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Abstract. Availability and performance are key issues in SOA cloud applications.
Those applications can be represented as a graph spanning multiple Cloud and on-
premises environments, forming a very complex computing system that supports
increasing numbers and types of users, business transactions, and usage scenarios.
In order to rapidly find, predict, and proactively prevent root causes of issues,
such as performance degradations and runtime errors, we developed a monitoring
solution which is able to elicit the end-to-end behavior of those applications. We
insert lightweight components into SOA frameworks and clients thereby keeping the
monitoring impact minimal. Monitoring data collected from call chains is used to
assist in issues related to performance, errors and alerts, as well as business and IT
transactions.
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1 INTRODUCTION

Like any new technology, cloud computing brings many benefits and issues [1, 2] for
its users and vendors. Users reduce their needs for on-premises resources (computers
and IT professionals) and are not concerned with local deployments. They can access
applications via the internet and pay only for usage on a per-month or per-year basis.
The financial risk for users is lower since they can try the software before buying it.
The vendors get a more flexible market since they can easily attract new customers,
sell directly to decision makers, and gain a more predictable profit. The vendors
can easily update applications, share applications among multiple users, and gain
a better understanding about the usage patterns.

Figure 1. A call chain across multiple clouds and on-premises

SOA applications consist of services which expose their functionality, clients
consuming that functionality, and channels used to exchange messages. With ref-
erence to Figure 1, a service can reuse other services in a call chain to implement
own functionality, so an SOA application can be represented via a graph with ser-
vices (S ) and clients (C ) as vertices and communication routes as edges. Modern
SOA applications may span multiple clouds and on-premises centers forming very
complex computing ecosystems [3, 5] that support more and more users running
more and more transactions in perplexed usage scenarios. Research community
invests significant effort on providing insights into the run-time behavior of such
complex systems [4].

In addition to data security, availability and performance are the primary con-
cerns of cloud users and vendors. Therefore, they need efficient and versatile tools
to online monitor the end-to-end behavior of cloud applications for rapid finding,
predicting, and proactively preventing root causes of issues. The monitoring sup-
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port [6, 7] for both production and development phases is of great benefit for business
critical and high-performance applications since they not only have to be available
24× 7× 365 but also must run flawlessly and efficiently for all users at all times.

Our real-time monitoring approach called cSOOM (Cloud Service-Oriented On-
line Monitor) is able to assist in many critical issues in the development, testing,
deployment, and production phases of SOA applications. The possibility to visualize
interoperable services and application transactions, to identify and predict perfor-
mance bottlenecks and locate runtime errors, to observe IT transactions and content
is a powerful approach that will address many today’s challenges in the realm of SOA
applications deployed on-premises and in the clouds.

The next subsection provides an overview of related monitoring approaches and
positions the niche cSOOM focuses on. The Section 2 discusses both the functional
and non-functional requirements of cSOOM, while Section 3 describes its software
architecture with an accent on techniques for inserting custom code into SOA frame-
works. Section 4 provides an insight into visualization approaches while Section 5
deals with errors and availability of single services and call chains. In Section 6 we
turn our attention to the performance of a single service and the one of call chains.
Finally, we finish off with Section 7 which concludes the paper, discusses our findings
and results, and gives suggestions for future work.

1.1 Background and Related Work

Online (real-time) monitoring refers to a set of techniques to allow both the observa-
tion and manipulation of running systems, especially of their dynamic behaviours.
The monitoring functionality can be implemented at various software and hardware
levels. Software monitoring is more flexible to change, requires less effort to be
ported on other platforms but has an impact on the system being monitored. On
the other hand, hardware monitors [28] can be implemented with little or no impact
on the system being instrumented, but they are difficult to change and are very
hard to port to new platforms. Generally, hardware approaches are used to monitor
fine-grained entities such as registers and memory locations, while software mon-
itoring instruments the coarse-grain entities such as objects and services. Hybrid
implementations try to balance these issues.

Software monitoring techniques have been applied to various types of software
systems but the most challenging software systems to be monitored are distributed
systems [25, 24] since they exhibit complex communication and interaction patterns.
Distributed processes usually reside in different address spaces and communicate
by exchanging messages. On the top of those facilities are implemented message
passing, distributed shared memory, distributed object, and SOA paradigms. Tech-
niques and approaches for monitoring messages passing systems, such as PVM and
MPI, are extensively investigated in [26, 27]. Real-time monitoring of distributed
shared memory systems, such as TreadMarks and Orca, are described in [8, 9] while
monitoring of distributed object-based systems, such as CORBA and DCOM, are
discussed in [22, 23].
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The widespread use of SOA applications, especially of those deployed across
heterogeneous cloud platforms, have highlighted the need for powerful monitoring
systems and tools that can support and automate all phases of their software devel-
opment processes. In order to ensure the needs of SLAs, an agent-based approach
of monitoring the non-functional requirements of heterogeneous services deployed
on-premisses is described in [29]. Several vendors apply their general monitoring
solutions [30, 31, 32, 33] to work in the SOA world. A comparative analysis of such
approaches with SOOM tools are given in [9]. While SOOM focuses on monitoring
SOA application deployed on-premisses, cSOOM is designed to monitor SOA appli-
cations in heterogenous clouds and is centered around a notion of a call tree that
spans multiple clouds.

2 MONITORING REQUIREMENTS

The quality of SOA applications as well as the enterprise overall productivity and
revenue is directly affected by issues in the applications. The main purpose of
real-time monitoring [8, 9] is to elicit (measure, quantify) non-functional (quality)
requirements of running applications. The capabilities and conditions to which
monitoring approaches must adhere are driven by the perceived needs of the main
SOA actors: users, operators, business managers, programmers, and testers. We
monitor SOA applications running in heterogeneous environments and our primary
objects being monitored are clients and services forming a graph which for a single
client call, in many practical cases, results in a tree.

We perform application-level monitoring since all collected data reflects the run-
time behavior and can be related to the constructs understood by the actors. In
contrast, component-based monitoring reports averages of individual components
(e.g. database) and low-level monitoring (e.g. network) collects data that cannot
be easily related to the application constructs. Due to its flexible and application
centric design and architecture where all instrumentations and measurements are
implemented at the application level, cSOOM is fully capable of monitoring hetero-
geneous SOA application in various cloud environments: SaaS, IaaS, and PaaS.

With reference to Figure 2, in an SOA application we recognize service and client
side objects to be monitored. Service side objects include services, endpoints and
operations, while client side objects revolve around proxies. Services expose their op-
erations via one or more endpoints and each endpoint provides multiple operations
callable by clients. Each endpoint can be accessed via multiple communication pro-
tocols, that exchange messages implementing SOAP or REST architectural styles.
A service description, usually provided in a language such as WSDL, describes ser-
vice operations and provides a reference for generating client side proxies. They
are client side objects intended for managing client calls and underlying message
exchange patterns (MEPs). Usually, proxies encapsulate all service operations into
a single cohesive class. Stubs or dispatchers handle messages on the service side.
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Figure 2. Objects being monitored

3 LOGICAL ARCHITECTURE

To demonstrate our concepts and ideas as well as to explore monitoring potentials
for SOA applications we developed a prototype (cSOOM) as a real-time monitoring
system. We also developed some rudimentary tools to visualize, analyze, and corre-
late the collected monitoring data. The logical architecture of cSOOM is based on
the SOOM architecture [7]. While SOOM is a versatile and powerful platform for
online SOA monitoring, cSOOM expands on this idea and puts cross cloud systems
and their corresponding call trees as its fundamental concepts. This concept is nec-
essary to successfully and efficiently elicit the end-to-end runtime behavior of cross
cloud systems, since they are mutually dependent and exhibit complex interaction
patterns.

3.1 Components and Connectors

cSOOM itself is an SOA application. With reference to Figure 3, the cSOOM
Server acts as a managing component that controls multiple cSOOM Agents and
stores relevant monitoring data in a database. An Agent is designed according
agent-oriented architectures. It manages a group of clients and services that may
reside on a single computer, network, or a Cloud. The core monitoring functional-
ity is implemented via lightweight components (cSOOM Intruders) inserted into
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SOA frameworks thereby keeping the monitoring impact minimal. Using cSOOM
Tools, operators invoke monitoring actions on the objects being monitored. These
commands are converted into SOAP or REST messages and distributed to the cor-
responding Agents.

Figure 3. The logical architecture of cSOOM

The Agents delegate requested monitoring actions to the Intruders which are
responsible for intercepting SOA messages, executing monitoring actions, and han-
dling events. For SOA applications based on the REST architectural style we reduce
the number cSOOM components to be deployed by integrating the Agent function-
ality with the Server code. The cSOOM Router redirects messages depending on
a set of predefined rules. That way, cSOOM performs load balancing in systems un-
der heavy load and therefore helps achieve stability and scalability [10]. The criteria
for balancing can be either performance data of a single service or a call chain as
well as the semantic of the service call being invoked. The communication between
cSOOM components is implemented via asynchronous messaging.

3.2 Injecting Monitoring Code

To insert custom code into SOA services and clients we utilize various aspect-
based techniques such as extension points for Windows Communication Founda-
tion (WCF) services [12] and dynamic proxies for Java services deployed on the
OSGI Framework [20]. Intruders read incoming messages and add custom headers
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to outgoing messages. cSOOM makes use of the Lamport algorithm [11] to deter-
mine temporal order among events generated by the Intruders and reconstruct SOA
call trees. Logical clock is maintained by injecting logical clock values in outgoing
monitoring requests. That way, cSOOM gains complete control over all messages
exchanged in the SOA application being monitored.

3.3 Instrumenting .NET Services

Since we used WCF as an SOA framework in many our test cases, here we provide
a brief overview of extension points where our core monitoring code (Intruders) is
injected in WCF proxies and stubs (dispatchers) at start-up. In WCF terminology,
an extension is an object the class of which implements a required interface. In a call
stack extensions are executed in the predefined order. The WCF proxy supports
three extensions, as follows:

1. Parameter inspection – allows developers to inspect and modify parameters be-
ing sent to the service and those received from the service.

2. Message formatting – enables developers to perform custom serializations into
the message object.

3. Message inspection – provides a last chance to modify the message object be-
fore it is supplied to the channel stack. After the code at the last extension
is executed, the message object is supplied to the channel stack for deliver-
ing.

The WCF dispatcher supports five extension points. Three of them are aimed
at matching the proxy’s extension points and the additional two are used for the
following purposes:

1. Operation selection – enables developers to select an operation in an endpoint.

2. Operation invoking – allows developers to implement custom invocation mecha-
nisms.

An Intruder is packaged as a standard DLL. It is installed via the target appli-
cations configuration file, by adding specific XML markup, and loaded dynamically
upon startup of the service (or client) being monitored. Intruders are executed when
the corresponding extension points in the WCF execution stack are reached.

3.4 Instrumenting Java Services

The OSGi technology provides a set of specifications for creating dynamic compo-
nents for Java applications which communicate via services. Since an OSGi appli-
cation is composed of multiple bundles we implement our intruding component as
a bundle. The Intruder contains functionalities that implement dynamic proxies,
service registering, service interception, and the communication with the Agent.
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A dynamic proxy is an instance of class java.lang.reflect.Proxy, and is used
to implement interfaces that are defined at runtime. Service methods are invoked
using mechanisms available in Java Reflection. When a service is registered by the
OSGi framework event ServiceEvent.REGISTERED is raised.

Figure 4. Intercepting OSGi Services

Figure 4 shows the interaction pattern when a service call is intercepted [34].
First, the service bundle being monitored registers itself by the OSGi framework
which notifies the Intruder about that event. The Intruder obtains the reference
to the service, adds a dynamic proxy to the service, and registers them by the
framework. When a client requests a service reference the framework notifies the
Intruder about the request and the Intruder returns a reference to the service with
the dynamic proxy. Upon receipt of the requested service the client calls an operation
on the service. The Intruder intercepts that call, forwards the call to the service,
and returns the result back to the client. When an Intruder is invoked it creates
a communication route to the Agent using information from headers inserted by
cSOOM in SOAP and REST messages.

4 VISUALIZATIONS AND VIEWS

In order to visualize complex SOA applications and monitor their runtime behavior
we develop some rudimentary tools that are integrated in the cSOOM Dashboard or
implemented as Web or Microsoft Excel applications. Tools are classified according
monitoring aspects such as errors, transactions, or performance. Figure 5 shows
an SOA graph (depicted in Figure 1) being monitored in the cSOOM Dashboard
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(desktop application) in the conceptual mode. In the map mode the Dashboard
shows SOA components on their geographical locations.

Figure 5. The cSOOM Dashboard

The graph is dynamically constructed and the Dashboard depicts the services,
their consumers, and communication routes being monitored by cSOOM. Connec-
tions between services and clients being monitored are displayed using lines that
change color depending on the state of the connection. If the connection is active,
a line is green and when the connection becomes inactive, the line turns black. Also,
there is an arrow in the middle of the line which shows the communication direction.
A plug-in version of the Dashboard can be added to the MS Visual Studio 2013 to
support the testing of WCF clients and services.

The cSOOM tools support four types of views on the SOA graph being moni-
tored:

1. the service-based view,

2. the metadata view,

3. the transaction-based view, and

4. the content view.



268 I. Zoraja, G. Trlin, V. Sunderam

In the service-based view, both the services and clients are represented as ver-
tices in a graph while communication routes are depicted as edges. The details
for the selected clients, services, and connection channels can be shown in sepa-
rate panes. To get a better insight into behaviour of a large number of nodes
the Dashboard provides controls to zoom in, zoom out, and to save the current
graph.

SOAP based services expose their interfaces in a high level language called
WSDL which is a platform-independent description (metadata) of a service includ-
ing ABC (address, bindings, contracts) and information about security, transactions,
reliability, and faults. With reference to Figure 6, the Metadata Viewer is a cSOOM
tool that is able to visualize endpoints of a running service (PatientInfoService)
using metadata exchange mechanisms. For example, metadata for WCF services is
obtained via the MetadataExchangeClient, MetadataImporter, and WsdlImporter

components. Metadata can be used to auto generate client proxies or extract other
useful information about the service under monitoring.

Transactions are one of the most important aspects of any SOA application.
cSOOM is capable of monitoring both IT and business transactions. Sequence
and communication diagrams, in an UML style, are automatically generated in the
transaction-based view when cSOOM detects operation invocations among the nodes
under monitoring. The transaction’s resulting state (committed, aborted, in-doubt)
is reported to the cSOOM operator in real time. SOA messages transfer business
data (content) among components of the SOA graph. Via its Intruders cSOOM
extracts business information from request and response messages and stores content
data into a database or files. Complex data types, which are passed and returned in
call chains, can be displayed in a hierarchical fashion using the name/value semantics
and used to improve business processes [13].

Figure 6. The Metadata Viewer
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5 MONITORING AVAILABILITY

To elicit the run-time behaviour of an application and to verify the architecture
(non-functional requirements), the users utilize various tools and techniques to mea-
sure, analyze [26], and visualize [14] the application performance and availability.
SOA users expect 100% uptime from software they use. In practice, this goal is
almost never reached due to numerous factors such as broken network connections,
exhausted disk space, and high load. We define availability as a ratio between the
up time and the total time. The down time is usually caused by some unexpected
events. We refer to them as application errors since most of them can be detected
at the application level. cSOOM can, in a proactive fashion, detect services that are
not working and automatically notify the interested parties.

Figure 7. Monitoring errors

To demonstrate the cross cloud monitoring abilities of cSOOM in respect to
the end to end behavior of SOA applications we tested the following monitoring
features: errors, performance, and transactions. With reference to Figure 1,
our test-bed consisted of ten services deployed in four clouds (Amazon Web Services
EC2 Virtual Machines) and a client (Android v4.0 phone), connected via WLAN
to the on-premises. Our services make use of a sleep function to produce work the
performance range of which can be expected. Results provided here were obtained
by the cSOOM tool suite.
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5.1 Monitoring Errors and Alerts

Error detection and reporting techniques, also referred to as deep diving monitoring,
provide the programmers with low level details about the application misbehavior.
Runtime exceptions and security violations are the two essential types of errors in
SOA applications. cSOOM successfully deals with both types of errors by detecting
errors at run-time at the precise location of the issue using inspection mechanisms
available in the underlying SOA frameworks and implemented by Intruders. cSOOM
catches the exception, marks the faulting node problematic (the exclamation point
in the Dashboard), and stores the complete information about the issue in the
database at the Server. By analyzing the entire call tree invocations the user can
discover how the particular error was propagated and what was the real cause of
the problem.

False credentials, reply attacks, eavesdropping, etc. are common security threats
in SOA applications. To obtain security related data cSOOM makes use of the se-
curity and auditing mechanisms provided by the underlying SOA frameworks (e.g.
WCF and Java WS). Security threats are identified at real-time and acted upon
immediately via the alerting mechanisms by notifying the observers via e-mail or
SMS messages. Root cause analysis is significantly simplified, as cSOOM points
out to the particular service operation which has caused the error. An example
of a captured error is depicted in Figure 7. System developers are automatically
provided with the complete distributed stack trace of the application being moni-
tored. This enables SOA developers to quickly resolve the issues and prevent further
problems, leading to reduced down times and other end-user experience related is-
sues.

5.2 Monitoring Transactions

An error on a particular service node could not only reduce the availability of that
operation but could also affect one or more related operations to fail. A group of SOA
operations to be executed in a call chain are referred to as an SOA transaction. We
differentiate between business and IT transactions. Both transaction types represent
a group of distributed operations but IT transactions have the well-known property:
all its operations must succeed or fail as a group. An IT transaction can end in
two ways: with a commit or a rollback. When commits, the modifications made by
its operations are saved. If an operation within a transaction fails, the transaction
must be rolled back, undoing the effects of all operations in the transaction. The
third state, in-doubt, is a temporary state which can happen due to the errors in
the transaction managers and coordinators.

In Figure 8 we show a committed IT transaction as a call chain in the cSOOM
Dashboard via a sequence diagram – note that some services are not shown since
the picture would be too wide for this type of presentation. In the header we
show transaction identifiers, the initiator of the transaction which is in this
case the client, the transaction protocol, and the time when the transaction
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Figure 8. Monitoring distributed IT transactions

is triggered. The diagram dynamically shows the calls and returns of operations
that participate in the transaction. To monitor IT transactions cSOOM makes
the following assumptions about the transaction support from the underling SOA
framework:

1. Services must be transaction aware, meaning be able to react on rollback
events and revert back to the original state.

2. Transactions are executed with the help of transaction coordinators, such as
DTC (Distributed Transaction Coordinator), which must handle low level com-
munication to implement the 2PC (Two Phase Commit Protocol).

6 MONITORING PERFORMANCE

An SOA application can be depicted as a directed graph where vertices represent
both services and clients while edges represent communications routes used to ex-
change messages. With reference to Figure 9, a call chain can be represented as
a single tree of execution starting when a client calls an operation on a service
which, in turn, calls operations on other services, possibly located on another ma-
chine or cloud, to complete the requested task. A client is the root node of an SOA
call tree since it starts the invocation chain by calling an operation on a service. It
can be implemented as a desktop, web, or a mobile application. A service can be
a composite or a leaf. In order to implement the requested functionality, a compos-
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Figure 9. The call tree as the composite pattern

ite service may delegate calls to other services while leaf services do not delegate
calls.

6.1 Performance Metrics

From technological point of view, the basic performance metrics of an operation
are the call duration and frequency [16, 18]. Call durations impact transaction
times while call frequencies determine throughput. From end users perspective,
the main measure of system performance is the transaction time [19, 17]. Once
instrumentation is successfully performed, calculating call durations and frequencies
can be done on each node by measuring certain time spans, as shown in Figure 10.
Performance data necessary for the calculation of call durations is defined as a set
of points in time, as follows:

x – is the moment when a node starts receiving the request,

z – is the moment when a node starts sending a request,

w – is the moment when a node received the response,

y – is the moment when a node sent the response.

We make use of the following times in an SOA call chain:

Execution time (Ei) – is the time elapsed between the moment node i starts
receiving a request and the moment it sent the response.

Processing Time (Pi) – is the time spent by node i on computation.

Delegation time (Di→j) – is the time spent by node i on waiting for service j to
finish its computation.

Latency Time (Li→j) – is the time elapsed between the moment a node i starts
sending the request and the moment node j received the request.
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Figure 10. Crucial times in an SOA call tree

The times are calculated as follows:

Ei = yi − xi

Di→j = wi→j − zi→j

Li→j = Di→i − Ei

Pi = Ei −
M∑
j=0

Di→j = yi − xi +
M∑
j=0

(wi→j − zi→j) (1)

Finally, total execution time (T ), the equivalent of transaction time from end
users perspective, is defined as:

T =
N∑
i=1

Pi +
M∑
j=1

Li→j

 (2)

Taking necessary measurements at each node and using the previous equations,
we can reconstruct the complete SOA call tree and determine requested call du-
rations, resulting in the overall transaction time. Gathered data can be further
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analyzed using various workload models to identify bottlenecks and fine tune the
performance.

The above equations are defined under some constraints. First, we assume that
each service node appears only once in the SOA call tree (no indirect recursions are
allowed). Although recursion is a useful programming technique, we argue that it
is not well suited for service calls – at least at the current state of communication
protocols and observed latency times. Second, currently, we only deal with call
trees generated by synchronous calls. Finally, we monitor services executed by
a single thread. All these constraints will be addressed in our future research on
SOA monitoring in cross cloud platforms.

6.2 Measuring Performance

cSOOM measures the performance of a single service as well as the performance of
a group of services that form a call chain. For individual operations on a service
being monitored, cSOOM records various frequencies and durations, such as the
number of calls per second and execution times. In addition, we provide a common
analytics for calculating averages and ratios. For example, with reference to Fig-
ure 11, an operation GetDoctorList participates with 33% in the total call time
on the service being monitored. That kind of information can be used to detect
performance bottlenecks.

Figure 11. Performance of a single service

In a call chain, both composite and leaf service nodes are implemented to exhibit
fixed and random processing times. As shown in Table 1, the mean processing times
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per node, obtained in thirty measurements on the SOA graph shown in Figure 1,
fall into the expected value ranges. Execution and processing times, obtained in
a single measurement, are depicted in Figure 12. It can be concluded that results
are as expected – both the execution and processing times are compositely calculated
and therefore decrease as the depth level of the node increases. As expected, leaf
nodes have the smallest processing and execution times. Also, the processing and
the execution times on leaf nodes, such as node 8 and 10, are the same since the
leaf nodes do not delegate calls.

Service Expected Mean Standard
Range(ms) Time (ms) Deviation

Service1 1 500 1 500.44 0.50
Service2 750 750.26 0.43
Service3 800–900 859.11 26.29
Service4 850–900 882.41 12.97
Service5 100–900 473.57 241.49
Service6 100–200 134.82 24.94
Service7 500–600 564.94 32.48
Service8 100–800 466.89 113.23
Service9 100–800 415.63 107.84
Service10 500–1 000 774.43 152.43

Table 1. Expected and measured processing times

7 CONCLUSIONS AND FUTURE WORK

The above concepts for monitoring cross cloud SOA applications and our proto-
type implementation, called cSOOM, have proved to be both successful and en-
lightening in eliciting the end-to-end behaviour of those applications. cSOOM per-
forms monitoring actions while SOA applications being monitored are running in
heterogenous environments potentially spanning multiple on-premisses and various
cloud ecosystems. All collected data reflects the runtime behavior (errors, per-
formance, and transactions) and the complete SOA graph under monitoring can
be dynamically visualized via various views (service, metadata, transaction, and
content). The cSOOM tools can not only issue commands to observe but also to
manipulate (change) the state of the objects being monitored.

cSOOM hides the complexity of SOA applications implementing a lightweight
and adaptable software architecture in an agile fashion where designated compo-
nents deal with specific application aspects to provide end-to-end monitoring fa-
cilities. For example, the server deals with distribution and parallelism providing
actions on services as if they were deployed locally. cSOOM performs application-
level monitoring managing data that can be related to constructs both the pro-
grammers and the end users of an SOA application can understand. In contrast,
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Figure 12. Performance of a call chain

component-based monitoring reports averages of individual components while low-
level monitoring approaches collect data that cannot be easily related to the appli-
cation constructs.

Monitoring actions (requests) are executed in isolation and therefore cannot
compromise actions issued by the other tools. cSOOM tools are connected to a single
monitoring system which provides a consistent set of monitoring actions where the
tools are aware of each other. When, for example, one tool performs an operation
on a service all interested tools are notified about that event. The SOA mechanisms
provided by underlying SOA frameworks are transparently handled and cSOOM
tools can be built without taking care of their particular implementation details.
To achieve this, cSOOM inserts own lightweight components into SOA frameworks
using various inspection mechanisms that can be applied at the deployment and
run times, thereby keeping intrusiveness minimal. Our monitoring approach can
be applied in production and development scenarios and assist in improving the
application’s efficiency and achieving a 24× 7× 365 availability.

Since our findings and results have opened new questions and identified new
research directions they strongly motivate our further investigations. Firstly, we
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will investigate call chains that include asynchronous invocations and parallel ex-
ecutions when a service delegates calls via multiple threads directly or via thread
pools. We plan to enhance the monitoring capabilities of IT transactions to sup-
port joined transactions that are initiated by coordinators implemented on different
IT platforms. A long term research will be performed on discovering and rout-
ing strategies with various load balancing techniques based on service content and
performance.

Finally, a significant accent in future research will be placed on the REST ar-
chitectural style and mobile clients, especially on those when multiple mobile clients
access a single service deployed in a cloud. Mobile clients are incapable of forming
classical peer-to-peer networks making them dependant upon centralized servers.
This is due to the fact that mobile clients are almost always behind NATs and
firewalls, rendering them incapable of accepting TCP connections from the outside
world. Therefore, a two-way communication channel with a mobile client is dif-
ficult to establish and maintain. This elevates demands for service availability to
a new level, as in case of a single service failure, all clients could suddenly become
non-functioning.

Mobile clients are also prone to the changes of geographical positions. Today,
it is not uncommon for an end user to travel hundreds of miles in a single day
and, therefore, mobile clients are required to be aware of their environment. Ap-
plications, and their monitoring agents, must be able to adapt to different network
environments, ranging from excellent WiFi connections to no internet signal at all
and to provide maximum QoS levels in these varying conditions. Current solu-
tions are mostly limited to providing post-mortem crash report in non-dynamic
environments. Mobile clients that invoke cloud services are gaining thousands of
users on a daily basis, making companies completely dependent on their flawless
functioning, so a sophisticated monitoring support might raise end user experience
significantly, while reducing system downtimes and increasing end users’ productiv-
ity.
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