
Computing and Informatics, Vol. 35, 2016, 986–1004

INFRASTRUCTURE-AGNOSTIC PROGRAMMING
AND INTEROPERABLE EXECUTION
IN HETEROGENEOUS GRIDS

Enric Tejedor

Conseil Européen pour la Recherche Nucleaire (CERN)
Meyrin, Switzerland
e-mail: enric.tejedor.saavedra@cern.ch

Javier Álvarez

The University of Adelaide
Adelaide, Australia
e-mail: javier.alvarez@adelaide.edu.au

Rosa M. Badia

Barcelona Supercomputing Center (BSC-CNS)
Jordi Girona 29, 08034 Barcelona (Spain)
&
Artificial Intelligence Research Institute (IIIA)
Spanish Council for Scientific Research (CSIC)
E-08193 Bellaterra, Barcelona (Spain)
e-mail: rosa.m.badia@bsc.es

Abstract. In distributed environments, no matter the type of infrastructure (clus-
ter, grid, cloud), portability of applications and interoperability are always a major
concern. Such infrastructures have a high variety of characteristics, which brings a
need for systems that abstract the application from the particular details of each
infrastructure. In addition, managing parallelisation and distribution also compli-
cates the work of the programmer. In that sense, this paper demonstrates how

Infrastructure-Agnostic Programming and Interoperability 987

an e-Science application can be easily developed with the COMPSs programming
model and then parallelised in heterogeneous grids with the COMPSs runtime.
With COMPSs, programs are developed in a totally-sequential way, while the user
is only responsible for specifying their tasks, i.e. computations to be spawned asyn-
chronously to the available resources. The COMPSs runtime deals with parallelisa-
tion and infrastructure management, so that the application is portable and agnostic
of the underlying infrastructure.

Keywords: Grid programming models, workflow managers, parallelism exploita-
tion

Mathematics Subject Classification 2010: 68-N19, 68-M14

1 INTRODUCTION

In distributed environments, no matter the type of infrastructure (cluster, grid,
cloud), portability of applications and interoperability are always a major con-
cern [3, 2]. Different infrastructures can have very diverse characteristics. Besides,
even in the scope of a given infrastructure, there is typically a plethora of alterna-
tives to implement and execute an application, and often several vendors compete
to dominate the market. Choosing one of the alternatives usually ties the appli-
cation to it, e.g. due to the use of a certain API. As a result, it may be hard
to port the application, not only to another kind of infrastructure, but also to
an equivalent platform provided by another vendor or managed by different soft-
ware.

Standards do appear, either “de facto” or produced by collaborative organisa-
tions that develop them, as in the case of the Open Grid Forum [7], but it is often
complicated for them to be widely accepted. This situation, which is likely to keep
happening in future scenarios, increases the importance of systems that free the user
from porting the same application over different platforms.

On the other hand, some of the difficulties of programming applications for
distributed infrastructures are not related to their particular characteristics, but
to the duty of parallelisation and distribution itself [22]. This includes aspects
like thread creation and synchronisation, messaging, data partitioning and transfer,
etc. Having to deal with such aspects can significantly complicate the work of the
programmer as well.

In that sense, this paper demonstrates how the COMPSs programming model
and runtime system can be used to easily develop and parallelise applications in dis-
tributed infrastructures. More precisely, we discuss an example of an e-Science ap-
plication that was programmed with the COMPSs model. Such application does not
include any API call, deployment or resource management detail that could tie it to
a certain platform. In addition, the application is programmed in a fully-sequential

988 E. Tejedor, J. Álvarez, R. M. Badia

fashion, freeing the programmer from having to explicitly manage parallelisation
and distribution.

Furthermore, we present some experiments that execute that application in
large-scale heterogeneous grids controlled by different types of middleware. A run-
time is responsible for hiding that heterogeneity to the programmer, interacting
with the grids and making them interoperable to execute the application. Conse-
quently, the application remains agnostic of the underlying infrastructure, which
favours portability.

The paper is structured as follows. Section 2 provides an overview of the
COMPSs programming model and runtime system. Section 3 introduces the use-case
e-Science application. Section 4 describes the grid testbed used in the experiments.
Section 5 presents the results of the experiments. Finally, Section 6 discusses some
related work and Section 7 concludes the paper.

2 OVERVIEW OF COMP SUPERSCALAR

This section introduces the COMP Superscalar (COMPSs) programming model, as
well as the runtime system that supports the model’s features. COMPSs is tailored
for Java applications running on distributed platforms like clusters, grids and clouds.
For a more detailed description of COMPSs, please see [28, 30, 29].

2.1 Programming Model

The COMPSs programming model can be defined as task-based and dependency-
aware. In COMPSs, the programmer is only required to select a set of methods
and/or services called from a sequential Java application, for them to be run as
tasks – asynchronous computations – on the available distributed resources.

The task selection is done by providing a Task Selection Interface (TSI), a Java
interface which declares those methods/services, along with some metadata. Part
of these metadata specifies the direction (input, output or in-out) of each task pa-
rameter; this is used to discover, at execution time, the data dependencies between
tasks. The TSI is not a part of the application: it is completely separated from the
application code and it is not implemented by any of the user’s classes; its purpose
is merely specifying the tasks.

With COMPSs, sequential Java applications can be parallelised with no mod-
ifications: the application code does not contain any parallel construct, API call
or pragma. All the information needed for parallelization is contained in the TSI.
Besides, the application is not tied to a particular infrastructure: it does not include
any resource management or deployment information.

2.2 Runtime System

The runtime system receives as input the class files corresponding to the sequential
code of the application and the TSI. Before executing the application, the run-

Infrastructure-Agnostic Programming and Interoperability 989

time transforms it into a modified bytecode that can be parallelised. In particular,
the invocations of the user-selected methods/services are automatically replaced by
an invocation to the runtime: such invocation will create an asynchronous task and
let the main program continue its execution right away.

The created tasks are processed by the runtime, which dynamically discovers the
dependencies between them, building a task dependency graph. Moreover, a renam-
ing technique is used to avoid some kinds of dependencies. The parallelism exhibited
by the graph is exploited as much as possible, scheduling the dependency-free tasks
on the available resources. The scheduling is locality-aware: nodes can cache task
data for later use, and a node that already has some or all the input data for a task
gets more chances to run it.

The interaction of the runtime with the infrastructure is done through Java-
GAT [16], which offers a uniform API to access different kinds of grid middleware.
COMPSs uses JavaGAT for two main purposes: submitting tasks and transferring
files to grid resources. Thus, the runtime is responsible for transferring task data
and managing task execution through JavaGAT, while the application is totally
unaware of such details.

3 THE SIMDYNAMICS APPLICATION

DISCRETE [12] is a package devised to simulate the dynamics of proteins using the
Discrete Molecular Dynamics (DMD) methods. In such simulations, the particles
are assumed to move with constant velocity until a collision occurs, conserving the
total momentum and energy, which drastically saves computation time compared to
standard MD protocols.

The simulation program of DISCRETE receives as input a coordinate and
a topology files, which are generated with a setup program also included in the
package. The coordinate file provides the position of each atom in the structure, and
the topology file contains information about the chemical structure of the molecule
and the charge of the atoms. Besides, the simulation program reads a parameter
file, which basically specifies three values: EPS (Coulomb interactions), FSOLV
(solvation) and FVDW (Van Der Waals terms).

The SimDynamics application, which will be used in the experiments presented
in Section 5, is a sequential Java program that makes use of the DISCRETE package.
Starting from a set of protein structures, the objective of SimDynamics is to find the
values of the EPS, FSOLV and FVDW parameters that minimise the overall energy
obtained when simulating their molecular dynamics with DISCRETE. Hence, Sim-
Dynamics is an example of a parameter-sweeping application: for each parameter,
a fixed number of values within a range is considered and a set of simulations (one
per structure) is performed for each combination of these values (configuration).
Once all the simulations for a specific configuration have completed, the configura-
tion’s score is calculated and later compared to the others in order to find the best
one.

990 E. Tejedor, J. Álvarez, R. M. Badia

The main program of the SimDynamics application is divided in three phases:

1. For each of the N input protein structures, their corresponding topology and
coordinate files are generated. These files are independent of the values of EPS,
FSOLV and FVDW.

2. Parameter-sweep simulations: a simulation is executed for each configuration
and each structure. These simulations do not depend on each other. The more
values evaluated for each parameter, the more accurate will be the solution.

3. Finding the configuration with minimal energy: the execution of each simulation
outputs a trajectory and an energy file, which are used to calculate a coefficient
for each configuration. The main result of the application is the configuration
that minimises that coefficient.

In order to run SimDynamics with COMPSs, a total of six methods invoked
from the application were chosen as tasks. This was done by defining a TSI that
declares those methods. Figure 1 contains a fragment of this TSI, more precisely
the selection of method simulate as a task. The parameters of simulate are three
input files, an input string and an output file. The declarations of the other five
methods are analogous to this one. The following points describe the method tasks,
the subindexes indicating the phase to which they belong:

• genReceptorLigand1: given a structure file, it generates some associated files
(receptor and ligand). It is invoked N times (one per structure).

• dmdSetup1: it executes the DMDSetup binary, included in the DISCRETE pack-
age, with a structure’s receptor and ligand as input; as output, it generates the
topology and coordinate files for the structure. It is invoked N times (one per
structure).

• simulate2: it runs the simulation binary of the DISCRETE suite, given a coor-
dinate file, a topology and a specific configuration (FVDW, FSOLV and EPS
values); it returns an average score file. If the number of values considered
for EPS, FSOLV and FVDW is SEPS, SFSOLV and SFV DW , respectively, this
method is invoked N × SEPS × SFSOLV × SFV DW times.

• merge2: it merges two average score files belonging to the same configuration of
parameters. It is invoked (N − 1)× SEPS × SFSOLV × SFV DW times.

• evaluate3: it generates the final coefficient from all the average scores of a con-
figuration. It is invoked once per configuration, i.e. SEPS × SFSOLV ×
SFV DW times.

• min3: it receives two coefficient files and outputs the lowest one. It is invoked
(SEPS × SFSOLV × SFV DW)− 1 times.

Infrastructure-Agnostic Programming and Interoperability 991

public interface SimDynamicsItf {

@Method(declaringClass = ”simdynamics.SimDynamicsImpl”)
void simulate(

@Parameter(type = FILE) String paramFile,
@Parameter(type = FILE) String topFile,
@Parameter(type = FILE) String crdFile,
String natom,
@Parameter(type = FILE, direction = OUT) String average

);

...

}

Figure 1. Code snippet of the Task Selection Interface for the SimDynamics application,
where the simulate method is selected as a task. The @Method annotation spec-
ifies the class that implements simulate, and the @Parameter annotation contains
parameter-related metadata (type, direction).

4 TESTBED INFRASTRUCTURE

The SimDynamics application was executed with COMPSs on real large-scale scien-
tific grids. The whole infrastructure used in the tests is depicted in Figure 2, and
it includes three grids: the Open Science Grid, Ibergrid and a small grid owned by
the Barcelona Supercomputing Center [1].

Such infrastructure represents a heterogeneous testbed, comprised by three grids
belonging to different administrative domains and managed by different middleware.
The next subsections briefly describe the topology of these grids and explain how
the COMPSs runtime was able to hide the complexity of their heterogeneity, keeping
the grid-related details transparent to the application.

4.1 Grids

4.1.1 Open Science Grid

The Open Science Grid (OSG) [9] is a science consortium, funded by the United
States Department of Energy and the National Science Foundation, that offers
an open grid cyberinfrastructure to the research and academic communities. OSG
federates more than 100 sites around the world, most of them located in the United
States, including laboratory, campus, and community facilities. These sites provide
guaranteed and opportunistic access to shared computing and storage resources. As
of May 2011, OSG comprised a total of around 70 000 cores and 29 Petabytes of
disk storage and it provided 1.4 million CPU hours/day [10].

OSG is used by scientists and researchers to perform data analysis tasks that
are too computationally intensive for a single data center or supercomputer. This
grid was created to process data coming from the Large Hadron Collider at CERN,
and consequently most of its resources are allocated for particle physics; however,

992 E. Tejedor, J. Álvarez, R. M. Badia

it is also used by research teams from disciplines like biology, chemistry, astronomy
and geographic information systems.

Each of the OSG sites – clusters, computing farms – is configured to deploy a set
of grid services, like user authorisation, job submission and storage management.
Basically, a site is organised in a Compute Element (CE), running in a front-end
node known as the gatekeeper, plus several worker nodes (or execution nodes). The
CE allows users to run jobs on a site by means of the Globus GRAM (Grid Resource
Allocation Manager) [19] interface; at the back-end of this GRAM gatekeeper, each
site features one or more local batch systems – like Condor [31], PBS [8] or LSF [11] –
that process a queue of jobs and schedule them on the worker nodes. Besides, the
standard CE installation includes a GridFTP server; typically, the files uploaded to
this server are accessible from all the nodes of the site via a distributed file system
like NFS (Network File System [6]).

4.1.2 Ibergrid

Ibergrid was set up in May 2010 as an umbrella organisation for ES-NGI [13] and
INGRID [5] – the Spanish and Portuguese National Grid Initiatives, respectively –
in the framework of the European Grid Initiative (EGI), which has the mission of
creating and maintaining a pan-European Grid infrastructure.

Ibergrid offers aggregated computing power of more than 24,000 cores and 20
Petabytes of online storage and supports scientists in several fields of research, in-
cluding high-energy physics, computational chemistry, engineering and nuclear fu-
sion. Ibergrid also dedicates, like the OSG, a significant part of its resources to
process data from the LHC. In total, the usage of Ibergrid reached 124 million CPU
hours in 2011 [4].

Similarly to OSG, the Ibergrid infrastructure is composed by different sites, each
one with a gatekeeper node interfacing to the cluster, a local resource management
system (batch) and a set of worker nodes. However, in Ibergrid the middleware
installed is gLite [21] and job management is a bit different: instead of submitting
the jobs to a given CE directly, the user proceeds by interacting with a Workload
Management Server (WMS), which acts as a meta-scheduling server. Therefore,
matchmaking is performed at a higher level: the WMS interrogates the Information
Supermarket (an internal cache of information) to determine the status of compu-
tational and storage resources, and the File Catalogue to find the location of any
required input files; based on that information, the WMS selects a CE where to
execute the job.

4.1.3 BSC Grid

Finally, the Barcelona Supercomputing Center (BSC) Grid [1] is a small clus-
ter located in the BSC premises and formed by five nodes. Three of them have
a single-core processor at 3.60 GHz, 1 GB of RAM and a local disk of 60 GB. The
other two have a quad-core processor at 2.50 GHz each core, 4 GB of RAM and

Infrastructure-Agnostic Programming and Interoperability 993

a local disk of 260 GB. The cluster does not have any shared file system config-
ured.

The BSC Grid is the only grid of the testbed that supports interactive execution:
the user can connect to any of the nodes separately via SSH and launch computations
on them. Moreover, files can be transferred to/from the local disk of each node
through SSH as well.

OSG

VO proxy
-OSG-

gLiteGlobus GRAM SSH

COMPSs Runtime

JavaGAT

Ibergrid
BSC Grid

GridFTP

Compute Element

WM
Server

VO proxy
-Ibergrid-

Figure 2. Testbed comprising two large-scale scientific grids (Open Science Grid, Ibergrid)
and a BSC-owned grid. The SimDynamics application, running on a machine with
COMPSs, interacts with the grids through JavaGAT and its middleware adaptors.

4.2 Configuration and Operation Details

In order to run the SimDynamics application in the described testbed, the testing
environment was configured as shown in Figure 2.

The access point to the Grid was a laptop equipped with a dual-core 2.8 GHz
processor and 8 GB RAM. This is different from the traditional procedure of sub-
mitting jobs from a User Interface node (UI) of a grid, where the software to interact
with that grid is already present. Since the experiments did not target a particular
grid but three different ones, and to illustrate how a user can execute a COMPSs
application on the grid from his/her own machine, another approach was followed.

The laptop hosted the main program of the application, and therefore it had
the COMPSs runtime and the JavaGAT library installed. Notice that no client

994 E. Tejedor, J. Álvarez, R. M. Badia

middleware had to be installed in the laptop, the GAT adaptors sufficed to interact
with all the grids. In addition, prior to the execution, the credentials for each grid
were obtained. Putting aside the setup of the SSH keys to access the BSC Grid,
OSG and Ibergrid required proxy certificates for authentication, each with a different
VO extension. Both proxies were created in a UI node of Ibergrid with the VOMS
tools [14] and then placed in the laptop, so that JavaGAT could make use of those
credentials when contacting the grids.

Concerning the grid middleware, the points below list the GAT adaptors and
the corresponding grids where they were used. The resources available in each grid
were specified in a resources file, along with their capabilities (e.g. associated storage
servers).

• Globus GRAM and OSG : a total of six OSG sites that support our VO (Engage)
were used in the tests, each with its own CE. The gatekeeper of every CE was
contacted by means of the Globus GRAM adaptor, used for job submission and
monitoring in OSG.

• gLite and Ibergrid : the gLite adaptor was used to submit and monitor jobs by
connecting to an Ibergrid WMS, which is in charge of selecting the execution
site in Ibergrid. Among all the WMS at the disposal of our VO (ICT), the one
with most availability was chosen.

• GridFTP (OSG and Ibergrid): the OSG CEs and the Ibergrid WMS offer each
a GridFTP server. The GAT GridFTP adaptor was used to transfer files to
those servers during execution.

• SSH and BSC Grid : two nodes of BSC Grid were used in the tests, being
accessed through the GAT SSH adaptors, more precisely for job submission and
file transfer.

Before execution, there was a previous phase of deployment where some required
files were installed in the grids; those included, on the one hand, the worker runtime
and, on the other, the classes and executables of the application tasks. In OSG, the
files to be deployed were copied to the GridFTP server of each CE, so they could
be accessed from the worker nodes. In Ibergrid, the files were transferred to the
GridFTP server of the WMS, since the final execution site is not known in advance
in this scenario; each time a job is created in Ibergrid, those files are copied by the
worker runtime from the GridFTP server to the site where the job will run. Finally,
in BSC Grid the files were placed in the local disk of the nodes.

At execution time, the master runtime of COMPSs sends the SimDynamics tasks
and transfers files to the three grids by means of GAT. In OSG, the input files of
each task are first pre-staged to the GridFTP server of the target CE, thus being
accessible through the NFS server of that CE too; after that, when the job is created
in the CE to execute the task, the worker runtime copies the input files from NFS to
the local disk of the target worker node; similarly, the output files are copied from
local to NFS at the end of the task, thus being available in the GridFTP server as
well. In Ibergrid, the task input files are transferred to the GridFTP server of the

Infrastructure-Agnostic Programming and Interoperability 995

WMS; the pre- and post-staging of those files to/from the final worker node is taken
care by gLite: the WMS chooses the execution site, sends the job to the head node
of that site, then the job is locally scheduled and the input files are copied from the
GridFTP server to the local disk of the worker node (the process is inverse for the
output files). Lastly, the BSC Grid scenario is simpler since the files can be directly
transferred to/from the local disk of the final execution node.

In the case of SimDynamics, all the application input files were initially located
in the laptop’s disk and then progressively transferred to the execution resources
as the application ran; nevertheless, for applications dealing with huge files, the
programmer can also refer to those files with a whole URI (i.e. including the resource
name) in the application code, so that they are gotten from that resource.

When scheduling jobs on the grids, the COMPSs runtime takes into account
locality: a task will be assigned, if possible, to a resource that already possesses one
or more of the task’s input files (in its GridFTP server or local disk). Whenever
a resource is freed (a task finishes), the scheduler chooses the task with the best
score among the pending ones, the score being the number of task input files in
the resource. Note that Ibergrid counts as a single entity for locality, because the
final destination of the job is not decided by COMPSs. If some input file is missing
in the chosen resource, such file is replicated to that resource. If the source and
destination resources share the same credentials (e.g. two OSG sites) such transfer
happens directly between them; otherwise, the file is first copied to the laptop and
then to the destination resource.

5 EVALUATION

This section presents the results of executing the SimDynamics application (Sec-
tion 3) in the described testbed (Section 4). These tests will show how the tasks of
an e-Science application are executed in three different grids with COMPSs.

From the point of view of the application, all the Grid management discussed in
Section 4 is transparent. The application deals with its parameters, i.e. number of
structures and coefficients. For these experiments, the parameters were the follow-
ing: N = 10 (structures), SEPS = 3, SFSOLV = 3, SFV DW = 3 (i.e. 27 configurations
for parameter sweeping). Applying the formulae in Section 3, this leads to a total of
586 tasks, including 270 simulation tasks – the most computationally-intensive with
about two minutes of execution time each. The rest of the tasks are lightweight,
with a duration of less than 10 seconds.

Figure 3 a) shows how tasks were distributed among the three grids during an ex-
ecution of SimDynamics with COMPSs. The six OSG resources were the ones that
consumed more tasks; indeed, among all the OSG sites that support our VO, the
ones with most availability were chosen. The two BSC Grid nodes also executed
a considerable number of tasks because they are directly accessible and therefore
those tasks did not suffer from queue waiting times. Ibergrid received less load be-
cause of three factors. First, the Ibergrid queue times in these tests were high, which

996 E. Tejedor, J. Álvarez, R. M. Badia

OSG Ibergrid BSC Grid

a)

TransferLocal

100%

80%

60%

40%

20%

0%
Locality-aware FIFO

b)

caused tasks scheduled in Ibergrid to wait. Second, regarding the internal scheduling
policies of the Ibergrid sites, several sites offer to our VO only opportunistic access
to their resources; some other sites reserve a certain number of slots with priority
but they are shared by all the Ibergrid VOs. Finally, the errors when submitting
tasks to the WMS were quite frequent, which made tasks go through a (sometimes
long) resubmission process.

In that sense, Table 1 contains the statistics of errors in task submissions and file
transfers for the different grids and a particularly faulty execution of SimDynamics,
in order to demonstrate the fault tolerance mechanisms of the COMPSs runtime. In
general, the OSG sites presented only occasional failures in task submissions and file
transfers, which were easily solved with resubmissions and retransfers with no need
for task rescheduling. On the contrary, the errors when connecting to the Ibergrid
WMS were common, possibly because of a bug in the JavaGAT gLite adaptor or
because of the WMS itself; in order to face that issue, several retries were attempted
when necessary for a task (6 per task on average), progressively increasing the time
between two resubmissions. The most reliable combination of grid/adaptor was BSC
Grid/SSH, for which no errors of any kind were registered.

Regarding data locality, Figure 3 b) illustrates the benefits of using a locality-
aware task scheduling algorithm. Such algorithm is especially important in a highly-

Infrastructure-Agnostic Programming and Interoperability 997

1

0

3

2

TransferLocal

in

pu
t f

ile
s

tasks

Phase 2 (simulate + merge)

Phase 1 (genReceptorLigand + dmdSetup) Phase 3 (evaluate + min)

c)

Figure 3. Test results for the SimDynamics application when run with COMPSs in the
Grid testbed: a) distribution of the SimDynamics tasks among the three grids;
b) comparison of percentage of transfers between the locality-aware and FIFO
scheduling algorithms; c) evolution of the number of transfers when applying
locality-aware scheduling.

Task sub. # File tra.
Grid Resource OK Failed OK Failed

OSG

brgw1.renci.org 72 4 102 1
gridgk01.racf.bnl.gov 43 0 70 1
rossmann-osg.rcac.purdue.edu 57 14 89 11
smufarm.physics.smu.edu 69 1 92 1
stargrid02.rcf.bnl.gov 55 0 90 1
u2-grid.ccr.buffalo.edu 62 1 96 0

TOTAL 358 20 539 15

Ibergrid wms01.ific.uv.es 33 209 58 0
TOTAL 33 209 58 0

BSC Grid
bscgrid05.bsc.es 122 0 116 0
bscgrid06.bsc.es 73 0 79 0

TOTAL 195 0 195 0

TOTAL 586 229 792 15

Table 1. Task submission and file transfer statistics for SimDynamics

998 E. Tejedor, J. Álvarez, R. M. Badia

distributed testbed like the one in Figure 2, where data transfers are costly. Fig-
ure 3 b) compares two executions of SimDynamics, one using locality-aware schedul-
ing and another one applying a FIFO (First In First Out) strategy, and it shows
the percentage of transfers actually performed versus the percentage of locality (the
transfer was not necessary because the input file was already on the target execution
resource), the total being the number of input files of all tasks. The locality-aware
algorithm achieved remarkable results, preventing almost 2 out of every 3 trans-
fers.

As a complement to Figure 3 b), Figure 3 c) illustrates the number of transfers
that could be avoided thanks to locality all along the application execution. The
x-axis represents the tasks of SimDynamics in the order that they are scheduled
during the application execution; each point of the axis corresponds to two tasks,
so that the number of points is reduced by half and the shape of the plotted lines
is smoother. The y-axis reflects the evolution of avoided transfers (Local) and per-
formed transfers (Transfer), each point showing the average of two tasks for both
values. In the first phase of the application, the genReceptorLigand tasks require their
input files to be transferred from the laptop to the grid resources, while the succes-
sor tasks dmdSetup benefit from full locality because they are scheduled in the same
resources as their predecessor tasks, where the corresponding receptor and ligand
files are already present. After that, there is an explosion of, first, simulate and,
later, merge tasks, for which the runtime can prevent up to three and two transfers,
respectively. Finally, the graph gets narrower when the merged scores of the simu-
lations are processed by the evaluate and min tasks, each with two input files subject
to locality.

public interface SimDynamicsItf {
@Constraints(operatingSystem = ”Scientific Linux”)
@Method(...)
void genReceptorLigand(...);

@Constraints(appSoftware = ”DISCRETE”)
@Method(...)
void simulate(...);

@Constraints(memory = 4)
@Method(...)
void evaluate(...);

...
}

Figure 4. Detail of the task constraint specification in the TSI of SimDynamics

SimDynamics works with only a few MB of data, but preventing files from being
transferred in grids becomes more important as the size of these data increases.
Furthermore, when dealing with big files the locality algorithm should take into
account not only the number of files but also their size when selecting the destination
host of a task. This requires to keep track of the sizes of each file updated/generated
in the workers, as well as to send that information to the master runtime for it to

Infrastructure-Agnostic Programming and Interoperability 999

1

2

5913 17 21 25 29 33

3

4

61014 18 22 26 30 34

7

8

37

11

12

15

16

38

19

20

23

24

39

27

28

31

32

40

35

36

41 42

43

1. Ibergrid

2. OSG

3. BSC Grid

genReceptorLigand

dmdSetup

simulate
merge

evaluate

min

Figure 5. Reduced version of the SimDynamics graph (the real one contains 586 tasks).
The constraints in Figure 4 lead to the task scheduling on the grids represented by
this figure.

make better decisions. Such optimisation was addressed in [25] but it is out of the
scope of this paper. Alternatively, the user can associate a given kind of task that
accesses some big input data with a certain resource that is known to host those
data, or with a resource that fulfills some other hardware/software requirements of
the task.

In that sense, a variant of the tests discussed above intended to demonstrate
how to use constraints to force the scheduling of tasks on certain resources. Let
us assume that each kind of task in SimDynamics has some resource requirements;
Figure 4 shows how they can be specified in COMPSs by means of the @Constraints

annotation, at method level, in the TSI. Those requirements need to match the re-
source capabilities contained in the resources file. In this example, genReceptorLigand
must be executed in nodes running Scientific Linux, which is the operating system
installed in Ibergrid. Second, simulate is supposed to run in resources where the DIS-
CRETE software is present; here, such capability was assigned only to OSG sites.
Finally, evaluate has a hardware constraint attached – more precisely, the amount
of physical memory – which was only known and specified in the resources file for
the BSC Grid nodes. The three other kinds of task not shown in Figure 4 have
analogous constraints.

As a result of the constraints, at execution time the scheduling of tasks on
resources was the one depicted in Figure 5. This graph is a smaller version (only
8 configurations) just for illustration purposes. In conclusion, the programmer can
use task constraints to make sure that a given group of tasks will be executed in one
or more resources that conform to a set of requirements.

1000 E. Tejedor, J. Álvarez, R. M. Badia

6 RELATED WORK

Apart from COMPSs, there exist other programming models for Grid applications.
Ninf-G [26] offers a programming model where client programs can call libraries
on remote resources using a client API that is built on top of the Globus Toolkit.
Ninf-G’s model is more complex than COMPSs’, since the programmer has to sub-
stantially modify the original application code by including the invocations to the
GridRPC API. Furthermore, COMPSs can submit tasks using different kinds of
grid middleware. Satin [32] permits to express divide-and-conquer parallelism in
Java applications, marking method invocations for asynchronous spawning. Never-
theless, the programmer must explicitly use a synchronisation primitive to wait for
the spawned tasks; unlike Satin, COMPSs takes care of task and data synchroni-
sation automatically, and it is not restricted to the divide-and-conquer paradigm.
OpenWP [17] is a grid programming and runtime environment with a set of direc-
tives that have to be included in the application code to express parallelism and
distribution. The main difference between COMPSs and OpenWP is that the lat-
ter requires to indicate the dependencies between tasks in the application code,
whereas the former finds them automatically at execution time. ASSIST [15] is
a programming environment that makes possible the development of parallel and
distributed applications. It offers a coordination language to express parallel pro-
grams in two main parts: a module graph which defines how nodes interact using
data flow streams, and a set of modules, either sequential or parallel, which actually
implement the nodes of the graph; in addition, a module or a whole graph can be
wrapped as a component interoperable with Web Services. ASSIST and COMPSs
have distinct purposes: while the former gives support to high-performance grid-
aware applications, the latter offers a much simpler programming model that is
oriented to grid-unaware applications.

With respect to workflow managers, some systems have been proposed to spec-
ify the elements of a workflow and the connections between them, either graphically
or by means of a high-level workflow description language; in this sense they dif-
fer from COMPSs, where the workflow graph is implicitly defined by a concrete
execution of an application and built automatically and dynamically at runtime.
Taverna [23] is a well-known graphical tool for designing and executing grid work-
flows. A Taverna workflow is specified by a directed acyclic graph where nodes
represent software components. Each edge in the graph denotes a data dependency
from an output port of the source node to an input port of the destination node.
The nodes of a Taverna workflow can be computations executed in the grid and also
Web Services, similarly to COMPSs. Although the official Taverna distribution only
includes an SSH adaptor to submit computations to grid resources, some projects
have developed plugins to make Taverna work on top of Globus-based middleware
as well. P-GRADE [20] is a general-purpose, workflow-oriented, Globus-based grid
portal; it offers a high-level, graphical workflow development system and an execu-
tion environment for various grids. Triana [27] also permits to describe applications
by dragging and dropping their components and connecting them together to build

Infrastructure-Agnostic Programming and Interoperability 1001

a workflow graph; like in COMPSs, Triana workflows can access the grid through
JavaGAT. ASKALON [24] is an application development and computing environ-
ment that makes it possible, through the use of a portal, to create a UML model of
a workflow; in a second step, this model is automatically translated to an abstract
language that represents the workflow and then given to a set of middleware ser-
vices for scheduling and reliable execution on the grid. Pegasus [18] is a workflow
management system that takes high-level workflow descriptions and automatically
maps them to grid resources; Pegasus performs execution site selection, manages
the input data and provides directives for data transfer and registration.

7 CONCLUSIONS AND FUTURE WORK

This paper has shown how an e-Science application can be easily developed with the
COMPSs programming model and then parallelised in heterogeneous grids with the
COMPSs runtime. Such application is programmed sequentially, while the user is
only responsible for specifying its tasks. No API call or resource management details
appears in the application, so that it is portable and agnostic of the underlying
infrastructure. All the burden of parallelisation and infrastructure management is
left to the COMPSs runtime; this paper has demonstrated how this runtime can
deal with grids managed by different middleware, making them interoperable while
keeping the application unaware of grid details.

The future work includes supporting the use of logical files in COMPSs execu-
tions, possibly by creating a JavaGAT adaptor that manages them; such files are
referenced with logical names that can be associated to several physical locations.
Furthermore, we plan to extend the locality-aware algorithm to take into account not
only the number of input files but also their size when deciding the target resource
of a task.

Acknowledgements

This work has been supported by the following institutions: Universitat Politècnica
de Catalunya with a UPC Recerca predoctoral grant; the projects of Computación
de Altas Prestaciones V and VI (TIN2007-60625, TIN2012-34557); the Spanish Gov-
ernment with grant SEV-2011-00067 of Severo Ochoa Program. On the other hand,
the Ibergrid and the Open Science Grid organisations have granted us access to their
infrastructures.

REFERENCES

[1] Barcelona Supercomputing Center. http://www.bsc.es.

[2] Cloud Interoperability and Portability Remain Science Fiction.
http://searchcloudcomputing.techtarget.com/feature/

Cloud-interoperability-and-portability-remain-science-fiction.

1002 E. Tejedor, J. Álvarez, R. M. Badia

[3] Grid Interoperation Now Community Group (GIN-CG). http://www.ogf.org/gf/
groupinfo/view.php?group=gin-cg.

[4] Ibergrid 2011 Year Report. http://www.es-ngi.es/documentos/Ibergrid\

_report_2011_downloadable.pdf.

[5] Iniciativa Nacional Grid. http://www.gridcomputing.pt.

[6] Network File System. http://www.ietf.org/rfc/rfc3010.

[7] Open Grid Forum. http://www.gridforum.org/.

[8] Open Portable Batch System. http://www.openpbs.org/.

[9] Open Science Grid. http://www.opensciencegrid.org.

[10] OSG Document Database. http://osg-docdb.opensciencegrid.org/.

[11] Platform Load Sharing Facility. http://www.platform.com/workload-management/
high-performance-computing.

[12] ScalaLife Pilot Applications – DISCRETE. http://www.scalalife.eu/

applications.

[13] Spanish National Grid Initiative. http://www.es-ngi.es/.

[14] Virtual Organization Membership Service. http://edg-wp2.web.cern.ch/

edg-wp2/security/voms/.

[15] Aldinucci, M.—Coppola, M.—Danelutto, M.—Vanneschi, M.—Zocco-
lo, C.: ASSIST as a Research Framework for High-Performance Grid Programming
Environments. In: Cunha, J. C., Rana, O. F. (Eds.): Grid Computing: Software En-
vironments and Tools, Chapter 10. Springer Verlag, 2006, pp. 230–256.

[16] Allen, G.—Davis, K.—Goodale, T.—Hutanu, A.—Kaiser, H.—
Kielmann,T.—Merzky, A.—van Nieuwpoort, R.—Reinefeld, A.—
Schintke, F.—Schütt, T.—Seidel, E.—Ullmer, B.: The Grid Application
Toolkit: Towards Generic and Easy Application Programming Interfaces for the
Grid. Proceedings of the IEEE, Vol. 93, 2005, No. 3, pp. 534–550.

[17] Cargnelli, M.—Alleon, G.—Cappello, F.: OpenWP: Combining Annotation
Language and Workflow Environments for Porting Existing Applications on Grids.
Proceedings of the 2008 9th IEEE/ACM International Conference on Grid Computing
(GRID ’08), Washington, DC, USA, IEEE Computer Society, 2008, pp. 176–183.

[18] Deelman, E.—Singh, G.—Su, M.-H.—Blythe, J.—Gil, A.—Kessel-
man, C.—Mehta, G.—Vahi, K.—Berriman, G. B.—Good, J.—Laity, A.—
Jacob, J. C.—Katz, D. S.: Pegasus: A Framework for Mapping Complex Scientific
Workflows Onto Distributed Systems. Scientific Programming Journal, Vol. 13, 2005,
No. 3, pp. 219–237.

[19] Foster, I.—Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. In-
ternational Journal of Supercomputer Applications, Vol. 11, 1997, No. 2, pp. 115–128.

[20] Kacsuk, P.—Sipos, G.: Multi-Grid, Multi-User Workflows in the P-GRADE Grid
Portal. Journal of Grid Computing, Vol. 3, 2005, No. 3-4, pp. 221–238.

[21] Laure, E.—Grandi, C.—Fisher, S.—Frohner, A.—Kunszt, P.—
Krenek, A.—Mulmo, O.—Pacini, F.—Prelz, F.—White, J.—
Barroso, M.—Buncic, P.—Byrom, R.—Cornwall, L.—Craig, M.—
Di Meglio, A.—Djaoui, A.—Giacomini, F.—Hahkala, J.—

Infrastructure-Agnostic Programming and Interoperability 1003

Hemmer, F.—Hicks, S.—Edlund, A.—Maraschini, A.—Middleton, R.—
Sgaravatto, M.—Steenbakkers, M.—Walk, J.—Wilson, A.: Programming
the Grid with gLite. Computational Methods in Science and Technology, 2006.

[22] McKenney, P. E.: Is Parallel Programming Hard, And, If So, What Can You Do
About It? kernel.org, Corvallis, OR, USA, 2012. http://kernel.org/pub/linux/
kernel/people/paulmck/perfbook/perfbook.html.

[23] Missier, P.—Soiland-Reyes, S.—Owen, S.—Tan, W.—Nenadic, A.—
Dunlop, I.—Williams, A.—Oinn, T.—Goble, C.: Taverna, Reloaded. In:
Gertz, M., Ludäscher, B. (Eds.): SSDBM 2010, Heidelberg, Germany, June 2010,
Scientific and Statistical Database Management, Lecture Notes in Computer Science,
Vol. 6187, 2010, pp. 471–481.

[24] Fahringer, T.—Prodan, R.—Duan, R.—Hofer, J.—Nadeem, F.—
Nerieri, F.—Podlipnig, S.—Qin, J.—Siddiqui, M.—Truong, H.-L.—
Villazon, A.—Wieczorek, M.: ASKALON: A Development and Grid Computing
Environment for Scientific Workflows. Workflows for eScience, Springer London, 2007,
pp. 450–471.

[25] Rafanell, R.: Extensió de COMP Superscalar. Memória del Projecte Fi de Carrera,
Universitat Autònoma de Barcelona, 2011.

[26] Tanaka, Y.—Nakada, H.—Sekiguchi, S.—Suzumura, T.—Matsuoka, S.:
Ninf-G: A Reference Implementation of RPC-Based Programming Middleware for
Grid Computing. Journal of Grid Computing, Vol. 1, 2003, No. 1, pp. 41–51.

[27] Taylor, I.—Shields, M.—Wang, I.—Harrison, A.: Visual Grid Workflow in
Triana. Journal of Grid Computing, Vol. 3, 2005, No. 3-4, pp. 153–169.

[28] Tejedor, E.—Badia, R. M.: COMP Superscalar: Bringing GRID Superscalar and
GCM Together. Eighth IEEE International Symposium on Cluster Computing and
the Grid (CCGrid ’08), Lyon, France, May 2008, pp. 185–193.

[29] Tejedor, E.—Ejarque, J.—Lordan, F.—Rafanell, R.—Álvarez, J.—
Lezzi, D.—Sirvent, R.—Badia, R. M.: A Cloud-Unaware Programming Model
for Easy Development of Composite Services. 3rd IEEE International Conference on
Cloud Computing Technology and Science (CloudCom ’11), Athens, Greece, Novem-
ber 2011.

[30] Tejedor, E.—Farreras, M.—Grove, D.—Badia, R. M.—Almasi, G.—
Labarta, J.: A High-Productivity Task-Based Programming Model for Clusters.
Concurrency and Computation: Practice and Experience, Vol. 24, 2012, No. 18,
pp. 2421–2448.

[31] Thain, D.—Tannenbaum, T.—Livny, M.: Condor and the Grid. In: Berman, F.,
Fox, G., Hey, T. (Eds.): Grid Computing: Making the Global Infrastructure a Reality.
John Wiley & Sons Inc., December 2002.

[32] van Nieuwpoort, R. V.—Wrzesińska, G.—Jacobs, C. J.—Bal, H. E.: Satin:
A High-Level and Efficient Grid Programming Model. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), Vol. 32, 2010, No. 3, Art. No. 9.

1004 E. Tejedor, J. Álvarez, R. M. Badia

Enric Tejedor received his Ph.D. from the Technical Univer-
sity of Catalonia (UPC, Spain) in 2013. He conducted his doc-
torate research as a member of the Grid Computing and Clusters
group of the Barcelona Supercomputing Center, where he par-
ticipated in several EU research projects. As part of his Ph.D.,
he also carried out two internships at the IBM T. J. Watson Re-
search Center (NY, USA). In 2015 he joined the CERN EP-SFT
group, where he currently works on a cloud analysis service for
physicists and on parallelization of physics software.

Javier �Alvarez holds his M.Sc. degree in computer architec-
ture from the Universitat Politecnica de Catalunya (2013), and
since 2014 he has been a Ph.D. student at The University of Ade-
laide. Previously, he was involved in several research projects as
a Research Support Engineer in the Grid Computing and Clus-
ters group at the Barcelona Supercomputing Center.

Rosa M. Badia holds her Ph.D. degree from the Universi-
tat Politècnica de Catalunya (1994). Before, she graduated on
computer science at Facultat d’Informàtica de Barcelona (UPC,
1989). She lectured and did research at the Computer Architec-
ture Department (DAC) at UPC from 1989 to 2008, where she
held an Associate Professor position from 1997 to 2008. She is
the manager of the Workflows and Distributed Computing group
at the Barcelona Supercomputing Center. She is a Scientific Re-
searcher at the Spanish National Research Council (CSIC).

