Computing and Informatics, Vol. 32, 2013, 877-896

WORD COMBINATION KERNEL FOR TEXT
CLASSIFICATION WITH SUPPORT VECTOR
MACHINES

Lujiang ZHANG, Xiaohui Hu

School of Automation Science and FElectrical Engineering
Beijing University of Aeronautics & Astronautics
Beijing 100191, China

e-mail: zhanglujiang.dr@gmail.com

Communicated by Jacek Kitowski

Abstract. In this paper we propose a novel kernel for text categorization. This
kernel is an inner product defined in the feature space generated by all word com-
binations of specified length. A word combination is a collection of unique words
co-occurring in the same sentence. The word combination of length k is weighted by
the k™ root of the product of the inverse document frequencies (IDF) of its words.
By discarding word order, the word combination features are more compatible with
the flexibility of natural language and the feature dimensions of documents can be
reduced significantly to improve the sparseness of feature representations. By re-
stricting the words to the same sentence and considering multi-word combinations,
the word combination features can capture similarity at a more specific level than
single words. A computationally simple and efficient algorithm was proposed to
calculate this kernel. We conducted a series of experiments on the Reuters-21578
and 20 Newsgroups datasets. This kernel achieves better performance than the word
kernel and word-sequence kernel. We also evaluated the computing efficiency of this
kernel and observed the impact of the word combination length on performance.

Keywords: Machine learning, kernel methods, support vector machines, text clas-
sification, word-combination kernel

Mathematics Subject Classification 2010: 62H30, 46E22, 68T05, 683T50

878 L. Zhang, X. Hu

1 INTRODUCTION

The Support Vector Machine (SVM) is a state of the art machine learning technique
that has achieved great success in many domains. It is also very promising for text
categorization [1, 2, 3] and web page categorization [4]. The effects of Support Vector
Machines largely depend on the choice of kernels. The first and most commonly
used kernel for text classification is the word kernel [1], which is a conventional
kernel (linear, polynomial, RBF) combined with the bag-of-words model [5]. The
bag-of-words model assumes that the words in a document are independent of each
other, and their relative positions have no effect on text classification. So only the
word frequencies with additional weighting and normalization are used to represent
documents in word space, while the information regarding word positions is totally
discarded.

Lodhi et al. [6] proposed the string kernel, the first significant departure from
the bag-of-words model. In string kernel, features are all possible ordered subse-
quences of characters occurring in documents. The similarity between documents is
assessed by the number of matching subsequences shared by two documents. Can-
cedda et al. [7] proposed the word-sequence kernel that extends the string kernel to
process documents as word sequences. This approach greatly reduces the average
length of symbols per document, which yields a significant improvement in com-
puting efficiency. Moreover, matching word sequences allows working with more
linguistically meaningful symbols.

There are still some issues with the word-sequence kernel. This kernel has very
high dimensional and sparse feature space that hinders the effective training of ker-
nel machines. Besides, natural language is flexible and considering word order is
not helpful to conventional text classification tasks. Cancedda et al. [7] have proved
by experiments that taking word order into account has very little effect on perfor-
mance. Moschitti and Basili [8] found that phrases (including n-grams, sequences of
words, noun phrases such as named entities and other complex nominals) are not ad-
equate to improve classification accuracy, while elementary textual representations
based on words are very effective.

In this paper we propose a novel kernel, called word-combination kernel. In
this kernel, we use word combinations, rather than single words or word sequences,
as features. A word combination is a collection of unique words without order
relations co-occurring in the same sentence. The feature space of this kernel is
generated by all word combinations of specified length and this kernel is an inner
product defined in this space. By discarding word order, the word combination
features are more compatible with the flexibility of natural language and the feature
dimensions of documents can be reduced significantly to improve the sparseness of
feature representations. By restricting the words of a word combination to the same
sentence and considering multi-word combinations, the word combination features
can capture similarity at a more specific level than single words and carry some
information regarding the relative positions of words.

Word Combination Kernel for Text Classification with Support Vector Machines 879

The rest of this paper is organized as follows. In Section 2 we briefly introduce
the related work. In Section 3 we give a detailed description of the word-combination
kernel. Section 4 presents the experimental results and evaluation. Finally, we
conclude this paper in Section 5. A preliminary version of this work has been
presented in [9].

2 RELATED WORK
2.1 Kernel Methods for Text Classification

A number of machine learning techniques have been applied to text categorization.
A comprehensive survey about the machine learning techniques for text categoriza-
tion can be found in [10]. In this paper, we focused on kernel methods for text
classification. The effects of Support Vector Machines depend mainly on the choice
of kernels. Support Vector Machines are very universal learners that can be used
in conjunction with any kernel. The general kernels such as linear, polynomial and
Gaussian RBF kernels have been used for text classification [1, 11]. Cristianini
et al. [12] proposed the Latent Semantic Kernels based on latent semantic indexing.
Though having obtained good performance, these conventional kernels are based on
the bag-of-words model and inherit its intrinsic drawbacks. Some researchers inject
lexical dependencies [13] or semantic relations [14] into the vector representations of
documents as an extension to the standard bag-of-words model.

Lodhi et al. [6] proposed the string kernel, the first significant departure from
the bag-of-words model. Cancedda et al. [7] proposed the word-sequence kernel
which extends the string kernel to process documents as word sequences. Then the
factored sequence kernel [15] was proposed to the case where the symbols that define
the sequences have multiple representations. The word-sequence kernel proves to be
more effective than string kernel, especially in computing efficiency and when using
the standard linguistic preprocessing techniques. To resolve the poor computational
efficiency problem, the suffiz-tree-based and suffiz-array-based string kernels [16,
17] are proposed to make the string kernel computationally feasible. Suzuki and
Isozaki [18] embedded a statistical feature selection method into the word-sequence
kernel to select significant features automatically.

Some researchers proposed syntactic and semantic kernels for text classifica-
tion [19, 20, 21]; but only when the text categorization tasks are linguistically
complex, such as classification in Question Answering (QA), syntax and seman-
tics may play a relevant role [20, 22, 23]. Apparently promising syntactic and se-
mantic structures have been shown inadequate for conventional text categorization
tasks [8, 24, 25].

2.2 Word Kernel and Word-Sequence Kernel

In this section, we briefly introduce the word kernel and word-sequence kernel. The
word kernel is a conventional kernel (linear, polynomial, or Gaussian RBF ker-

880 L. Zhang, X. Hu

nel) combined with the bag-of-words model. For this kernel, each document is
represented as a vector in word space using the TEXIDF weighting system [20]
or its variant [11], where TF represents the term frequency and IDF represents
the inverse document frequency. Specifically, given a document collection contain-
ing n distinct words, each document d is represented as a n-dimensional vector
f = (tfi=idfr,tfaxidfs, ... tf,*idf,). Here tf; is the term frequency defined as the
number of occurrences of word w; in document d, and idf; is the inverse document
frequency defined as log & ol where df; is the number of documents containing word
w; and N is the total number of documents in the collection. Then in this vector
space we use a linear, polynomial, or Gaussian RBF kernel to compute the kernel
values between documents.

We now introduce the word-sequence kernel. Let € be a finite vocabulary. s =
5152...58]5 is a word sequence over Q (s; € Q). Let i = [iy,is,...,i,] be a subset
of the indices in s (1 < 4y < iy < ...0, < |s|). We indicate the subsequence
$iySiy - - - S, as s[i] € Q" (Q" is the set of all subsequences of length n). Note that
sli] does not necessarily form a contiguous subsequence of s. We denote by I(i) the
length spanned by s[i] in s, that is I(i) =4, — i; + 1. The kernel for two sequences
s and t is defined as:

- Z Z Z)\l(i)+l(j)7 (1)

u€Q™ i:sfi]=u j:t[jl=u

where A € [0,1] is a decay factor used to penalize non-contiguous subsequences.
K, (s,t) is a valid kernel as it amounts to computing an inner product in the feature
space F' = R%" with the coordinate ¢, (s) for each u € Q™

> N0, (2)
irsfi]l=u

The basic idea is that we match all possible subsequences of n words, and non
contiguous occurrences are penalized according to the number of gaps they con-
tain. A direct calculation of this kernel becomes impractical even for small values
of n. However, we can compute this kernel using a recursive formulation pro-
posed by Lodhi et al. [6], which leads to an efficient dynamic programming tech-
nique.

3 WORD-COMBINATION KERNEL

In this section we describe the details of the word-combination kernel. The key of this
kernel is the use of word combination features. A word combination is a collection
of different words co-occurring in the same sentence. The feature space of this
kernel is generated by all word combinations of specified length. Note that there are
no order relations between the words of a word combination. The basic idea is to
measure the similarity between two documents by the number of word combinations
they share in common. The more common word combinations they share, the more

Word Combination Kernel for Text Classification with Support Vector Machines 881

similar they are. A word combination of length k is weighted by the ™ root of the
product of the inverse document frequencies (IDF) [26] of its words. The feature
value corresponding to a specific word combination is the sum of weights over all
occurrences of the word combination.

The flexibility of natural language makes it possible to express the same or simi-
lar information by means of various sentence structures or word orders (e.g., “give
Mary a pie” and “give a pie to Mary”, “book seller” and “seller of books”, “He wrote
the letter.” and “The letter was written by him.”), so word combinations are more
compatible with the flexibility of natural language than word sequences. Besides, for
the conventional text categorization tasks that explore primarily topic and category
information, taking complex linguistic features, including syntactic and semantic
structures or phrases (n-grams, sequences of words, noun phrases) into account
does not necessarily improve classification accuracy [8, 24, 25]. Documents usually
have high dimensional and sparse representations in feature space. By discarding
word order, the feature dimensions of documents can be reduced significantly to
improve the sparseness of feature representations. By restricting its words to the
same sentence, a multi-word combination can carry some information regarding the
relative position of its words, and the multi-word combinations can capture similarity
at a more specific level than single words.

3.1 Definition

Let € be a finite vocabulary, which is a set of words. A document d is composed of n
successive sentences: d = {si, $2,...,S,}. A sentence s; = {si,, Siys- - -, si‘sﬂ} (84, €
) is regarded as a collection of words without order relations. A word combination
w = {u1,ug, ..., up} (u; # u; for any i # j) is a collection of unique words co-
occurring in the same sentence. We say u is a word combination of document d if
and only if there exists at least a sentence s; in document d satisfying u C s;, and
we use the shorthand notation v C d[s;] to denote it. We denote by Q" the set of
all word combinations of length n.

We now define the feature space F,, = R®". The mapping ¢ from a document
d={s1,82,...,5,} to the feature space F), is defined as ¢ : d = (¢,(d))yeqn, where
¢u(d) is the coordinate of the word combination u in the feature space F,,. The
definition of ¢,(d) is given as follows:

ou(d) = 3 AP, (ueq) (3)

si:uCdls;)
Jul i
/\fld) = (H/\g?) . (u € w). (4)
i=1

We denote by A@ the weight of the word combination u in document d, and by)\Ef?
the inverse document frequency of the word u; in document d.

882 L. Zhang, X. Hu

In the feature space F,, = R®", the word-combination kernel is defined as follows:

Kn(dladz) = <(¢u(d1))u69”7(¢u(d2))u69”>
= Z ¢1t(d1)¢14,(d2)

ueQn

Z (Z)\(dl))< Z A\ (d2)
ueQ™ \s;:uCdi[s;] sj:uCda[s;]

>y oy (ﬁmﬂ) (ﬁA<d2>)"'. o)

u€N™ s;:uCdy [s;] sj:ulda[s;] \1=1

K, (dy, ds) satisfies the definition of positive definite kernel [27] because it is an inner
product defined in the feature space F, = R®". After the kernel has been computed
we need to normalize it to remove any bias introduced by the document length. We
use the following ls normalization to normalize the kernel:

Kn(dth) = <¢A5()flg(dz»
1)

:< od) oldy) >
Tl To(d):

_ Ky (dy, dy) (6)
\/(Kn(dl, d1) K, (ds, do) '

In Equation (4), we use the k' root operator to make the weights of word
combinations of different lengths have the same order of magnitude. This is help-
ful to combine the word-combination kernels with different feature lengths. For
the word weighting, we do not consider the term frequency (TF) because the sum-
mation operation in Equation (3) has taken into account the word combination
frequencies and the word frequencies can be embodied in the word combination
frequencies. If we use the TF x IDF weighting instead of the inverse document
frequency (IDF) to weight a word, the weighting system will contribute some re-
dundant information about word frequencies that can negatively bias the computed
similarity.

Documents usually have sparse representations in feature space. Reducing the
dimensionality of feature space is helpful to alleviate the sparseness of feature repre-
sentations. For a vocabulary 2 and a specified feature length n, the dimensionality of
the word-combination kernel is (IS\)7 while that of the word-sequence kernel is |Q]™.
() _ 1 elgolnty) o N

The former is much lower than the latter because o = o
3.2 Combining Kernels of Different Lengths

In general, word combinations of any length can make a contribution to similarity
between documents. So it is necessary to combine the kernels with different feature

Word Combination Kernel for Text Classification with Support Vector Machines 883

lengths. We use a linear combination formula to combine the word-combination
kernels with feature lengths from 1 to a fixed n:

dl dQ Z wz d17 d2 (7>

Kernels of different lengths should be normalized independently before being com-
bined. We can obtain the optimized weighting parameters w; (i = 1,2,...,n) by
means of multiple kernel learning [28] or cross-validation. However, in practice we
can simply set w; = i. That is, the importance of a word combination kernel is
proportional to its feature length. In Equation (4), the k' root operator makes the
weights of word combinations of different lengths have the same order of magnitude,
which is helpful for linear combination of word-combination kernels with different
feature lengths.

3.3 The Sentence-Intersections Between Documents

A sentence-intersection is the intersection, that is, the collection of common words
between two sentences which belong to two documents, respectively. Formally
speaking, the sentence-intersection between the sentence s; in document d; and
the sentence sy in document dy is given by s; N so. The sentence-intersections
are used to generate the common word combinations of specified length between
documents using the combination generation algorithm. For example, from the
sentence-intersection: {newspaper, report, football}, we can generate the two-word
combinations: {newspaper, report}, {report, football}, {newspaper, football}.

We statistically analyzed the distribution of the sentence-intersections of differ-
ent lengths between documents in the Reuters-21578 and 20 Newsgroups datasets
(The descriptions of the two datasets are presented in Section 4.1). Table 1 displays
the distribution ratio of sentence-intersections of different lengths. From Table 1,
we can see that the distribution of the long sentence-intersections whose lengths are
greater than 3 is very sparse.

n=1 n=2 n=3 n>3
Reuters-21578 | 82.09% 13.74% 2.62% 1.55%
20 Newsgroups | 93.41% 6.08% 0.38% 0.13%

Table 1. The distribution ratio of the sentence-intersections of different lengths between
documents in the Reuters-21578 and 20 Newsgroups datasets. n represents the
length of sentence-intersection.

3.4 Algorithm

In this section we give the details about the algorithm of word-combination kernel.
Before the calculation of this kernel, we need to preprocess the documents (see

884 L. Zhang, X. Hu

Section 4.2). After preprocessing each document is converted into a list of sentences.
The algorithm computes the word-combination kernels with feature lengths from 1
to a specified length m. Then these kernels are normalized using Equation (6) and
combined using Equation (7).

The crux of calculating this kernel is to find out all of the sentence-intersections
between documents. The sentence-intersections are used to generate the common
word combinations between documents. The major cost of calculating this kernel
is consumed in searching the sentence-intersections. To accelerate the searching
process, we designed a hash table structure (see Figure 1) for documents. The key
of this hash table is a word and the corresponding element is the list of sentences
that contain this word. The BKDR Hash Function [29] is used to compute the hash
code of a word. We use the double hashing to deal with the address collision, and set
the load factor (the ratio of the actual number of keys in the hash table to the size
of the hash table) to 0.75. By help of this structure, the sentences in a document
containing a specific word can be found in O(1) time. The algorithm includes two
steps. The first step creates a hash table for each document and the second step
computes the kernel values between documents of feature lengths from 1 to a fixed
m. The algorithm is as follows:

word io—b{ sentence 1 H sentence 3 H sentence 6

Fig. 1. The hash table structure for documents

Step 1: Creating the hash table for a document.
Input:

d: The input document;

Output:

HT@: The hash table for the input document d;
Procedure:

Initialize the hash table HT@ and the hashing function h(z);

Word Combination Kernel for Text Classification with Support Vector Machines 885

for each word wy, in document d
if wy exists in HT@
List L < HTD[h(wy)];
Add the sentence index of wy, into L;
HTD[h(wy)] « L;
else
List L < 0;
Add the sentence index of wy into L;
HTW[h(wy)] + L;
end if
end for

Step 2: Computing the kernel values between documents of feature
lengths from 1 to m.
Input:
HT'%): The hash table for the input document d;;
HT'): The hash table for the input document ds;
m: The maximal word combination length;
Output:
KI[1...m]: The array of kernel values of feature lengths from 1 to m;
Procedure:
K[l...m] <« {0,...,0};
ny < The number of sentences in document dy;
ng < The number of sentences in document d»;
Sentence-intersection array S[l coong, 1. ng] «— 0
for each key wy, in HT™)
if wy, exists in HT(@2)
List L1 < HT@[h(wy)];
List L2 < HT) [h(wy)];
for each sentence index i in L1
for each sentence index j in L2
Add wy, to STi, j];
end for
end for
end if
end for
for each sentence-intersection s;; in S[1...n1,1...n9]
lf Sij 7& @
for i+ 1tom
UW® < {The word combinations of length [generated from the
sentence-intersection s;; using
the combination generation algorithm};
for each word combination u,(f) in U®

K[l K[+ A« A s
k k

u

886 L. Zhang, X. Hu

end for
end for
end if
end for

In this algorithm, we denote by u,(cl) a word combination of length [generated

from a sentence-intersection s;; and denote by)\fjg) the weight of u,(f) in document d.
k
The)\(d(g) is computed using Equation (4).
Uk

Computational complexity of this kernel is O(2|dy| + 2|da| + nina 110, z(ly)),
where |dy| and |dy| are the lengths of documents d; and dy, respectively, ny and ny
are the number of sentences in d; and ds, respectively, m is the specified maximal
word combination length, and M is the maximal length of sentence-intersections
between d; and dy. This computational complexity consists of two parts, the first
part 2|d;| 4 2|da| corresponds to the cost of creating two hash tables for documents
di; and dy and searching the sentence-intersections between d; and dy, while the
second part ning Y it @ J\f) corresponds to the cost of generating the common word
combinations between dy and ds from the sentence-intersections and computing the
kernel values of feature lengths from 1 to m. The O(2|d;| + 2|ds| + nins 7, Z(Af))
is actually an upper bound of the real computational complexity. Given that more
than 95% of the sentence-intersections between documents have a length less than
or equal to 3 (see Table 1), we can let M = 3. Thus the computational complexity
is O(2]dy| + 2|da| + nana X1 i(%)) < O2ldy| + 2lda| + mane 540 (3)) = O(2lda| +
2|ds| + 12n1n2) = O(|dy| + |d2| + 6n1n2). Because n; and ng is much smaller than
|di| and |dz|, this complexity is close to the linear complexity with respect to the
document length.

4 EXPERIMENTS

In this section we describe the experiments. The objectives of our experiments
include:

e observe the impact of the word combination length on performance of the word-
combination kernel,

e compare the classification performance of this kernel to those of the word kernel
and word-sequence kernel;

e compare the computing efficiency of this kernel to those of the word kernel and
word-sequence kernel.

We use Equation (7) with the parameters w; = i (i = 1,2,...,n) to compute
the word-combination kernel. For the SVM classifier, we select the 1ibSVM [30] of
C-SVC type to conduct our experiments. The 3-fold cross-validation is used to
optimize the value of C. For the word kernel, we use the linear version rather than
the Gaussian version. As Yang and Liu [3] have pointed out, we also found that the

Word Combination Kernel for Text Classification with Support Vector Machines 887

linear kernel can obtain a slightly better result than the Gaussian kernel for text
classification with the bag-of-words model.

4.1 Dataset

We apply the Reuters-21578 and 20 Newsgroups datasets to our experiments. The
Reuters-21578 dataset was compiled by David Lewis in 1987, and is available
at http://www.daviddlewis.com/resources/testcollections/reuters21578/.
We use the “ModeApte” split of the Reuters-21578 dataset. It comprises 9603
training and 3299 test documents that had been classified into 118 categories. We
select the eight most frequent categories: “earn”, “acq”, “money”, “grain”, “crude”,
“trade”, “interest” and “ship” for experiments. There are some overlapped docu-
ments across categories in the Reuters-21578 dataset. We removed the overlapped
test documents and retained the overlapped training documents. The eight cate-
gories are summarized in Table 2. We use all of the training and test documents of
each category to evaluate the performance of a kernel.

The 20 Newsgroups dataset was originally collected by Ken Lang in the mid-90’s,
and is available at http://people.csail.mit.edu/jrennie/20Newsgroups/. It is
a collection of approximately 20 000 newsgroup documents and is partitioned evenly
across twenty different newsgroups that correspond to twenty categories, respectively
(see Table 3). For the 20 Newsgroups dataset, we evaluate the performance of
a kernel by averaging the results over the 10 runs of the algorithm, and for each run
we randomly selected 300 training documents and 150 test documents from each
category to form a target dataset.

Category # training samples # test samples
earn 2877 1083

acq 1650 709
money 538 130
grain 433 133
crude 389 142
trade 369 103
interest 347 87

ship 197 43

Table 2. Summarization of the eight categories of the Reuters-21578 dataset after removing
the overlapped test documents

4.2 Data Preprocessing

The data preprocessing includes sentence boundary detection, stop word removal,
inflectional stemming and computing the weighting of words. The sentence bound-
ary detection is only used for the word-combination kernel and after this processing
each document is converted into a list of sentences. For the 20 Newsgroups dataset,

888 L. Zhang, X. Hu

‘ Category ‘

alt.atheism rec.sport.hockey
comp.graphics sci.crypt
comp.os.ms-windows.misc sci.electronics
comp.sys.ibm.pc.hardware sci.med

comp.sys.mac.hardware sci.space
comp.windows.x soc.religion.christian
misc.forsale talk.politics.guns
rec.autos talk.politics.mideast
rec.motorcycles talk.politics.misc
rec.sport.baseball talk.religion.misc

Table 3. The twenty categories of the 20 Newsgroups dataset

we need to remove the headers of each document before preprocessing. After prepro-
cessing, the Reuters-21578 dataset contains 26384 unique words, with the average of
66 words and 6.1 sentences per document, while the 20 Newsgroups dataset contains
the average of 72 342 unique words, with the average of 118 words and 16.3 sentences
per document.

To find the common word combinations between documents, we need to split
a document into sentences. This processing has been well implemented in the
java.text package of the Java™ Platform Standard Edition 6. Stop word removal
filters out the words that are generally regarded as ‘functional words’ and do not
carry meaning. We removed the words occurring in a stop word list built for the
SMART information retrieval system (ftp://ftp.cs.cornell.edu/pub/smart/
english.stop). Inflectional stemming is the process of transforming a word into its
base, non-inflected form. It is not an easy linguistic processing and may introduce
additional errors, so we only perform the singular/plural regularization using regu-
lar expression based approach. For the word-combination kernel, we use the inverse
document frequency (IDF) to weight the words in a document, and use the Iy norma-
lization to normalize the inverse document frequencies of a document. For the word
kernel and word-sequence kernel, we strictly follow the weighting system proposed
by their researchers [1, 7].

4.3 Performance Evaluation

We use the F} score to measure the classification performance. It is given by F; =
2pr/(p + r), where p is precision and r is recall. We calculate the Fy score for each
category and also provide the micro-averaged and macro-averaged Fj scores over
all categories. The macro-averaging averages the results obtained on each category,
while the micro-averaging averages over individual decisions on each document for
each category.

We further compare the classification performance of different kernels using the
significance tests: macro sign test (S-test) and macro t-test (T-test) [3]. The S-test

Word Combination Kernel for Text Classification with Support Vector Machines 889

and T-test are both designed for comparing two systems A and B using the paired
Fy scores for individual categories. The S-test has the following notations:

e N is the number of unique categories;

e a; €[0,1] is the F} score of system A on the i*® category (i = 1,2,..., N);

e b; € [0,1] is the F} score of system B on the i*" category (i = 1,2,..., N);

e n is the number of times that a; and b; differ;

e k is the number of that a; is larger than b;.
The null hypothesis is that k& has a binomial distribution of Bin(n, p) where p = 0.5.
The alternative hypothesis is that k has a binomial distribution of Bin(n, p) where

p > 0.5, meaning that system A is better than system B. If & > 0.5n, the P-value
(1-side) is computed using the binomial distribution under the null hypothesis:

P(Z>k) = fj (7;) x 0.5". 8)

i=k

Symmetrically, if & < 0.5n, the P-value for the other extreme is computed using the
formula

ko (n

P(Z<k)= Z <z> x 0.5". (9)

=0
The P-value indicates the significance level of the observed evidence against the null
hypothesis. To define the T-test, we use the same notations as defined for S-test,
and the following additional items:

e 0; = a; — b; is the difference of a; from b;;
e 0 is the simple average of the §; values for i = 1,2,... n.
The null hypothesis is § = 0. The alternative hypothesis is § > 0. We denote by

s.e.(6) the standard error of the §. The P-value is computed using the t-distribution
with the degree of freedom n — 1:

)
Tz s.e.(6) (10)
S-test may be more robust for reducing the influence of outliers, but is not
sufficiently sensitive in performance comparison because it ignores the absolute dif-
ferences between F} values. The T-test is sensitive to the absolute values, but could
be overly sensitive when F} scores are unstable. So using the two tests jointly instead
of using one test alone would be a good compromise.

4.4 Experimental Results

In this subsection, we present the experimental results. We evaluate the performance
of the word-combination kernel on the Reuters-21578 and 20 Newsgroups datasets.

890 L. Zhang, X. Hu

In Section 4.4.1 we observe the impact of the word combination length on perfor-
mance of this kernel. In Section 4.4.2 we compare the performance of this kernel to
those of the word kernel and word-sequence kernel. In Section 4.4.3 we compare the
computing efficiency of this kernel to those of the word kernel and word-sequence
kernel.

4.4.1 Impact of the Word Combination Length on Performance

To assess the impact of the word combination length on performance, we provided
the micro-averaged and macro-averaged F) scores varying with the word combination
length from 1 to 4 in Table 4. It can be seen from Table 4 that when length
n = 2 the word-combination kernel obtains the best performance. Besides, when
length n > 2, the micro-averaged and macro-averaged F} scores consistently decrease
with the increase of word combination length. We think that this is because of
the sparse distribution of the long common word combinations between documents
whose lengths are greater than 2, which can be deduced from Table 1. When the
long word combinations are taken into account the precision increases, but the loss
in recall more than offsets the increase in precision, so the F} scores decrease. It
is notable that the word-combination kernel with length n = 2 achieves better
performance than the word-combination kernel with length n = 1, which indicates
the effectiveness of multi-word combinations compared to single words.

‘ ‘ n=1 n=2 n=3 n=4 ‘
Reuters- |micro-averaged F} 0.9452 0.9506 0.9416 0.9214
21578 macro-averaged Fj 0.9017 0.9071 0.8895 0.8484

20 News-|micro-averaged F; 0.7955 £ 0.010 0.8241 + 0.006 0.8213 £ 0.006 0.8076 £ 0.004
groups |macro-averaged F; 0.8005 + 0.010 0.8280 + 0.006 0.8277 + 0.006 0.8211 4+ 0.004

Table 4. The impact of the word combination length on performance of the word-
combination kernels with feature lengths from 1 to 4. The results for the 20 News-
groups dataset are averaged over 10 runs of the algorithm.

4.4.2 Comparison of Performance

We compare the performance of the word-combination kernel to that of the word ker-
nel and word-sequence kernel on the Reuters-21578 and 20 Newsgroups datasets. We
present the Fj score for each category and the micro-averaged and macro-averaged
Fy scores over all categories. Tables 5 and 6 display the experimental results for the
Reuters-21578 and 20 Newsgroups datasets, respectively. We use the boldface to
mark the best result for each category. The results show that the word-combination
kernel can achieve good performance on the two datasets. For the Reuters-21578
dataset this kernel obtains seven best results among the eight categories, while for
the 20 Newsgroups dataset this kernel obtains eighteen best results among the twenty

Word Combination Kernel for Text Classification with Support Vector Machines 891

categories. The micro-averaged and macro-averaged Fj scores of this kernel are also
better than those of the word kernel and word-sequence kernel.

To further verify the performance of word-combination kernel, we apply two sig-
nificance tests: macro sign test (S-test) and macro t-test (T-test) to the experimen-
tal results. Table 7 shows the test results. “>” means P-value < 0.01, indicating
a strong evidence that the left-hand kernel is better than the right-hand one; “>”
means 0.01 < P-value < 0.05, indicating a weak evidence that the left-hand kernel
is better than the right-hand one; “~” means P-value > 0.05, indicating that it has
no significant difference between the two side. The results in Table 7 provide clear
and convincing evidence that this kernel performs better than the word kernel and
word-sequence kernel on the Reuters-21578 and 20 Newsgroups datasets. Combin-
ing the results in Tables 5, 6 and 7, we think that the word-combination kernel can
be an effective approach for text categorization tasks.

WCK WK WSK
earn 0.9823 0.9693 0.9672
acq 0.9521 0.9394 0.9278
money 0.8595 0.8561 0.8167
grain 0.9585 0.9470 0.9549
crude 0.9024 0.8904 0.8966
trade 0.9108 0.8919 0.8981
interest 0.8539 0.7662 0.6904
ship 0.8205 0.8101 0.8312
micro-average 0.9504 0.9353 0.9276
macro-average 0.9050 0.8838 0.8729

Table 5. The F} scores of the word-combination kernel (WCK), word kernel (WK) and
word-sequence kernel (WSK) on the Reuters-21578 dataset. The word-combination
kernel and word-sequence kernel are both with feature length n = 2.

4.4.3 Comparison of Computing Efficiency

We compare the computing efficiency of the word-combination kernel to that of the
word kernel and word-sequence kernel on a notebook computer with 2.40 GHz Intel
Core™ Duo CPU. Table 8 shows the preprocessing, training and test time of each
kernel on the Reuters-21578 and 20 Newsgroups datasets. The time is measured
in seconds. We can see from Table 8 that the total running time of the word-
combination kernel is more than but roughly comparable to that of the word kernel,
yet the word-sequence kernel takes an excessively far more running time even for
the eight categories of the Reuters-21578 dataset. Besides, the preprocessing time
only accounts for a small fraction of the total running time. The computational
complexities of the three kernels are displayed in Table 9. Among the three kernels,
the word kernel (we use the linear version) has the lowest computational complexity,
while the word-sequence kernel has the highest computational complexity. Combin-

892

L. Zhang, X. Hu

WCK

WK

WSK

alt.atheism
comp.graphics

comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware

comp.windows.x
misc.forsale
rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey
sci.crypt
sci.electronics
sci.med

sci.space
soc.religion.christian
talk.politics.guns
talk.politics.mideast
talk.politics.misc
talk.religion.misc

0.7897+0.022
0.7231+£0.031
0.7504 + 0.022
0.7101 + 0.027
0.7926 + 0.037
0.8293 + 0.022
0.7692 + 0.025
0.8739 + 0.018
0.9323 + 0.012
0.9400 + 0.012
0.9508 + 0.014
0.8975 + 0.020
0.7194+£0.051
0.8941 + 0.017
0.9063 + 0.022
0.7983 + 0.026
0.8434 + 0.022
0.9261 + 0.015
0.8141 + 0.015
0.6306 + 0.040

0.7321 £ 0.027
0.7256 £ 0.028
0.7047 £ 0.028
0.6584 £ 0.034
0.7546 £ 0.031
0.7984 £ 0.022
0.7151 £ 0.033
0.8495 £+ 0.023
0.9190 £ 0.015
0.9082 £ 0.014
0.9122 £+ 0.028
0.8689 £ 0.026
0.7128+0.022
0.8846 + 0.017
0.8950 £ 0.015
0.7398 £ 0.022
0.7996 £ 0.022
0.9032 £ 0.014
0.7559 £ 0.027
0.5270 £ 0.058

0.7737 £0.021

0.7280 + 0.048

0.7442 £ 0.032
0.7016 £ 0.022
0.7892 £ 0.043
0.8218 £ 0.025
0.7588 £ 0.019
0.8573 £ 0.012
0.9210 £ 0.019
0.9308 £ 0.013
0.9446 £+ 0.012
0.8935 £ 0.025
0.7232+0.034
0.8822 £ 0.018
0.8954 £+ 0.023
0.7838 £ 0.028
0.8167 £ 0.016
0.9190 £ 0.022
0.7817 £ 0.016
0.5625 £ 0.048

micro-average
macro-average

0.8241 4+ 0.006
0.8280 + 0.006

0.7900 £ 0.010
0.7951 £ 0.010

0.8127 £ 0.008
0.8164 £ 0.008

Table 6. The Fy scores of the word-combination kernel (WCK), word kernel (WK) and
word-sequence kernel (WSK) on the 20 Newsgroups dataset. The word-combination
kernel and word-sequence kernel are both with feature length n = 2. The results
are obtained by averaged over 10 runs of the algorithms.

ing the results in Tables 8 and 9, we can see that the running time of each kernel
is consistent with its computational complexity. It is worth noting that the word-
sequence kernel is extremely computationally demanding, though we use a dynamic
programming formulation proposed by Lodhi et al. [6] to speed up the calculation.

5 CONCLUSIONS AND FUTURE WORK

In this paper we propose the word-combination kernel for text classification. We aim
to provide a practical and easy-to-use text kernel. We give a detailed description
of this kernel and empirically evaluate it on the Reuters-21578 and 20 Newsgroups
datasets. The performance of this kernel is compared to those of the word kernel
and word-sequence kernel.

We devised the word combination features for this kernel. A word combination
is a collection of unique words co-occurring in the same sentence. This kernel is
an inner product defined in the feature space generated by all word combinations
of specified length. Compared to the word sequence features, the word combination

Word Combination Kernel for Text Classification with Support Vector Machines 893

‘ ‘ S-test T-test ‘
WCK WK > >
Reuters-21578 | WCK WSK > ~
WK WSK ~ ~
WCK WK > >
20 Newsgroups | WCK ~ WSK > >
WSK WK > >

Table 7. The statistical significance test results using S-test and T-test between the word-
combination kernel (WCK), word kernel (WK) and word-sequence kernel (WSK).
“>” indicates a strong evidence that the left-hand kernel is better than the right-
hand one; “>” indicates a weak evidence that the left-hand kernel is better than

”

the right-hand one; “~

indicates we can’t decide which side is better.

(unit = second) WCK WK WSK

Preprocessing time 29 25 25
. Training time 418 341 25177
Reuters-21578 | st time 133 92 11256
Total 551 458 36458

Preprocessing time 62 53 53
20 Newsgroups Training time 558 349 36153
Test time 367 156 19367
Total 987 538 55573

Table 8. Comparison of computing efficiency between the word-combination kernel
(WCK), word kernel (WK) and word-sequence kernel (WSK) on the Reuters-21578
and 20 Newsgroups datasets. The running time is measured in seconds. The word-
combination kernel and word-sequence kernel are both with feature length n = 2.
The time for the 20 Newsgroups dataset is obtained by averaged over 10 runs of the

algorithms.

features are more compatible with the flexibility of natural language and the feature
dimensions of documents can be reduced significantly. In addition, the word com-
bination features can capture similarity at a more specific level than single words.
A computationally simple and efficient algorithm is proposed to calculate this kernel.
We use a linear combination formulation to combine the word-combination kernels
with different feature lengths, and observed the impact of the word combination
length on performance. When the word combination length n = 2, this kernel ob-

WCK

WK

WSK

Computational complexity | O(|di| + |d2| + 6nins)

O(ld1| +|da]) O(n|di]|d2])

Table 9. Computational complexities of the word-combination kernel (WCK), word kernel
(WK) and word-sequence kernel (WSK). For the word-sequence kernel, n is the

feature length.

894 L. Zhang, X. Hu

tains the best performance. Experimental results show that the word-combination
kernel can achieve better performance than the word kernel and word-sequence ker-
nel on the Reuters-21578 and 20 Newsgroups datasets.

The word-combination kernel can be used in conjunction with any kernel-based
learning system. We will further research the use of this kernel to text clustering,
ranking tasks, etc., and conduct more experiments on various kinds of text datasets.
We will also research the feature selection method that can be embedded into this
kernel to select the significant word combination features automatically.

REFERENCES

[1] JoacHmMs, T.: Text Categorization with Support Vector Machines: Learning with
Many Relevant Features. In: Proceedings of the 10" European Conference on Ma-
chine Learning, Chemnitz, Germany, 1998, pp. 137-142.

[2] Dumals, S.—PLATT, J.—HECKERMAN, D.—SAHAMI, M.: Inductive Learning Al-
gorithms and Representations for Text Categorization. In: Proceedings of the 7t?
International Conference on Information and Knowledge Management (CIKM '98),
Bethesda, Maryland, USA, 1998, pp. 148-155.

[3] YaNG, Y.—Liu, X.: A Re-Examination of Text Categorization Methods. In: Pro-
ceedings of the 22"¢ Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Berkeley, California, USA 1999, pp. 42-49.

[4] Rapovanovi¢, M.—IvaNovi¢, M.—BubpIMAC, Z.: Text Categorization and Sort-
ing of Web Search Results. Computing and Informatics, Vol. 28, 2009, No. 6,
pp. 861-893.

[5] SALToN, G.—McacILL, M.J.: Introduction to Modern Information Retrieval.
McGraw-Hill, New York, USA, 1983.

[6] LopHi, H.—SAUNDERS, C.—SHAWE-TAYLOR, J.—CRISTIANINI, N.—
WATKINS, C.: Text Classification Using String Kernels. Journal of Machine
Learning Research, Vol. 2, 2002, pp. 419-444.

[7] CANCEDDA, N.—GAUSSIER, E.—GOUTTE, C.—RENDERS, J. M.: Word-Sequence
Kernels. Journal of Machine Learning Research, Vol. 3, 2003, pp. 1059-1082.

[8] MoscHITTI, A.—BASILI, R.: Complex Linguistic Features for Text Classification:
A Comprehensive Study. In: Proceedings of the 26" European Conference on Infor-
mation Retrieval (ECIR04), Sunderland, United Kingdom, 2004, pp. 181-196.

[9] ZHANG, L.—Hu, X.: A Novel Kernel for Text Categorization. In: Proceedings of
2012 IEEE International Conference on Computer Science and Automation Engineer-
ing, Zhangjiajie, China, 2012, Vol. 1, pp. 186-190.

[10] SEBASTIANI, F.: Machine Learning in Automated Text Categorization. ACM Com-
puting Surveys, Vol. 34, 2002, No. 1, pp. 1-47.

[11] LeopoLD, E.—KINDERMANN, J.: Text Categorization with Support Vector Ma-
chines. How to Represent Texts in Input Space? Machine Learning, Vol. 46, 2002,
No. 1-3, pp. 423-444.

Word Combination Kernel for Text Classification with Support Vector Machines 895

[12]
[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

CRISTIANINI, N.—SHAWE-TAYLOR, J.—LoDHI, H.: Latent Semantic Kernels. Jour-
nal of Intelligent Information Systems, Vol. 18, 2002, No. 2-3, pp. 127-152.

OzaiR, L.—GUNGOR, T.: Text Classification with the Support of Pruned Depen-
dency Patterns. Pattern Recognition Letters, Vol. 31, 2010, No. 12, pp. 1598-1607.
WITTEK, P.—DARANYI, S.—TAN, C. L.: Improving Text Classification by a Sense
Spectrum Approach to Term Expansion. In: Proceedings of the 13*" Conference on
Computational Natural Language Learning (CoNLL’09), Boulder, CO, USA, 2009,
pp. 183-191.

CANCEDDA, N.—MAHE, P.: Factored Sequence Kernels. Neurocomputing, Vol. 72,
2009, No. 7-9, pp. 1407-1413.

VISHWANATHAN, S.—SMOLA, A. J.: Fast Kernels for String and Tree Matching.
Advances in Neural Information Processing Systems, Vol. 15, 2003, pp. 569-576.

TreOo, C.H.—VISHWANATHAN, S.V.N.: Fast and Space Efficient String Kernels
using Suffix Arrays. In: Proceedings of the 23" International Conference on Machine
Learning, Pittsburgh, Pennsylvania, USA, 2006, pp. 929-936.

Suzuki, J.—Isozaki, H.: Sequence and Tree Kernels with Statistical Fea-
ture Mining. Advances in Neural Information Processing Systems, Vol. 18, 2006,
pp. 1321-1328.

SioLas, G.—D’ALcHE-Buc, F.: Support Vector Machines based on a Semantic
Kernel for Text Categorization. In: Proceedings of the IEEE-INNS-ENNS Interna-
tional Joint Conference on Neural Networks (IJCNN ’00), Como, Italy, 2000, Vol. 5,
pp- 205-209.

MoscHITTI, A.: Kernel Methods, Syntax and Semantics for Relational Text Catego-
rization. In: Proceedings of the 17%" ACM Conference on Information and Knowledge
Management (CIKM’08), Napa Valley, California, USA, 2008, pp. 253-262.

WanG, P.—DOMENICONI, C.: Building Semantic Kernels for Text Classification
using Wikipedia. In: Proceedings of the 14®* ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’08), Las Vegas, Nevada, USA, 2008,
pp. 713-721.

Hickyr, A.—WirLiams, J.—BENSLEY, J.—ROBERTS, K.—SHI, Y.—RINK, B.:
Question Answering with LCC’s CHAUCER at TREC 2006. In: Proceedings of the
15 Text Retrieval Conference (TREC’06), 2006, pp. 283-292.

VOORHEES, E.M.: Overview of the TREC 2004 Question Answering Track. In:
Proceedings of the 13" Text Retrieval Conference (TREC '04), 2004, pp. 52-62.
FURNKRANZ, J.—MITCHELL, T.—RILOFF, E.: A Case Study in Using Linguis-
tic Phrases for Text Categorization on the WWW. In: Working Notes of the
AAAT/ICML Workshop on Learning for Text Categorization, 1998, pp. 5-12.
KEHAGIAS, A.—PETRIDIS, V.—KABURLASOS, V. G.—FRAGKOU, P.: A Compari-
son of Word- and Sense-Based Text Categorization Using Several Classification Algo-
rithms. Journal of Intelligent Information Systems, Vol. 21, 2003, No. 3, pp. 227-247.
SALTON, G.—BUCKLEY, C.: Term-Weighting Approaches in Automatic Text Re-
trieval. Information Processing and Management, Vol. 24, 1988, No. 5, pp. 513-523.
SCHOLKOPF, B.—SMOLA, A.J.: Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, 2002.

896 L. Zhang, X. Hu

[28] RAKOTOMAMONJY, A.—BAcH, F.R.—CANU, S.—GRANDVALET, Y.: Sim-
pleMKL. Journal of Machine Learning Research, Vol. 9, 2008, pp. 2491-2521.

[29] KERNIGHAN, B. W.—RITCHIE, D. M.: The C Programming Language (Second Edi-
tion). Prentice Hall, 1988.

[30] CHANG, C.C.—LiN, C.J.: LIBSVM: A Library for Support Vector Machines. Avail-
able at: http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Lujiang ZHANG received the B. Sc. degree in computer software
and theory from Chinese Academy of Sciences. Currently, he is
a Ph.D. candidate in School of Automation Science and Electri-
cal Engineering, Beijing University of Aeronautics & Astronau-
tics, China. His research interests include machine learning and
software analysis.

Xiaohui Hu received the Ph.D. degree from School of Com-
puter Science and Engineering, Beijing University of Aeronau-
tics & Astronautics, China. Currently, he is a Professor in School
of Automation Science and Electrical Engineering, Beijing Uni-
versity of Aeronautics & Astronautics. His research interests in-
clude information systems integration and computer simulation
technology.

