): Mathematical Modeling of Biological Sys-
tems, Volume II, Modeling and Simulation in Science, Engineering and Technology.
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