Computing and Informatics, Vol. 32, 2013, 968-986

AN EXECUTABLE SERVICE COMPOSITION CODE
AUTOMATIC CREATION TOOL BASED ON PETRI
NET MODEL

Zhijun DINg, Jieqi L1vu, Junli WANG*

Department of Computer Science and Technology

Tongji University

Shanghai 201804, China

e-mail: zhijun_ding@outlook.com, junliwang@tongji.edu.cn

Fang WANG

Department of Information Systems and Computing
Brunel University

Uzbridge UBS 3PH, United Kingdom

e-mail: fang.wang@brunel.ac.uk

Communicated by Maozhen Li

Abstract. For Web services composition problem, this paper proposes an exe-
cutable code creation algorithm to model Web services composition based on Petri
net model, and develops an executable composition code automatic creation tool.
This tool can achieve the automatic creation process from composition model to
executable code, and more meaningfully makes it possible to analyze and validate
composition process logically. Finally, experiment results have proven that the tool
of this paper is feasible.

Keywords: Petri net model, web services composition, executable code

Mathematics Subject Classification 2010: 68-N19

*

corresponding author

An Executable Service Composition Code Creation Tool 969
1 INTRODUCTION

As functional requirements in reality become more and more complex, user’s de-
mands often could not be satisfied with only one single Web service. Since that,
there should be a possibility to combine some existing services together for fulfill-
ing a more complex function request, that is, the Web services composition (WSC)
problem comes [1]. There are some standard Web services protocols such as SOAP,
WSDL, UDDI and so on, which support flexible interactions between Web services
with one accord; and, if the process of composition between Web services can be
achieved by GUI-based tool automatically, the efficiency of developing Web services
composition will be highly promoted. The tools such as WebSphere Business Inte-
gration in IBM [2] and BPEL PM Designer in Oracle [3] use the method of process
graph to describe the process of Web services composition, create a special BPEL
document, publish the BPEL document to special engine(for example, ODE en-
gine), and at last, run the process composition on a server. On the Protégé tool [4]
that is developed by Stanford University, a visualization tool of OWL-S based ser-
vices composition process logically divides services composition process into a series
of standard modules, such as sequence, split, split-join, repeat and so on. This
tool transforms the logical composition process of Web services into the augment
process of Web services composition process with standard module. All these afore-
mentioned tools make different improvement for Web services composition process
in many different aspects; but, due to the lack of formal models, they cannot sup-
port the analysis of some important crucial properties for the correctness of the
composition logic, such as reachability, deadlock and so on.

Petri net is a formalization method that is well suitable for analysis and verifi-
cation of distribution systems, and there are many researches on simulation of Web
Services composition with Petri net [5, 6].

Narayanan and Mcllraith use Petri net as a tool for model construction, simula-
tion and analysis of DAML-S markups, and then verify the correctness and validity
of a composite Web service with reachability analysis method of Petri net [7]. Ding
et al. present a hybrid approach for synthesis Petri nets for modeling and verifying
composite Web Service, and this approach can be used to validate the correctness or
soundness of Web services composition [8]. Hamadi and Benatallah propose a Petri
net-based algebra for modeling Web services control flows, and the model is con-
structed by step-by-step net refinement, which can support hierarchical modeling
for composite service [9].

However, these researches are merely based on theory, and some key problems
still remain unsolved, such as how to model a Web services composition with Petri
net, and how to realize a development tool of Web services composition. For studying
and demonstrating an automatic code creation method of Web services composition,
we presented a Petri net-based automatic executable code generation method for
WSC [10]. This paper is full extension of [10]. Beside including Petri net model for
WSC and an automatic WSC executable code generation algorithm as stated in [10],
this paper develops a Web services composition code creation tool and presents sys-

970 Z. Ding, J. Liu, J. Wang, F. Wang

tem architecture and realization process of the tool, in detail. Moreover, a practical
WSC example runs throughout the whole article to illustrate our method and tool.

The rest of this paper is organized as follows. Section 2 gives an instance of Web
services composition as the whole-length example. Some related definitions of the
Petri net model for Web services composition are introduced in Section 3. Based
on the constructed Petri net model for services composition, Section 4 presents
an algorithm to automatically generate executable Web services composition code.
Section 5 develops a Petri net based Web services composition code creation tool,
describes the tool’s framework and some necessary pretreatment works about com-
posing Web service, and then lays out detailed process from Petri net model to
executable code for the example. Finally, the conclusion and future work are pre-
sented in Section 6.

2 ILLUSTRATING EXAMPLE

Suppose a situation in which a Web application wants to get local weather informa-
tion in English according to a machine’s IP address. This application is a complex
one, because generally there is no such independent Web service on the Web to
fulfil this function; but through some analysis, this issue can be figured out by three
sub-issues as follows:

1. how to automatically get current location of the machine;
2. how to get the location’s weather;
3. how to translate the weather information into English.
After subdivision of the complex application into some simpler applications, it

is easier to find their suitable Web services on the Web shown as follows [9] which
figure out the three above issues:

1. Web service IP2Address: queries geographical location according to machine’s
1P;

2. Web service Weather: queries weather report in Chinese using geographical
location;

3. Web service Translation: translates weather report in Chinese into English.

Web Service | Input Output

IP2Address IP address Location of the machine
Weather Location Weather information in Chinese
Translation Weather information in Chinese | Weather information in English

Table 1. Web services and their input/output interfaces

Since every machine on the Internet has its own unique IP address for a given ma-
chine, according to its IP address we can get its geographical location by IP2Address

An Ezecutable Service Composition Code Creation Tool 971

service whose input is IP address and output is geographical location. Then, we can
use the geographical location from IP2Address as Weather service’s input and get
the weather information in Chinese by service Weather. At last, we use the Chinese
weather information from service Weather as the input of Translation service to get
the final information, the local weather information of the machine in English.

The above process of composing several simple services to fulfil a complex task
is just a basic process of Web services composition. In a complex Web services
composition logic, some composite Web service’s properties, such as reachability,
deadlock, dead-circulate and so on, are difficult to be analyzed manually. Hence,
it is very necessary to build a formal model for analyzing and validating these
properties automatically.

3 THE PETRI NET MODEL OF WEB SERVICE
3.1 Petri Net

A net is a quadtuple N = (P, T, F,W), where P is a finite set of places, T is a finite
set of transitions such that P T =Qand PUT # 0, F C (Px T)U(T x P) is the
flow relation and W is a weight function such that if (x,y) € F, W(z,y) € NT(the
set of positive integers), otherwise, W(z,y) = 0. A net is said to be ordinary
if W(z,y) = 1, V(z,y) € F. In this case, W is omitted. The pre- and post-
sets of a node x € P U T are defined as *z = {y € P U T|(y,x) € F} and
2*={ye€ P UT|(x,y) € F}, respectively.

The marking (or state) of a net is a function M : p — N (the set of non-
negative integers), represented by a multi-set expression or a | P|-vector (M (p1), ...,
M(pip))*, where M(p) is the number of tokens in place p € P. A Petri net
PN = (N, M,) is a net N with an initial marking My. A transition ¢t € T is
said to be k-enabled for k € NT at marking M iff Vp € *t: M(p) > k- W(t,p).
If ¢ is l-enabled, it is denoted as M[t >. Firing an enabled transition ¢ results
in changing M into M’ represented by M[t > M’ where Vp € P |, M'(p) =
M(p) — W(p,t) + W(t,p). A sequence of transitions o = t; - to... t; is a firing
sequence if there exists a sequence of markings such that M[t; > M[te > ... My, it
can be written as M[o > M}, , and My, is said to be reachable from M by firing o.
For more definition and terminology of Petri nets refer to [11].

3.2 The Definition of Petri Net Model for Web Services Composition

In the Petri net model of Web services composition, we use transition to represent
the Web service that will be invoked, place to represent data’s source or target, and
token to represent the data value assigned to Web service. Each place in this paper
has zero or one token. For example, for the IP2Address service in our example,
a Petri net model can be obtained as shown in Figure 1. In the IP2Address’s Petri
net model, place IP holds the data that IP2Address service needs, and place address

972 Z. Ding, J. Liu, J. Wang, F. Wang

holds the data that IP2Address service creates. Transition IP2Address represents
the execution of IP2Address service.

At the same time, for creating executable code by Petri net model, some types
of related information are collected by adding attributes of elements of Petri nets,
which will be introduced and explained in the sequel.

IP2Address

Figure 1. Petri net model of IP2Address service

3.2.1 Place

Place denotes data’s source or target, and has five attributes: placeName, isA Live-
Token, tokenlsTo, inputList, outputList. The meaning of every attribute is as follows:

placeName: the name of place, which represents a data’s ID in composition code.

isALiveToken: the value of this attribute is True or False. True represents the
place has one token, and False represents the place has no token.

tokenIsTo: parameter number ID; states which parameter token in this place will
transfer to the service represented by post transition. For example, let a Web
service S have three input parameters a, b and ¢, denoted as S(a, b, c). Then,
the parameter number of ‘a’, ‘b’ and ‘¢’ is 0, 1 and 2, respectively.

inputList: The flow relation list from this place’s preset to it. If the list is null,
the place is an input place, and its variable value represented by the token in
this place needs to be imported from outside.

outputList: The flow relation list from this place to its postset. If the list is null,
the place is an output place, and its variable value represented by the token in
this place needs to be exported to outside.

3.2.2 Transition

A transition represents a Web service, and has four attributes: WSName, isA Live-
Transition, inputList, outputList. The meaning of every attribute is stated as follows:

WSName: the name of service. According to this attribute, a corresponding Web
service can be invoked in the process of creating executable code by Petri net
model.

An Executable Service Composition Code Creation Tool 973

isALiveTransition: the state of this transition that denotes whether this transition
can be fired or not.

inputList: the flow relation list from its preset to this transition.

outputList: the flow relation list from this transition to its postset.

3.2.3 Token

Token exists in place. Here we use the place’s isA LiveToken data item to represent
token’s presence.

3.2.4 Flow Relation

Flow relation describes dataflow of Web services composition. It has two attributes:
source and target:

e source: the flow relation’s start point, which may be a place or transition.

e target: the flow relation’s end point, which may be a place or transition.

These two values of flow relation can be automatically filled according to the two
points linked by this flow relation.

3.3 Petri Net Model of the Illustrating Example

For the illustrating example in Section 2, its Petri net model of the Web services
composition is shown in Figure 2.

F0—> IP2Address F1F2+ Weather FF4—> Translation F

Figure 2. Petri net model of the illustrating example

The initial attribute values of places, transitions and flow relations are listed in
Table 2, Table 3 and Table 4, respectively.

Attribute P address | weather | english
placeName 1P address | weather english
isALiveToken | false | false false false
tokenIsTo 0 0 0 -1
inputList Null | F1 F3 F5
OutputList FO F2 F4 Null

Table 2. Initial attribute values of places

974

Z. Ding, J. Liu, J. Wang, F. Wang

Attribute IP2Address | Weather | Translation
WSName IP2Address Weather Translation
isALiveTransition | false false false
inputList FO F2 F4
outputList F1 F3 F5

Table 3. Initial values of transitions’ attributes

Attribute | FO F1 F2 F3 F4 F5
source 1P IP2Address | Address | Weather | weather Translation
target IP2Address | address Weather | weather | Translation | english

Table 4. Initial values of flow relation’s attributes

4 A COMPOSITION CODE CREATION ALGORITHM BASED
ON PETRI NET MODEL

This paper designs an algorithm that can create executable Web services composition
code automatically from Petri net model. Based on the Web services composition’s
Petri net model designed in Section 3.2, this method will induct users to create
a Code file for saving the Web services composition code, then to run the painted
Petri net based on Petri net’s properties and to automatically import composition
code of the Petri net model to the Code file in running process. The basic idea is
shown below:

Stepl. Initialize Petri net. If place p has no preset transition, put attribute isA Live-
Token of place p to True, write a parameter definition code to Code file.

Step2. Check all transitions. If all presets of isA Live Token attribute of transition
t are True, change its isA Live Transition to True.

Step3. If t’s isA Live Transition is True, fire transition ¢, and write code of invoking
the Web service represented by transition ¢ to Code file.

Step4. If there is a transition fired in Step3, turn to Step2, else turn to Step5.

Step5. Check the places that have no postset. If all of their token states are true,
write the composite service’s output code, and turn to Step 7. Else turn to
Step6.

Step6. The logic of Petri net is wrong. The output state cannot be reached. Turn
to StepT.

Step7. The run of Petri net is over.

Based on the Petri net model’s data structure defined in Section 3.2, for a com-
posite service’s Petri net model WSPN = (P, T, F), the algorithm for creating
composition code in this paper is shown below:

An Executable Service Composition Code Creation Tool 975

Stepl. Initiate Petri net, Vp € P, if *p = @, then p.isAliveToken := True.
Write a parameter definition code to Code file; the code’s basic form is shown
below:
String placename = (data input from outside);
// The function of this code is to define a variable whose value should be got
from outside interactively in the running process of the Web services composition
code.

Step2. Check all transitions, Vt € T, if Vp €° t, and p.isAlive Token = True,
then t.isAlive Transition := True;

Step3. Check all transitions,
vt € T, if t.isAliveTransition = True, then Fire the transition t.
Moreover, for Vp € t*, p.isAliveToken := True; write following code of invoking
the Web service to Code file;
String placenamel = wsname(String ... placename);
// Where Placename is a list, placenamel is the value of the attribute place-
Name of t’s postset, wsname is the value of attribute WSName of transition ¢.
Placename is a list of placeName values of t’s preset.

Step4. If there is a transition that has been fired in Step3, turn to Step2, else turn
to Stepb.

Step5. Check all places,
Vp € P, if p* = ® and p.isAliveToken = False, then the Petri net model is
wrong; else, write the code of composite service’s output to file below:
Print(placename);
where placename is value of attribute placename of place p satisfying parameter
list of placeName property in place that satisfies p* = ® and p.isAliveToken =
False and the token state of p is false.

Step6. Finish the Petri net run.

5 SERVICE COMPOSITION CODE AUTOMATIC CREATION TOOL

Web services composition code automatic generation tool is composed by three parts:
Web service local pretreatment, Web service’s Petri net model and the generation
algorithm of executable code. Architecture of this tool is shown in Figure 3.

The localization pretreatment part is responsible for correspondence between
local program and Web service, and creates localization JAR to help the automatic
creation of executable code for local Web services composition. The Petri net model
part uses Petri nets to simulate Web services, defines the graphical Petri net model,
and paints the Web services composition logic visually with graphical Petri net
model editor tool. The algorithm part automatically generates the executable Web
services composition code according to the painted Petri net model in the second
part.

976 Z. Ding, J. Liu, J. Wang, F. Wang

Web service composition executable code automatic generation tool
localization Petri net model
‘ Local JAR ‘ ‘Composition Logic‘
A
Packing
. Web Service
Local interface describing Code ger}eranng Compution
Algorithm xecutable code
writing
‘ Stub ‘ ‘ Petri net model ‘
A A
generating defining
| |

Figure 3. Architecture of the tool

Based on the tool system’s structure description in Figure 3, the process of Web
services composition and the process of executing the Web services composition code
are shown in Figure 4.

Executable code ‘

A
executing algorithm
\

Petri net model calling
A

constructing i
\

. Local JAR |

A \

WSDL calling

v

Published Web service

Figure 4. Process of executing the Web services composition code

5.1 The Localization Pretreatment of Web Service

In the process of developing Web services composition, we find that the type number
and style in input and output messages are often different in a different Web service.
Besides, the interface of Web service is described by XML, and if there is no local
pretreatment before the communication between Web services, the developer should

An Executable Service Composition Code Creation Tool 977

firstly deal with SOAP, WSDL and other protocols on their flat roof at every time
of Web service invocation, and then should carefully distinguish and compile the
parameters needed in the communications between Web services. However, those
works are very fussy and error-prone, because the final composition code is very long
and elusive, which makes it inconvenient to automatically generate Web services
composition code from composition model. The steps of Web service localization
pretreatment are as follows.

5.1.1 Create Stub

Use WSDL compiler to parse the specific Web service’s WSDL document and au-
tomatically create the local stub, which will shield communication at the level of
SOAP.

This paper uses Axis2 Code Generator as the WSDL compiler in the developing
process of the tool. For a specific available Web service IP2Address, we can get the
location of its WSDL document. The WSDL document location of IP2Address in
this paper’s example is: http://Webservice.Webxml.com.cn/WebServices/
IpAddressSearchWebService.asmx?wsdl.

Take this location as the input of WSDL compiler Axis2 Code Generator, a stub
[P2AddressStub.java will be generated to access the IP2Address service. This stub
creates a correspondent inner class for every message and every operation, which is
necessary for accessing the IP2Address service described in WSDL document. This
paper’s example will use the class of GetCountryCityBylp (transfer messages for
service), GetCountryCityBylpResponse (return the result of invoking service) and
SO on.

After its creation, the stub can be used to invoke Web service. First, create an
instance IP2Address for a class of stub IP2AddressStub. Second, create an instance
ip2addr for a message inner class of GetCountryCityBylp, put the types data of IP
address to the object ip2addr. Then, through instance IP2Address, ip2addr is used
to invoke service IP2Address’s operation GetCountryCityBylp. Create an instance
response to request inner class IP2Address. GetCountrCityBylpResponse again. At
last, fulfil the invocation of service operation by response to invoke its own method.

5.1.2 Compile the Localization Interface

In the development process, we find that stub code automatically created by WSDL
compiler is very complex. For example, the code for messages of GetCountryCity-
Bylp has more than 600 lines in length, and the code for the invocation of Get-
CountryClityBylpResponse has more than 400 lines. If Web services composition is
developed directly on such stub code, it is prone to go wrong and also very ineffec-
tive. On the other hand, the Web services used in the process of composition are
generally developed by different companies and the naming styles for Web services
and their operations are also different. Even more, there are some services with
the same name. Last, in the process of invoking Web services, the messages from

978 Z. Ding, J. Liu, J. Wang, F. Wang

different operations have different types. All of these issues make the process of
automatic creation from model to code very difficult.

For example, the data returned from IP2Address service listed in Section 2 is
a string array with much information. For instance if the IP:123.165.173.66 is the
input of IP2Address service, it will return data such as: “Telecom of Haerbin City,
Heilongjiang Province”, but the service Weather input can only receive a simple
city name with fixed form, such as “Shanghai”, “Haerbin” and so on. Therefore,
it is needed to match data format of their input and output before composition for
a group of given Web services on the Web.

For simplifying the model, we try not to depict the type information needed
in invoking service on the model, so some pretreatments should be done for the
generated stub before WSC modeling.

It can be known from the previous part that the work of invoking Web service
from stub is finished by an instance of request class (Response). Therefore, for the
developer who uses Web service through its stub, the only thing that s/he needs
to know is how to invoke the request class (Response). In localization interface,
an opResponse method is set up for every request class (Response) and s/he instan-
tiates an object of that request class. With the Web services composition code, the
invoking of a Web service can be finished only by invoking the method of opResponse
and sending it to a parameter list.

5.1.3 Pack in JAR

Pack the result of A and B in JAR, and provide executable code to invoke. For the
three given Web services as shown in Section 2 as follows:

e [P2Address: http://Webservice.Webxml.com.cn/WebServices/
IpAddressSearchWebService.asmx?op=getCountryCityByIp

o Weather: http://Webservice.Webxml.com.cn/WebServices/
WeatherWS.asmx?op=getWeather

o Translation: http://fy.Webxml.com.cn/Webservices/
EnglishChinese.asmx?7op=Translator

Based on Web service’s WSDL location obtained directly from the domain name
location of Web service, WSDL compiler Axis2 Code Generator can be used to create
stub. Next, we use Weather service as an example to explain the implementation
of localization interface.

According to the inputted IP, rich information will be returned by IP2Address
service as its output, with a fixed form ***province***city. However, only a city
name is required as the input of Weather service. So we can intercept the sub-
string of the output of IP2Address to be the Weather service’s input, such as the
substring before the word of “city” and after the word of “province”. Besides,
if the Weather service cannot find the given city’s weather, the original informa-
tion returned is a null string. For this case, some additional information can be

An Executable Service Composition Code Creation Tool 979

added in the localization interface to optimize user’s experience; for example, if
search is unsuccessful, it will return: “please input a right city name”. The code
is shown in Table 5 (some hard-to-understand code is ommited, such as exception
handling).

1 public String getWeather(String address) {

2 int first = 0, second = 0;

3 first = address.indexOf(” province ”);

4. second = address.indexOf(”city ”);

5. if(first j 0)first = 0;

6 if(second j 0)second = address.toCharArray().length;

7 address = address.substring(first+1,second);//intercept a suitable substring
8 WeatherWSStub.GetWeather getweat = new WeatherWSStub.GetWeather();
9. getweat.set TheCityCode(address);//invoke service to get weather information
10. Weather WSStub.GetWeatherResponse weatResponse =

11. weather.get Weather(getweat);

12. if(weat Response.local GetW eather Result.local String.length > 0)

13. // if the search is successful, return the information got from Weather service
14. return weatResponse.localGetWeatherResult.localString;

15. //if the search is unsuccessful, return a suggestive information

16. else return “please input a right local”;

7.}

Table 5. Localization code of Web Service Weather

5.2 Create Petri Net Model

The Web service Petri net modeling tool developed in this paper has two interfaces
of graphical editor interface and code browse interface. Based on GEF framework,
the graphical editor interface can edit graphical Petri net model and its attributes,
and also has many assistant functions such as outline view, snap to grid, snap to
center line, zoom, delete, undo, redo and other functions. The modelling process
strictly observes the Petri net syntax. Flow relation can only exist between place and
transition. In code browse interface, we can examine the Petri net code model that
is synchronous with Petri net graphical model. It can also realize other functions
such as copy code, and check the syntax’s correctness of model and so on.

The graphical editor can be used to paint Web services composition’s Petri net
model graph as shown in Figure 5. In the model graph, the parameter represented
by the token in place ip is inputted from outside (place ip’s preset is null). The
parameter represented by token in place result is the output of the whole service
composition (the place result’s postset is null). Place address is the IP2Address’s
postset and also the Weather’s preset. There is shared data between service Weather
and Translation too. That is, the place weather is transition Weather’s postset, and
also preset of transition Translate.

980

Z. Ding, J. Liu, J. Wang, F. Wang

After the visual Petri net model is painted, the daemon of the tool will auto-
matically create the corresponding code model; the Petri net model of the example

is shown in Figure 5.

y v o B |@ petrinet-edi...
100% ~ ExportImage Get WSCode Import Service
&5. Navigator 23 - % ¥ T 0| @ *multipetrinet £3 =0
" Test +e Palette P
& bin =213
- \s:c i [select

[J] PetriNetjava
@ new_file.mpe
[5) .classpath

| me

[2 .project

=gt
s
Neath . geanmoa
1 Properties %2 | o= Outline =20 & BHRSI=
Property Value @
£

PetriNet | Code

Transl...

Figure 5. Petri net model interface of example

5.3 Create Executable Code

We can know from the Petri net graphical model of Figure 5 that place ip has
no input transition, its parameters are from outside; place result has no output
transition, its parameters are outputs of the whole service composition; and the
parameters represented by the tokens in places address and weather are middle ones
in running process of the whole service composition.

First, create a new Code file named EnglishWeather.java. Based on the algo-
rithm in Section 4, the steps of creating executable code from the Petri net model
in Figure 5 are shown below:

Stepl. Initiate Petri net. Let the attribute isA Live Token of place ip be True, define
a variable named ip in file EnglishWeather and initialize its value. See below:
String ip = JOptionPane.showInputDialog(””, ”please input ip”);

Step2. Scan all transitions. isA LiveToken of place ip, which is transition IP2Addr-
ess’s preset, is True. Put the attribute isA Live Transition of IP2Address to True,
and then put isALiveToken of place ip to False.

Step3. Scan all transitions. Because attribute isALive Transition of transition
IP2Address is True, fire the transition and input a section code to English-

An Ezecutable Service Composition Code Creation Tool 981

Weather file for invoking service IP2Address. Search the postset place of transi-
tion IP2Address. Define a variable address, put the output of service IP2Address
to variable address. Put attribute isA Live Transition of IP2Address to False and
attribute isA LiveToken of place address to True. The code format that inputs
to EnglishWeather file in this step is shown below:

IP2Address ip2addressl = new IP2Address();

String address = ip2addressl.ip2address(ip);

Step4. Repeat Step2 and Step3.
The value of attribute isALiveToken of place address (preset of transition
Weather) is True, so put attribute isALiveTransition of transition Weather
to True, and then put isALiveToken of place address to False. Fire transi-
tion Weather; input a section code to EnglishWeather file for invoking Weather
service. Define a variable weather in EnglishWeather file and put the result
of invoking Weather service to the variable. Put attribute isA Live Transition
of transition weather to False and attribute isALive Token of place weather to
True. The code format that inputs to EnglishWeather file in this step is shown
below:
Weather weatherl = new Weather();
String weather = weatherl.weather(address);
The value of attribute isALiveToken of transition Translation’s preset place
Weather is True, so put value of attribute isA Live Transition of Translation to
True, and then put isALiveToken of place weather to False. Fire transition
Translation; input a section code to EnglishWeather file for invoking Transla-
tion service. Define a variable result in EnglishWeather file and put the output
of invoking Translation service to the variable. Put attribute isA Live Transition
of transition Translation to False and attribute isA LiveToken of place result to
True. The code format that inputs to EnglishWeather file in this step is shown
below:
Translation translationl = new Translation();
String result = translationl.transition(weather);
Check all transitions, and there is no transition that can be fired.

Step5. Check the place whose postset is null. The value of attribute isA Live Token
of place result is True. Write following code of composite service’s output to
EnglishWeather file:

System.out.println(result);

Step6. Finish the run of Petri net.

Based on the above steps, the executable service composition code created by
the tool is shown in Table 6.

(Note: operater.* in line 2 of the code is the localization interface package of
three Web services: IP2Address, Weather and Translation. The codes from the
third to the fourteenth lines are generated by Petri net model. The codes from the
fifteenth to the eighteenth lines are test codes for service composition.)

982 Z. Ding, J. Liu, J. Wang, F. Wang

1. import javax.swing.JOptionPane;

2. import operater.*;

3. public class EnglishWeather{

4. public void compositionofWebservices(){

5. String ip = JOptionPane.showInputDialog(””, ”please input ip”);
6. IP2Address ip2addressl = new IP2Address();

7. String address = ip2addressl.ip2address(a);

8. Weather weatherl = new Weather();

9. String weather = weatherl.weather(b);

10. Translation translationl = new Translation();

11. String result = translationl.translation(c);

12 System.out.println(result);

4.}

15. public static void main(String[]args){

16. EnglishWeather englishWeather = new EnglishWeather ();
17. englishWeather.compositionofWebservices();

18,)

19. }

Table 6. Executable service composition code (example)

After running the composition code, user will be reminded to input IP address,
see Figure 6.

Put the IP: “222.69.212.164” as an input; the composition code will invoke
localization interface, and exchange with service IP2Address by stub. The result
from IP2Address will be taken as the input of service Weather. Use the same process
to invoke services Weather and Translation. At last, the composition code will return
the English weather information at the location of JiaDing that IP “222.69.212.164”
located. The resulting weather information “sunshine” is shown in Figure 7.

6 CONCLUSIONS

Web services composition is a way for effective utilization of Web services. For the
Web services composition problem, this paper has designed a Web service’s Petri
net model and a graphical development tool, which can describe the services compo-
sition’s logic structure in a convenient and shortcut way, and automatically create
executable code from the model. Our further work includes two following aspects.

1. Follow the specification of PNML [12], the Petri Net model painted with the
tool is output as a XML document, then some existing Petri Net analysis tools
can be used, such as PIPE2 [13] for property analysis and verification, to ensure
correctness of service composition’s Petri net model. The work in this area has
been basically completed, and the Petri net model produced in our tool can be
converted into PIPE2 tool; then its properties such as reachability, boundedness
and liveness can be analyzed and verified by PIPE2.

An Executable Service Composition Code Creation Tool 983

File Search Source Refactor Run
v GGl i iByQr Py I | @ petrinet-edi...
%5 Navigator &2 = 8 ||) EnglishWeatherjava &3 =08
= _r(2 package test;
®J Test - . . s y e
e ®import javax.swing.JOptionPane;[]
& bin public class EnglishWeather{
= src public void compositionofwebservices () {
(= test = - = = D (nm,
> Enali SA X JE.
[J] EnglishWeather :
@ new_file.mpe > (ip):
|please inputip
.l th G| ! i
B casepe ; Sy
< i) s | :
o || s | .
=] oo | Of . =75 e - =
= Propert... 2 | g= Outline Sys
»= | :
o Viliie R public static void main(String[]args) {
Benty, EnglishWeather englishWeather = new EnglishWe
Info englishWeather.compositionofwebservices();
derived false = }
editable true
last modifiec 201151082
linked false
location C:\Users\Ad _ o
< T » < T »
0° Writable Smart Insert 12:13

Figure 6. Execution interface of created composition code

2. Current tools only support service composition processes of the sequence struc-
ture; for other structures such as select, parallel, and loop structures their exe-
cutable service composition code automatic creation methods will be addressed
in our further work.

Acknowledgments

This work is partially supported by National Natural Science Foundation of China
under Grant No. 61173042 and 61105047, National Basic Research Program of
P.R. China (973 Program) under Grant No. 2010CB328101, Program for New Cen-
tury Excellent Talents in University under Grant No. NCET-10-0598, “Shu Guang”
Project supported by Shanghai Municipal Education Commission and Shanghai
Education Development Foundation under Grant No. 10SG23 and Shanghai Rising-
Star Program under Grant No. 12QH1402300, HongKong, Macao and Taiwan Sci-
ence and Technology Cooperation Program of China No. 2013DFM10100.

984 Z. Ding, J. Liu, J. Wang, F. Wang
File Search Source Refactor Run
¢~ ifi-Fl-ivis-0- PO 5 (1@ petrinet-ed.
%5 Navigator &2 = & ¥ = O]) *EnglishWeatherjava 2 = O | El Console 52 =]
4" Test package test; » <terminated> EnglishWeather [Java /
& bin % %| G BE([EE)
4 B src 5 @import javax.swing.
- g public class Er = ¥ P
.« = = ic voi —
[J) EnglishWeather java publ;::iz;c RIS
@ new_file.mpe IP2Add:
[5] .classpath String
[.project Weathez
String
Transle
] Properties &2 5= Outline =08 Sys:zr‘:zii.
BEr= @ |)
Property Value & publ;igjz::
Info englisr
derived false E }
editable true
last modifiec 201251558 £4-09:40:0¢
linked false
location C:\Users\Administrator\D. _ 9!
< " » < " » ‘ »
0° Writable Smart Insert 19:1
Figure 7. Execution interface of created composition code
REFERENCES

[1] BArRTALOS, P.—BIELIKOVA, M.: Automatic Dynamic Web Service Composition:
A Survey and Problem Formalization, Computing and Informatics, Vol. 30, 2011,
No. 4, pp. 793-827.

[2] MARTIN, K.—JONATHAN, C.—SARAH, H. et al.: BPEL4WS Business Processes
with WebSphere Business Integration: Understanding, Modeling, Migrating. IBM
Redbook, 2004.

[3] Oracle BPEL Process Manager Overview, Availaible on: http://www.oracle.com/
technetwork/middleware/bpel/overview/index.html.

[4] Protégé OWL ontology Editor, Availaible on: http://protege.stanford.edu/
plugins/owl/documentation.html.

[5] THOMAS, J.P.—THOMAS, M.—GHINEA, G: Modeling of Web Services Flow. In:
Proceedings of the 2003 IEEE International Conference on E-Commerce Technology
(CEC’03), 2003, pp. 391-399.

[6] SCHLINGLOFF, H.—MARTENS, A.—ScHMIDT, K.: Modeling and Model Checking

Web Services. Electronic Notes in Theoretical Computer Science, Vol. 126, 2005,
pp- 3-26.

An Executable Service Composition Code Creation Tool 985

[7] NARAYANAN, S.—MCILRAITH, S.: Simulation, Verification and Automated Com-
position of Web Services. In: Proceedings of the Eleventh International World Wide
Web Conference (WWW-11), 2002, pp. 77-88.

[8] DING, Z.J.—WANG, J.L.—Jiang, C.J.: An Approach for Synthesis Petri Nets
for Modeling and Verifying Composite Web Service. Journal of Information Science
and Engineering, Vol. 24, 2008, No. 55, pp. 1309-1328.

[9] Web Service, Availaible on: http://Webservice.Webxml. com.cn.

[10] DiNG, Z.J.—Liu, J. Q.—WANG, J.L.: A Petri Net Based Automatic Executable
Code Generation Method for Web Service Composition. In: Proceedings of the
2012 International Conference on Information Technology and Software Engineering
(ITSE 2012), Lecture Notes in Electrical Engineering, Vol. 212, 2013, pp. 39-48.

[11] MURATA, T.: Petri Nets: Properties, Analysis and Applications, In Proc. of the
IEEE, Vol. 77, 1989, No. 4, pp. 541-580.

[12] PNML: the Petri Net Markup Language, Availaible on: http://www.pnml.org/.

[13] PIPE2: Platform Independent Petri net Editor 2, Availaible on: http://pipe2.
sourceforge.net/.

Zhijun DING received the M. Sc. degree from Shandong Univer-
sity of Science and Technology, Taian, China, in 2001 and the
Ph.D. degree in computer science from Tongji University, Shang-
hai, China, in 2007. He is currently an Associate Professor at the
Department of Computer Science and Technology, Tongji Uni-
versity. He has published more than 60 papers in domestic and
international academic publications. His research interests are
in service computing, semantic Web, formal engineering, Petri
nets, and workflows.

Jieqi L1U received the B. Sc. degrees from Xiangtan University,
Xiangtan, China, in 2009. He is currently working toward the
M. Sc. degree in the Department of Computer Science and Tech-
nology, Tongji University. His research interests include service
composition, Web services, and Petri nets.

986

Z. Ding, J. Liu, J. Wang, F. Wang

Junli WANG received the Ph.D. degree in computer science
from Tongji University, in 2007. She is currently an Associate
Research at the College of Electronics and Information Engi-
neering, Tongji University. Her research interests are in service
computing, semantic Web, ontology learning.

Fang WANG is a lecturer in the Department of Information Sys-
tems and Computing of Brunel University. She received Ph.D.
in artificial intelligence from the University of Edinburgh. She
worked as senior researcher in the research centre of British Tele-
com Group, before she joined Brunel University in 2010. Her re-
search interests include software agents, cognitive neuroscience
and distributed computing. She has published many papers in
books, journals and conferences, filed a number of patents and
received several technical awards.

