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1 INTRODUCTION

Location problems represent a very important class of optimization problems with
applications in various branches of science, industry and real-life problems. Covering
location problem is a very well known location problem and it has been well studied
in the past. Objective of the covering location problem is to find the best locations
for various facilities, as shops, schools, emergency units, antennas, pollution sources,
etc. There are three different types of location problems:

• Location set covering problem (LSCP), with the aim to cover all locations with
the least number of facilities,

• Maximal covering location problem (MCLP), with the aim to cover maximal
number of locations with fixed number of facilities and

• Minimal covering location problem (MinCLP), with the aim to cover minimal
number of locations with fixed number of facilities and given minimal distance
between each facility.

The MCLP was introduced by Church and ReVelle in 1974 [1] on network, and
since then, many variants of it have been proposed. Original MCLP uses previously
given fixed values for covering radius or travel time, but in modeling real problems
this approach is not completely accurate. Real problems contain some degree of
uncertainty, for example covering radius is about 5 kilometers or travel time is be-
tween 8 and 10 minutes. In order to model problems with indefinite conditions fuzzy
variables are used. Two models with fuzzy coverage radius have been described by
Davari et al. in [2] and [3] and this modification of MCLP is known as fuzzy max-
imum location problem – FMCLP. Proposed fuzzy methods do not study locations
that are partially covered with several facilities. There are two different classes of
problems used to describe a partial coverage. First class consists of problems where
it is allowed to sum covering degrees of partially covered locations. For example,
each source of light has a radius of full illumination and another external radius
where illumination decreases. For locations that are in two or more external radii,
total lighting is calculated as the sum of all partial illuminations. The second class
consists of problems where it is not possible to sum the degrees of partial coverages.
There are a lot of problems of this type – all MCLP problems regarding buildings
location belong to this class. It means that if some location is partially covered by
more facilities, quality of the solution will not increase. For example, each build-
ing (shop, emergency unit . . . ) has a main radius of coverage and all locations in
the main radius have full coverage. The second parameter is the external radius,
where the degree of coverage decreases. If some location is partially covered by more
facilities, it must be associated with the nearest location.

The aim of this paper is to present a new model for maximal covering location
problem which associates each partially covered location to its nearest facility and
a new method for modeling FMCLP with simultaneous fuzzyfication of two MCLP
key conditions – covering radius (or travel time) and distances between locations.
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Many methods for solving MCLP and FMCLP have been developed and de-
scribed in the literature. Some of them are exact methods, but they are inapplicable
for problems with large dimensions, so a lot of heuristic and metaheuristic methods
for solving MCLP and FMCLP have evolved. The most present methods are Ge-
netic Algorithms, Tabu Search, VNS and Simulated Annealing method which will
be discussed in the next section. In this study we use a modification of Particle
Swarm Optimization method (PSO) for solving the proposed model.

The rest of the paper is organized as follows: First, in Section 2, there is a brief
review of literature about MCLP and FMCLP and a review of methods used to
solve them. In Section 3 a detailed description of the problem with an illustrative
example and mathematical model is given. Used PSO method for solving a proposed
model is presented in Section 4, and in Section 5 numerical tests are given. Finally,
in Section 6, conclusion with ideas for further research is presented.

2 LITERATURE REVIEW

Some papers with key ideas that illustrate the evolution of MCLP, FMCLP and
methods for solving them will be shown in the next paragraph. Detailed introduction
to location problems is found in [4, 5, 6, 7, 8].

As mentioned before, the first description of MCLP was given by Church and
ReVelle in 1974 [1] and since then a lot of modifications, extensions and adaptations
of MCLP have been introduced. Moore and Revelle studied the hierarchical service
location problem in [9], gradual covering problem is described by Berman and Krass
in [10] and Qu and Weng studied the problem of multiple allocation hub maximal
covering problem [11]. MCLP is originally defined on network with travel times
between each pair of location, but some authors defined MCLP as a problem of cov-
ering points on the plane with given Euclidian distances between them [12]. Several
papers are dedicated to application of MCLP for finding solutions of real-life prob-
lems, like maximal covering model for network design [13], model for determining
the distribution of police patrol areas in Dallas [15], models for improving accessibil-
ity to rural health services in Ghana [14] and model for locating emergency medical
services in Istanbul [16].

Originally, MCLP is defined in a deterministic sense, but in later studies au-
thors describe stochastic and fuzzy models for MCLP with uncertainty parameters.
Louveaux in [8] and Weaver and Church in [17] defined uncertainty as a proba-
bility distribution of some input parameters. On the other hand, some authors
introduced vagueness in MCLP model using fuzzy sets. Perez et al. in [19] de-
scribed a fuzzy model for real-world problems with linguistic vagueness. Darzentas
introduced in [18] a model for covering based on fuzzy set partitioning. Batanovic
et al. [20] described one more application of fuzzy sets in modeling maximum cov-
ering location problems in networks in uncertain environments and Davari et al.
in [2] presented an MCLP model with fuzzy variables for travel times for any pairs
of nodes.
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A lot of methods for solving MCLP and FMCLP have been presented in litera-
ture. Downs and Camm presented an exact algorithm for MCLP using dual-based
solution method and greedy heuristic [21]. Some authors used VNS method [3], sim-
ulated annealing [12], genetic algorithms [23] and some hybrid algorithms for solving
facility location problem. Detailed review of literature related to these methods is
found in [22].

3 A NEW FORMULATION OF FMCLP

As mentioned before, the main goal of this study is defining a new model of FMCLP
for better uncertainty modeling in real-life problems. In this study, all nodes have
the same importance – population in locations is not considered. Also, in this paper
terms radius of coverage and travel time present the same variable which determine
degree of coverage of locations.

First, uncertainty is represented as fuzzy radius of coverage (fuzzy travel time)
and it depends on two parameters – main radius R represents radius of full coverage
and external radius fr represents a radius of partial coverage. If the distance between
locations is less than the main radius, it is fully covered and its degree of coverage
is equal to 1. If location is between main and external radii, its degree of coverage
is value between 0 and 1, and if the location is outside of the external radius it is
not covered and its degree is 0.

Motivation for introduction fuzzy radius of coverage lies in the nature of cov-
ering location problems. In a standard model of MCLP, locations close to radius
of coverage do not have any effect on solution’s quality. That approach is not pre-
cise in modeling of real-life problems because informations about these locations are
very important – solution is better if it contains as more as possible locations close
to radius of coverage. Figures 1 and 2 illustrate the optimal solution for standard
MCLP model and the optimal solution for the proposed FMCLP model on the same
set of locations. MCLP found an optimal solution with 9 fully covered locations and
FMCLP found an optimal solution with 7 fully covered locations and 6 partially
covered locations. In the solution of MCLP three non-covered locations are very
far from coverage border, but in the solution of FMCLP not fully-covered location
are very close to coverage border. In this example, one location (L1) is covered by
both external radii, and this opens up the possibility to additional research related
to methods for treatment multiply partially covered location. This will be discussed
at the end of this section.

A problem of locating ambulances in given set of locations is an illustrative
example. Here, distances between locations, main and external radii are known.
The emergency service has the full effect on locations inside the main circle of cov-
erage and some partial effect on locations between main and external radius. For
example, main radius of an ambulance coverage could be 5 minutes – it means
that the patient will surely survive if an ambulance can reach him or her in less
than 5 minutes. External radius could be 10 minutes – it means if an ambu-
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Figure 1. Optimal solution of MCLP

Figure 2. Optimal solution of FMCLP

lance arrives between 5 and 15 minutes, patient has a chance to survive, and
if an ambulance arrives in more that 15 minutes, chances for survival are mini-
mal.

The second uncertainty of the proposed model is the distance (or travel time)
between locations. In previously described example, distances between two locations
could not be precisely defined. Many external conditions influence the distance, like
traffic jam, traffic light and speed of emergency vehicles. For this reason, distance
(travel time) between two locations has an approximative value – 5 minutes plus-
minus 1 minute.
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Fuzzy radius is defined as a right shoulder fuzzy number and triangular fuzzy
number is used to represent fuzzy distance value, and degree of coverage locations
is defined as intersection of these fuzzy numbers. Figure 3 illustrates the formula
for calculating a degree of coverage for each location. In this figure, x-axe represent
distance (or travel times) between location and y-axe represents the location’s degree
of coverage. Intersection of right shoulder fuzzy number and triangular fuzzy number
is defined as arithmetic mean of fuzzy values of intersection points S1 and S2.

Figure 3. Intersection of right shoulder fuzzy number which represents a fuzzy radius and
triangular fuzzy number which represents fuzzy number of distance between loca-
tions

As mentioned before, in the described formulation of MCLP, the open question
is how to treat locations which are partially covered with two or more facilities. The
first method is to compute limited sum of all degrees of coverage for each partially
covered location. Sum must be limited because its degree cannot be greater than 1.
This approach could be applied if location could be assigned to more facilities. An
obvious example of this type is light covering location problem where the objective
is to locate illumination sources in space – total illumination is equal to sum of
illumination from all sources. But, this method is not applicable on most real-life
maximal covering location problems – the described example of finding locations
for ambulances is a good example of that if some location is partially covered with
several hospitals. An addition of degrees of coverage does not make sense because
each location must be assigned to exactly one facility. It is clear that assignment to
the nearest facility gives the best result.

Illustration of difference between these methods is given in Figures 4 and 5.
Figures show an instance with 6 locations and objective to find optimal locations
for 2 facilities. Figure 4 presents an optimal solution for FMCLP with limited sum
method and Figure 5 presents an optimal solution for FMCLP with maximal degree
method on the same instance. For the first method total coverage degree is 3.2 – two
locations are fully covered (locations of facilities C1 and C2), location L1 is partially
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covered by two fuzzy radii with degree 0.5 and locations L2 and L3 are covered
with degree of 0.1. If solution is recalculated using maximal degree method, results
is 2.7 – location L1 now has degree 0.5. Figure 5 shows that result 2.7 is not optimal
for maximal degree method – optimal result is 2.8 – locations of facilities C1 and C2

are fully covered, location L1 is covered by degree 0.5 and other locations is covered
by degree of 0.1.

Figure 4. FMCLP with limited sum method

Figure 5. FMCLP with maximal degree method

The most of real-life problems belong to class of FMCLP problems with maximal
degree method. This method has not been seriously considered in the past, but the
proposed FMCLP model uses this method.
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3.1 Mathematical Model

Mathematical model of the proposed FMCLP represents an extension of original
model of MCLP given by Church and ReVelle in [1]. Innovations in this model
are: a new method for computation degrees of coverage and a new condition for
assignment partial covered location to the nearest center.

First, it is necessary to introduce the problem parameters and the decision vari-
ables. The following notation is given:

• I – set of all locations,

• J – set of all facility sites,

• R + fr – fuzzy radius of coverage [right shoulder fuzzy number],

• dij±ft – fuzzy distance (travel time) between locations i and j [triangular fuzzy
number],

• xj =

{
1, if facility allocated in location j,
0, otherwise.

• yi ∈ [0, 1] – degree of coverage of location i,

• cij – degree of coverage of location i by facility located in site j, given by formula

xj =


1, dij <= R,

0, dij > R + fr,
1
2
(µ(v1) + µ(v2)), otherwise.

where µ(vi) represents an intersection of fuzzy values R + fr and dij ± ft.
• p – number of facilities to be located.

Mathematical model of FMCLP is defined as follows:

max
∑

yi (1)

with conditions: ∑
xi = p, (2)

maxxj · cij ≥ yi,∀j, (3)

xi ∈ {0, 1}, (4)

yi ∈ [0, 1]. (5)

The objective of FMCLP is the maximization of target function (1). Condi-
tion (2) provides that solution has exactly p facilities. Constraint (3) provides that
location i reaches its maximal degree of coverage and constraints (4) and (5) deter-
mine the ranges of described variables xi and yi.
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4 PSO METHOD

In this study, Particle Swarm Optimization method (PSO) is used for solving the
proposed FMCLP model. Particle swarm optimization is a well-known nature-
based metaheuristic method, introduced by Kennedy and Eberhart in [24, 25]. This
method is inspired by social behaviour of particles in swarms, like birds in flocks.
The main idea is to create several solution instances (particles) that are moving
through the solution space with some given intelligence. Each particle knows its
best position so far and the best position of its neighbourhood, and updates its own
position using this information. Original PSO method is developed for problems
with continuous variables, but Kennedy and Eberhart developed a discrete version
of this method [26], known as Discrete Particle Swarm Optimization (DPSO).

DPSO considers a swarm size S containing n particles. Each particle is rep-
resented by its position in d-dimensional binary solution space as vector xi =
(xi1, xi2, . . . , xid). Each particle has its own velocity vector vi = (vi1, vi2, . . . , vid)
in d-dimensional continuous space Rd. Vector xi represents a solution of the prob-
lem, while the velocity vector represents a change of particle position in the next
iteration. With given notation, position of particle i in kth iteration is xki = xk−1

i +vki .
As mentioned before, particle’s velocity determines its position in the next iter-

ation and it depends on two parameters: its best position so far (bi) and the best
position (ci) of its neighbourhood N(i) ⊆ S. Velocity vector is calculated by formula
given by Kennedy and Eberhart in [24]:

vki = vk−1
i + c1ξ1(bi − xk−1

i ) + c2ξ2(gi − xk−1
i ) (6)

Parameters c1 and c2 represent degrees of confidence of particle i in the different
positions that influence its dynamics. Parameters ξ1 and ξ2 are independent random
variables generated in each iteration with uniform distributions in the interval [0, 1].

Velocity values are limited, i.e.

|vij| < Vmax (7)

where Vmax usually has value close to 6.0. This setting prevents that the probability
is either too low or too high.

In DPSO, velocity vector refers to a probability that the jth binary variable
in the ith assumption obtains a value 0 or 1 in the next iteration. Each position
variable xij of particle i gets value 1 if a randomly generated value is less than the
sigmoid function:

1

1 + exp(−vij)
. (8)

PSO and DPSO were used for solving many location problems (see [27]), some
hybrid modifications of PSO are presented in [28] and some models with fuzzy
random uncertainty are solved in [29].

In the coding of DPSO algorithm for proposed FMCLP model, swarm contains
10 particles. Each particle in swarm has a position vector, velocity vector and vectors
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for storing its best position so far and the best global position. Position vectors are
composed of binary values and each binary value represents a facility location, i.e.
value 1 if the facility established in it, and 0 otherwise.

The algorithm starts with generating random position vectors and random ve-
locity vectors for each particle. In the initial position vector locations for facilities
are randomly chosen. Values in velocity vectors are randomly selected from the in-
terval [−Vmax, Vmax], where Vmax = 6. In each iteration, particle position is updated
by the probability method given by formula (8) and velocity is updated using (6).
After each calculation of a new position of the particle, algorithm performs correc-
tions if the particle contains the incorrect number of positions for facilities. If there
are less positions, randomly selected locations are added to the solution vector and
if there are more potential positions, randomly selected locations are removed.

Algorithm’s input data are n locations with coordinates, number of facilities p,
fuzzy coverage radius R+fr and fuzzy distances between locations dij+ft. Distances
between locations are calculated as Euclidean distances. Output data of algorithm
is the value of the goal function (1) and the solution vector.

Algorithm: PSO for FMCLP
Input: Locations with distances, number of facilities, fuzzy radius of
coverage, fuzzy distance value, maximal number of iteration
Output: Best position for distances and degree of coverage

for each particle do
Init particle’s position and velocity vectors with random values
Init particle’s best position

endfor
Calculate global best position
while not maxiteration do

for each particle do
update particle’s position and velocity
compute particle’s result (degree of locations’ coverage)
if current result > best particle’s result do

particle’s best result = current result
endif
if current result > global best result do

global best result = current result
solution = postion of current particle

endif
endwhile

endwhile

Figures 6 and 7 describe two visualized solutions. The algorithm has been
executed twice on the same instance with different input parameters. Locations are
positioned in 30×30 grid and algorithm searches for the best positions of 10 facilities
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with a coverage radius R = 5. In the first run, input data does not contain fuzzy
conditions fr = ft = 0 and in the second run, fuzzy variables fr = 0.5 and ft = 0.1
are defined in input data. Figure 7 presents fuzzy radius as an external circle.
The solution without fuzzy conditions covers 84 locations while 85.506 locations are
covered with fuzzy conditions in the input data.

Figure 6. Solution for problem with input parameters n = 90, p = 10, R + fr = 5 + 0,
ft = 0

Figure 7. Solution for problem with input parameters n = 90, p = 10, R + fr = 5 + 0.5,
ft = 0.1

5 COMPUTATIONAL RESULTS

Computational tests were performed on the generated instances of the problem.
The same procedure as in ReVelle et al. [30] is used – locations are randomly set in
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30 × 30 grid, without the associated population data – each location has the same
importance.

Two algorithms are coded – the first one uses IBM CPLEX optimizier v12.1
for solving proposed model, and the second one uses the described PSO method.
Both algorithms are coded in Visual C# .NET 2010 and all tests were running on
the computer with Intel Core i7 800 2.8 GHz processor with 8 GB RAM memory
and Windows 7 Professional operating system. In all executions, swarms in the
PSO method were composed of 10 particles. Testing procedure was as follows:
For each instance the algorithm runs 10 times, and the best result and the best
reach time were taken. The algorithm stops if the result is unchanged after 2 000
iterations.

In the first test, results of the developed metaheuristic are compared with the
results obtained using the CPLEX optimizer. Because CPLEX could successfully
solve just instances with relatively small dimensions, problem dimensions are cho-
sen so that CPLEX could solve it. In the first test, both algorithms are per-
formed on the same instances of dimensions with 70, 80 and 90 locations. Other
problem parameters are: fuzzy radii R + fr = 5 + 0.5, 5 + 1, fuzzy distances
ft = 0.1, 0.2 and number of facilities P = 10. Results of the first test are shown in
Table 1.

CPLEX PSO

n R+ fr ft Solution Time (ms) Solution Time (ms) GAP (%)

70 5 + 0.5 0.1 68.018 38 794 68.018 259 0
70 5 + 0.5 0.2 68.087 34 786 68.087 376 0
70 5 + 1 0.1 68.416 112 369 68.416 202 0
70 5 + 1 0.2 68.398 112 369 68.398 418 0

80 5 + 0.5 0.1 76.811 3 415 977 76.811 276 0
80 5 + 0.5 0.2 76.85 2 887 284 76.85 329 0
80 5 + 1 0.1 77.315 4 431 462 77.315 269 0
80 5 + 1 0.2 77.294 10 166 557 77.294 269 0

90 5 + 0.5 0.1 N/A 3 293 544 85.506 1 414 –
90 5 + 0.5 0.2 N/A 4 737 207 85.343 1 614 –
90 5 + 1 0.1 N/A 8 276 707 86.762 2 170 –
90 5 + 1 0.2 N/A 8 956 056 86.75 1 502 –

Table 1. Results of algorithms based of CPLEX and PSO solvers

As it can be seen from Table 1, CPLEX is not able to solve problems of di-
mension 90 with given parameters. Similarly, CPLEX cannot solve problems of
greater dimensions and CPLEX throws out an out of memory exception. On
the other hand, developed PSO method in all tests reached optimal values very
fast.

In the second test, the developed PSO method is executed on instances with
dimensions up to 900 locations with parameters: number of facilities P = 20, 25, 30,
radius R = 2, 2.5, 3 and fuzzy variables fr = 0.5, 1, ft = 0.1, 0.2. Table 2 shows



New Model of MCLP with Fuzzy Conditions 647

results obtained on instances with dimensions n = 100, n = 500, n = 800 and
n = 900 with 20, 25 and 30 facilities, radius of coverage 2 + 0.5, 2.5 + 0.5 and
3 + 0.5 and fuzzy distances 0.1 and 0.2. All computational results are given on
http://www.matf.bg.ac.rs/~maricm/fmclp. Computational results contain the
result, time of the best solution, total execution time, average gap (agap) and stan-
dard deviation (σ). The average gap (agap) is calculated as agap = 1

N

∑N
i=0 gapi,

where N represents the number of PSO runs on the same instance (in this study
N = 10). Symbol gapi represents the gap of PSO’s results obtained in the ith

run. In all runs, gapi is evaluated with respect to best-known solution (Best.Sol)
with formula gapi = 100 · soli−Best.Sol

Best.Sol
. As it is well known, optimality for results

in tests cannot be proven and thus the solution obtained by the algorithm is taken
for the best PSO solution. Standard deviation is calculated by the known formula

σ =
√

1
N

∑N
i=0(gapi − agap)2.

Algorithm is tested 324 times on different input data. In 54.94 % percent of
instances, algorithms have agap below 2 %. Average obtained gap in all tests is 1.86
and average standard deviation is 1.15. Maximal gap 5.87 and maximal standard
deviation 2.43 are obtained on instance with parameters n = 800, P = 30, R+fR =
2 + 0.5 and ft = 0.1.

As we mentioned before, CPLEX is not able to find solutions for instances with
more that 90 nodes. On other hand, Tables 1 and 2 show that PSO is capable to
solve all tested instances in acceptable time and it reaches all CPLEX results, so it
is reasonable to conclude that the developed method is competitive for solving the
proposed model. Tests confirmed a known fact that any increase in a fuzzy value
in the radius of coverage always gives a solution with more covered locations. On
the other hand, changing fuzzy values in distance variables gives different results in
different instances – sometimes it covers more locations, but sometimes it covers less
locations. Reason for this property is the proposed method for calculation of the
degree of coverage and intersection of triangular and right shoulder fuzzy numbers
illustrated in Figure 3.

6 CONCLUSION AND FUTURE WORK

In this paper a new model of FMCLP has been proposed and fuzzy numbers
are used for modeling uncertainties. Particle swarm optimization metaheuristic
has been proposed for solving of this model and testing results have been pre-
sented.

Further work related to this paper will be the implementation of other meta-
heuristics and hybrid methods for solving the proposed model and comparing their
efficiency. The introduction of similar fuzzy conditions in other combinatorial op-
timization problems will be a next direction in the future research. The authors
of this paper are currently working on creating fuzzy model for minimal covering
location problem.
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n P R+ fr fl Best.Sol Sol.Time Total.Time agap % σ

100 20 2 + 0.5 0.1 67.871 1 557 7 871 0.34 0.50
100 20 2 + 0.5 0.2 67.362 2 143 8 052 0.22 0.25
100 20 2.5 + 0.5 0.1 80.755 1 794 7 525 0.80 0.68
100 20 2.5 + 0.5 0.2 80.828 1 670 7 434 0.26 0.38
100 20 3 + 0.5 0.1 90.353 4 220 9 897 0.88 0.61
100 20 3 + 0.5 0.2 90.153 3 390 9 102 0.24 0.24

100 25 2 + 0.5 0.1 76.326 3 521 9 328 0.40 0.41
100 25 2 + 0.5 0.2 75.846 4 117 10 004 0.22 0.15
100 25 2.5 + 0.5 0.1 86.502 3 995 9 635 0.15 0.22
100 25 2.5 + 0.5 0.2 86.549 5 043 10 761 0.46 0.36
100 25 3 + 0.5 0.1 95.679 2 456 8 049 0.33 0.39
100 25 3 + 0.5 0.2 95.574 4 698 1 0367 0.76 0.84

100 30 2 + 0.5 0.1 82.735 11 353 17 254 0.61 0.49
100 30 2 + 0.5 0.2 82.124 3 377 9 351 0.50 0.37
100 30 2.5 + 0.5 0.1 91.442 4 120 9 952 0.78 0.48
100 30 2.5 + 0.5 0.2 91.466 10 481 16 234 0.33 0.46
100 30 3 + 0.5 0.1 99.211 2 514 8 076 0.25 0.18
100 30 3 + 0.5 0.2 99.458 4 305 10 040 0.68 0.67

500 20 2 + 0.5 0.1 243.011 260 548 391 713 2.86 1.83
500 20 2 + 0.5 0.2 239.779 524 341 654 685 0.94 0.92
500 20 2.5 + 0.5 0.1 308.655 224 556 350 158 1.35 0.92
500 20 2.5 + 0.5 0.2 313.010 329 688 455 848 3.02 1.91
500 20 3 + 0.5 0.1 375.680 170 115 291 896 4.09 1.82
500 20 3 + 0.5 0.2 369.044 359 620 483 657 2.40 1.94

500 25 2 + 0.5 0.1 279.360 378 229 505 969 2.18 1.24
500 25 2 + 0.5 0.2 289.144 458 709 587 979 4.20 1.88
500 25 2.5 + 0.5 0.1 359.092 363 496 488 632 2.60 1.38
500 25 2.5 + 0.5 0.2 356.848 241 337 368 029 3.26 1.51
500 25 3 + 0.5 0.1 413.674 322 573 446 136 1.60 1.61
500 25 3 + 0.5 0.2 415.562 376 987 499 340 2.29 1.14

500 30 2 + 0.5 0.1 312.867 407 482 535 665 1.00 0.71
500 30 2 + 0.5 0.2 315.917 540 255 667 017 2.12 1.11
500 30 2.5 + 0.5 0.1 394.563 660 241 782 923 2.31 1.45
500 30 2.5 + 0.5 0.2 388.431 290 587 415 886 2.40 1.51
500 30 3 + 0.5 0.1 443.940 97 468 216 466 1.25 1.11
500 30 3 + 0.5 0.2 455.415 678 139 791 845 2.32 1.50
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n P R+ fr fl Best.Sol Sol.Time Total.Time agap % σ

800 20 2 + 0.5 0.1 355.118 699 611 1 046 569 4.30 1.84
800 20 2 + 0.5 0.2 343.949 773 755 1 127 638 2.39 1.29
800 20 2.5 + 0.5 0.1 463.026 1 199 970 153 7446 4.53 2.12
800 20 2.5 + 0.5 0.2 454.472 834 303 1 173 370 2.93 1.85
800 20 3 + 0.5 0.1 574.867 873 483 1 196 154 5.85 2.41
800 20 3 + 0.5 0.2 549.791 736 213 1 058 464 1.32 0.67

800 25 2 + 0.5 0.1 405.771 633 905 976 338 2.09 1.61
800 25 2 + 0.5 0.2 408.241 694 939 1 034 444 1.98 1.99
800 25 2.5 + 0.5 0.1 529.771 772 146 110 4117 3.28 1.48
800 25 2.5 + 0.5 0.2 523.437 609 647 937 569 3.04 1.57
800 25 3 + 0.5 0.1 623.804 279 271 600 143 1.67 1.12
800 25 3 + 0.5 0.2 638.047 809 213 1 126 970 3.72 1.75

800 30 2 + 0.5 0.1 478.642 1 452 437 1 786 968 5.87 2.43
800 30 2 + 0.5 0.2 460.678 757 960 1 099 268 2.65 1.52
800 30 2.5 + 0.5 0.1 584.299 464 765 786 487 2.36 1.28
800 30 2.5 + 0.5 0.2 577.633 1 086 267 1 412 218 2.56 1.52
800 30 3 + 0.5 0.1 679.925 901 983 1 223 607 1.37 0.95
800 30 3 + 0.5 0.2 672.031 271 563 580 390 1.11 0.93

900 20 2 + 0.5 0.1 396.458 746 652 1 192 244 4.83 1.90
900 20 2 + 0.5 0.2 382.122 516 080 971 273 2.54 1.61
900 20 2.5 + 0.5 0.1 506.792 1 223 832 1 656 887 1.84 1.12
900 20 2.5 + 0.5 0.2 504.608 890 448 1 324 987 2.33 1.51
900 20 3 + 0.5 0.1 607.633 1 399 932 1 825 608 1.71 1.08
900 20 3 + 0.5 0.2 618.172 195 804 615 621 2.60 1.05

900 25 2 + 0.5 0.1 452.046 678 070 1 119 510 2.28 1.35
900 25 2 + 0.5 0.2 451.013 587 142 1 034 476 1.52 1.49
900 25 2.5 + 0.5 0.1 583.544 410 512 834 589 2.54 1.47
900 25 2.5 + 0.5 0.2 577.736 995 791 1 432 477 1.89 1.09
900 25 3 + 0.5 0.1 722.648 344 676 760 136 4.63 1.95
900 25 3 + 0.5 0.2 695.761 1 037 067 1 457 792 2.34 1.65

900 30 2 + 0.5 0.1 518.665 608 909 1 060 774 2.50 1.78
900 30 2 + 0.5 0.2 507.704 148 065 582 565 2.16 1.60
900 30 2.5 + 0.5 0.1 647.080 361 156 779 588 2.20 0.99
900 30 2.5 + 0.5 0.2 640.107 407 976 831 076 0.71 0.53
900 30 3 + 0.5 0.1 768.443 862 697 1 262 284 2.36 1.15
900 30 3 + 0.5 0.2 766.596 1 263 250 1 660 216 2.68 1.02

Table 2. Results of PSO method on instances with dimension n = 100 and n = 900
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