Computing and Informatics, Vol. 34, 2015, 425-457

PETRI NETS MODELING OF DEAD-END
REFINEMENT PROBLEMS IN A 3D ANISOTROPIC
HP-ADAPTIVE FINITE ELEMENT METHOD

Arkadiusz SZYMCZAK, Maciej PASZYNSKI

AGH University of Science and Technology, Krakow, Poland
e-mail: arek.szymczak@gmail.com, maciej.Paszynski@agh.edu.pl

David PARDO

Department of Applied Mathematics, Statistics, and Operational Research
at the University of the Basque Country (UPV/EHU), Bilbao, Spain
Basque Center for Applied Mathematics (BCAM), Bilbao, Spain

Basque Foundation for Science (IKERBASQUE), Bilbao, Spain

e-mail: dzubiaurOgmail.com

Anna PASZYNSKA

Jagiellonian University, Krakow, Poland
e-mail: anna.Paszynska@uj.edu.pl

Abstract. We consider two graph grammar based Petri nets models for anisotropic
refinements of three dimensional hexahedral grids. The first one detects possible
dead-end problems during the graph grammar based anisotropic refinements of the
mesh. The second one employs an enhanced graph grammar model that is actually
dead-end free. We apply the resulting algorithm to the simulation of resistivity
logging measurements for estimating the location of underground oil and/or gas
formations. The graph grammar based Petri net models allow to fix the self-adaptive
mesh refinement algorithm and finish the adaptive computations with the required

accuracy needed by the numerical solution.

426 A. Szymczak, M. Paszynski, D. Pardo, A. Paszynska

Keywords: Petri nets, automatic hp adaptivity, finite element method, dead-end,
borehole resistivity logging

Mathematics Subject Classification 2010: 68Q05, 68Q42, 68QQ60, 68Q85

1 INTRODUCTION

Isotropic mesh refinements break selected finite elements into three directions to
construct eight son elements. Anisotropic refinements break selected elements into
one, two or three directions, producing two, four or eight element sons, respec-
tively. We consider anisotropic mesh refinement algorithms for 3D grids composed
with hexahedral finite elements, as presented in [9]. Improper implementation of
the anisotropic h-adaptation algorithm may result in a dead-end scenario, where
some requested refinements are impossible to execute. To make the implementation
of local refinements tractable while ensuring continuity in the finite element solu-
tion, many anisotropic refinement codes support the so-called I-irreqularity rule.
According to that rule an element with hanging nodes cannot be further refined.
For refining such an element one needs at first to refine one or several neighbor-
ing elements in order to eliminate all hanging nodes. The problem is illustrated
in Figures 1 and 2. Let us consider two finite elements, one broken into eight son
elements, and the other one unbroken. In the finite element method nomenclature
the nodes and vertexes of the shared face are called constrained in the sense that
the approximation over four small faces of the small elements is constrained by the
approximation over one big face of the big element.

Element broken into eight sons

Neighboring large element <

b 7

—= Constrained mid-edge nodes —= Double constrained mid-edge nodes
e Cons ed vertices ']

,{»’ Constrained mid-face nodes * Double constrained mid-face nodes

Figure 1. Left panel: Two adjacent elements, one broken into eight son elements. Right
panel: The forbidden state with double constrained nodes.

Petri Nets Modeling of Dead-End in 8D Anisotropic hp-Adaptive FEM 427

]

<
<
<

—= Constrained mid-edge nodes

,|f Constrained mid-face nodes

Figure 2. The breaking of large element followed by breaking of one of the small elements

If we break one of the small elements for the second time, the resulting state
is forbidden, compare left panel in Figure 1. The reason is that in such a case,
we will have double constrained nodes over the smallest faces of the small bro-
ken element. To prevent such forbidden state, it is necessary to break the large
neighbor before breaking the small element, compare Figure 2. As it comes from
numerical experiments, the l-irregularity rule has one unexpected drawback, both
in two and three dimensions. Namely, it may result in a dead-end of the adaptation
process. It should be emphasized that the mesh at dead-end state is at the ac-
ceptable state, the numerical problem can be solved on that mesh, however further
refinements are not possible here. The practical motivation of this paper was the
personal communication with David Pardo, working on 3D anisotropic mesh refine-
ments algorithm used for the simulations of 3D DC resistivity logging measurements
in deviated wells [23, 20, 24, 15]. During these computations the dead-end prob-
lem occurred. This 1-irregularity rule implies that an edge of an element can be
adjacent to no more than two smaller edges. Additionally, a face of an element
can be adjacent to either two smaller faces, or to four smaller faces, provided they
are broken in both directions. In the adaptive community, it is often said that
the small edge is constrained by the big edge, or the small face is constrained by
the big face. One of the first dead-end problems for 3D h-adaptive computations
with hexahedral elements was identified in [10]. The dead-end in that version of
the adaptive code was caused by the fact that elements could be broken only into
two son elements, either along X or Y or Z direction. In that paper [10] Figure
13 (reproduced here on left panel in Figure 3 with authors’ agreement) illustrates
a basic dead-end scenario. There are three elements in a row, the first one and
the third one are broken in two different directions. Another request to break the
first element implies the necessity of breaking the central element. This is because

428 A. Szymczak, M. Paszynski, D. Pardo, A. Paszynska

the left side face of the central element cannot be adjacent to two times broken
faces of the first element. If we break the central element in two directions, we
will block the possibility of breaking the third element, since the central element
must be broken in another direction in such case. This dead-end was overcome by
adding the possibility of breaking elements into four or eight son elements at the
same time [10].

Figure 3. Left panel: A first dead-end scenario. Right panel: A second dead-end scenario.

Black constrained by Green
Green constrained by Blue
Blue constrained by Red
Red constrained by Black

mdle_black=2990
mdle_red =2824
mdle_blue=3359
mdle_green=3582

CONCLUSION: BLACK CONSTRAINED BY
BLACK, AND THE CODE BREAKS DOWN

Figure 4. A third dead-end scenario

Actually, the authors of [10] found out that this additional breaking of elements
should be performed into eight son nodes, to block the unwanted propagation of
additional refinements. The authors of this paper encountered another dead-end
scenario, presented on right panel in Figure 3. In this case, we have a patch of four
elements. Each of these elements have been broken into two son elements. The
resulting mesh does not violate the 1-irregularity rule, however, further refinements
are not possible in this patch. For example, let us assume that we want to break
element 1 again into the direction perpendicular to the X axis. The right face of
element 1 is constrained by the left face of element 2. We need to break element 2
first, into eight son nodes, in order to prevent further propagation of refinements.

Petri Nets Modeling of Dead-End in 8D Anisotropic hp-Adaptive FEM 429

But we cannot do that, since the front face of element 2 is constrained by the rear
face of element 3. We need to break element 3 into eight son nodes, but we cannot
do that since the left face of element 3 is constrained by the right face of element 4.
So we need to break element 4 into eight son nodes, but we cannot do that yet,
since the rear face of element 4 is constrained by the front face of element 1. We
have to break element 1 first, in the way that is contradictory with its original re-
quest for refinement. We have a dead-end scenario here. Later, we found another
dead-end problem, much more complicated. In the 3D mesh described in Figure 4,
there are four elements that touch each other through edges. We would like to
break the black element one more time into four son nodes, along Z axis. This
refinement request implies the necessity of breaking the green element, since the
edge of the black element perpendicular to Y axis is constrained by the edge of
the green element perpendicular to Y axis. We want to break green element into
eight son nodes, to prevent unwanted propagation of refinements. But this is not
possible yet, since the Z edge of the green element is constrained by the Z edge of
the blue element. The blue element also must be broken into eight son elements.
But again, this is not possible, since Y edge of the blue element is constrained by
Y edge of the red element. In turn, the Z edge of the red element is constrained
by the Z edge of the black element. Again, we encounter a dead-end scenario here.
Other dead-end scenarios have been also reported in non-structural 3D tetrahedral
adaptive finite element method computations [18]. In this paper we propose the
use of a Petri net for detecting a dead-end scenario. The modeling of a dead-end
scenario for adaptive finite element methods was already performed for two dimen-
sional (2D) anisotropic refinements of rectangular meshes. In the first attempt [40],
we modeled only a 2D sub-mesh with 2 x 2 rectangular elements, and considered
a Petri net modeling a dead-end scenario in such simple example. This result was
generalized for arbitrary 2D rectangular grids in [41]. Later, in [32] we designed
a Petri net model for a 3D sub-mesh with 2 x 2 x 2 hexahedral elements, and showed
how to remove the dead-end in such example. In this paper, we generalize these
results to the class of arbitrary 3D hexahedral meshes in a similar way as it was
performed in [41] for the case of 2D rectangular grids [40]. The Petri net model is
independent of the numerical problem being solved, however it depends on the par-
ticular implementation of the mesh adaptation algorithm. The Petri net model has
been implemented in PIPE software [7], the reachability graph has been constructed
there, and the dead-end analysis has been executed by using automatic tools im-
plemented in PIPE software. Once we have a corrected version of the adaptation
algorithm proven to be dead-end free, this algorithm can be used to solve any numer-
ical problem without incurring in a dead-end scenario. The computational mesh can
be represented as a graph and mesh refinements can be modeled as graph grammar
productions (graph transformations),in both 2D [30, 31] and 3D [27, 28]. Thus, in
this paper we introduce a formal model of a graph representing a 3D computational
mesh with hexahedral elements, subject to anisotropic refinements. We also provide
formal definitions of mesh transformations expressed as graph grammar productions,
representing anisotropic mesh refinements. The graph grammar model definitions

430 A. Szymczak, M. Paszynski, D. Pardo, A. Paszynska

presented in this paper are a generalization of the one presented in [27, 28] for the
isotropic mesh refinements. The paper is organized in the following way. Section 2
provides an overview of sequential adaptivity mesh refinement codes. In Section 3
we introduce formal definitions of Composite-Programmable graph (CP-graph) and
Composite Programmable graph grammar (CP-graph grammar) models express-
ing the h adaptation process. In Section 4, we introduce a graph grammar model
describing adaptive mesh refinements. Next, in Section 5 we introduce a mesh adap-
tation algorithm as implemented in the hp3d code in [26]. Section 6 presents the
algorithm for generation of hierarchical Petri nets modeling the mesh refinements
algorithm implemented in [26]. We show that this Petri net model does not prevent
possible dead-end scenarios. Section 7 describes the enhanced graph transforma-
tions, the corrected mesh adaptation algorithm, the Petri net model expressing the
new algorithm and the proof that the new Petri net model is dead-end free. The
paper is concluded in Section 8 with numerical results concerning the anisotropic
mesh refinements algorithm used for simulations of resistivity logging measurements
in deviated wells.

2 RELATED WORKS

The adaptive algorithms can be classified in the following way:

e Uniform h adaptation: all finite elements are uniformly broken into smaller
elements.

e Uniform p adaptation: the polynomial order of approximation is increased uni-
formly over the entire mesh, e.g. by adding bubble shape functions of the higher
orders over element edges and interiors.

e Non-uniform h adaptation: some finite elements are broken into smaller ele-
ments, only in those parts of the mesh which have a high numerical error.

e Non-uniform hp adaptation: some finite elements are broken into smaller ele-
ments, and the polynomial orders of approximation are increased, only in those
parts of the mesh which have a high numerical error.

e 1 adaptation, where the mesh is re-generated using new distribution of ele-
ments.

For non-uniform A or hp adaptation, it is necessary to locate finite elements with
a high numerical error and select the optimal refinements for them. The non-
uniform h or hp adaptation process can be executed in the following ways:

e The selection of the finite elements to be refined and the type of refinement
depends on a user.

e The selection of the finite elements to be refined and the type of refinement
depends on an algorithm based on the knowledge of the structure of the solution.

Petri Nets Modeling of Dead-End in 8D Anisotropic hp-Adaptive FEM 431

e The selection of the finite elements to be refined and the type of refinement
depends on the self-adaptive algorithm, which is designed without any particular
knowledge of the structure of the solution, and works in a fully automatic mode,
without any user’s interaction.

The first and the second algorithm are referred to as the non-automatic adapta-
tion, whereas the third algorithm is called automatic adaptation. In particular, the
non-uniform hp automatic adaptation is called the self-adaptive hp Finite Element
Method (self-adaptive hp-FEM). The r adaptation is also often referred to as re-
meshing. Algorithms for the uniform A, uniform p, non-uniform A and non-uniform
hp automatic adaptation for 3D grids have been designed, implemented and tested
by the group of prof. Leszek Demkowicz [9]. Many authors followed the approach
originated by Demkowicz and implemented their own variations of these algorithms.
In [21], authors employ modern h and hp adaptation algorithms for the Girkmann
problem. [2] presents the h adaptation approach using the octree data structure
and the ideas originally introduced by [9] for local h refinements. The uniform h
adaptation algorithm has also been utilized for the solution of the projection prob-
lem [16]. The r-adaptation is also commonly used in the computational community.
Paper [17] uses the re-meshing algorithm for modeling large deformations in geo-
logical problems. The r adaptation algorithm can also be utilized for solution of
non-stationary problems, e.g. wind flow around the bridge [36], or flow problem [4].
The self-adaptive h-FEM or hp-FEM algorithm may utilize different error estima-
tors for guiding the adaptation process. There are different error estimators defined
for elliptic [3, 5], parabolic [14, 6] or multi-physics problems [22]. From the point
of view of the dead-end modeling, the error estimator does not influence the prob-
lem. In this paper, we focus on modeling dead-end scenarios in the self-adaptive
h-FEM algorithm. The addition of automatic p adaptivity is also possible, since
playing with different polynomial orders of approximation over the edge does not
influence the dead-end problem, which results from h adaptation only. The Petri net
model presented in this paper can be also applied to model the other non-automatic
adaptation algorithms. The only exception is the r adaptivity.

The parallelization of any of the above adaptation algorithm results in dis-
tribution of the computational mesh into processors. The Sierra Environment is
a platform supporting h refinements over the mesh distributed into subdomains [13].
There is also object-oriented distributed data structure hp-adaptive flow simulation
code [1]. The original hp-adaptive algorithm from [9] has also been parallelized using
either domain decomposition approach [33] or OpenMP approach [37]. The other
parallel hp adaptive algorithms implemented so far have been developed by [12, 38]
in context of Discontinuous Galerkin DG) methods. The parallel hp adaptive algo-
rithms for Continuous Galerkin have been developed by [35, 19].

Our model can still be applied for analyzing the dead-end problem for parallel
mesh refinements algorithm, assuming the dead-end scenario takes place over a sin-
gle sub-domain, or the domains have been collected into a single processor. There
are some alternative non-adaptive efficient parallel methods for solution of compu-

432 A. Szymczak, M. Paszynski, D. Pardo, A. Paszynska

tationally intensive problems, like the alternative direction solver described in [34],
but they do not generate deadlock problem since they do not use adaptive grids.
The adaptive solvers can be also used for solution of some inverse problems, and the
parallelization there may concern different calls to the solver performed at the same
time [29], not necessary using the mesh partitioning methods.

3 GRAPH GRAMMAR MODEL OF MESH TRANSFORMATIONS

Definition 1. The Composite Programmable Graph (CP-graph) modeling a mesh
with hexahedral elements is defined as

CPmesh = (V,E,fv,P,PlE,PQE,Plp,...,P4F,P11,..4,P81,virt,ref). (1)

e V is a set of nodes.
e F is aset of edges, such that £ C B (V) x B (V) fulfills the following conditions:

— for each (i,u) € B(V), there exists at most one (j,v) € B (V) such that
((,0), (i,u) € E,
— for each ((j,v), (i,u)) € E, v # u.

e For a set V of nodes and a node labeling function &y : V — W, let B(V) =
Uvev B (&v (v)) x {v} denotes the set of pairs (i,v) called bonds, where i €
B (& (v)) and v € V.

e Natural numbers i are called indexes of bonds.

e Let W be a finite, nonempty subset of Ay x [i]x, where o and (3 are the pro-
jections of each w in W to the first and the second component, respectively,
ie.,

w = (a(w),f(w),weW. (2)

e The set of W C Ay X [i]y is called the set of extended labels over Ay and [i]y.

denotes the interval 1,...,4 for i > 0 (with [0] =0). [i]y denotes a family of
intervals [i] for ¢ > 0.

—-

e Ay is an alphabet of node labels
Ay = A, U AL U AS U AL (3)

— Al = {v} is a set of node labels that denote vertexes of finite elements

— A} = {F} is a set of node labels that denote edges of finite elements

— A} = {FE} is a set of node labels that denote faces of finite elements

— A}, ={I,i} is a set of node labels that denote interiors of finite elements.

e P:V x Al — {R x R x R} is a function attributing nodes, which assigns the
coordinates to each vertex of the element.

Petri Nets Modeling of Dead-End in 8D Anisotropic hp-Adaptive FEM 433

(0.E0,0.E0,0E0) (1.E0,0.E0,0.E0)

Figure 5. CP-graph representation of the two finite element mesh

The exemplary CP-graph representation of two element mesh is presented in
Figure 5.

Definition 2. Let OPmesh = (V E75V7P7P1E7P2E, PlF: e ,P4F,P1], ‘e ,P8[7
virt_ref) and CP!_ ., = (V,E &, P, Pl P2y Pl ..., P4 Pl ..., P8,
virt_ref") be two CP-graphs over W, as defined in Definition 1. Graph CPy,esn
is isomorphic with graph CP/ ., if and only if there exists a bijection f : V — V'
such that

e Vu,veVie=((1,0),(j,u)) € Eiff ¢ = ((i, f(v)),(J, f(u))) € &'

o Vw eV iv(v) =& (f(v))

o Yu €V, attr(v, &y (v)) = attr’'(f(v), & (f(v)))
where attr € {P, Plg, P2g, Plg, ..., P4p, Ply, ..., P8, virt_ref}
and attr’ € {P', P1%y, P2, P, ... P4y, P}, ..., P8} virt_ref'}

Definition 3. A Composite Programmable graph grammar (CP-graph grammar)
G for mesh adaptation is defined as:

G = (VI/? £V7V7 GGP7 l‘) (4)
where:

e VV is a set of nodes
o I/ is a set of extended labels
e £y is a node labeling function

e GGP is a finite set of pairs of (I,7) called graph grammar productions, where [
and r are composite graphs over W of the same type, and the set of free bonds
of r and [are equipped with ordering relations

x is a labeled node from V' and it is called the axiom of the grammar.

434 A. Szymczak, M. Paszynski, D. Pardo, A. Paszynska

Let p = (I,r) € GGP be a production in G. The first | and second r element of
the pair are called the left-hand-side and right-hand-side of p. The application of
production p to a composite graph ¢ consists of substituting the composite graph r
by a subgraph of the graph ¢ isomorphic to the composite graph [and replacing the
connections of [with the connections of in such a way that each free bond of [is
substituted by a free bond of r with the same order number.

4 GRAPH GRAMMAR PRODUCTIONS FOR MESH ADAPTATION

In this section, we define the CP-graph grammar model of the mesh refinement algo-
rithm from [9]. The algorithm has been implemented in hp3d code. The CP-graph
grammar is introduced here by defining the graph grammar productions express-
ing the mesh transformation rules. The productions use graphical transformation
of sub-graphs of the CP-graph representing the computational mesh being refined.
Some representative graph grammar productions from the first set of productions
are presented in Figures 6-8. Productions whose names start with V denote the so-
called virtual refinements requests for breaking an element interior in one of several
possible directions. Productions (VX), (VY) and (VZ) denote virtual breaking
of an element interior in a single direction along X, Y and Z, axis, respectively.
Productions (VXY), (VYZ) and (VXZ) denote virtual breaking of an element
interior along two designated axis at the same time. Production (VXYZ) denotes
virtual breaking of element interior along all three axis at the same time.

Figure 6. Graph grammar production (VX) for virtual refinement of a single element into
X direction

The computational mesh after execution of any of these virtual refinements is
not in the legal state. This is because the virtual refinements break only element in-
teriors, and the mesh must be closed. This is done by enforcing additional breaking
of some faces and edges. A face must be broken if it is surrounded by two broken
interiors. An edge can be broken if it is surrounded by four broken faces. The
execution of virtual refinements is followed by the execution of several graph gram-
mar productions, checking the connectivities between edges, faces and interiors, and

Petri Nets Modeling of Dead-End in 8D Anisotropic hp-Adaptive FEM 435

Figure 7. Graph grammar production (VXY) for virtual refinement of a single element
into X and Y directions

{
A

(VXYZ) (% -

Figure 8. Graph grammar production (VXYZ) for virtual refinement of a single element
into X, Y and Z directions

enforcing some additional refinements. The graph grammar productions for break-
ing faces surrounded by broken interiors are presented in Figures 9-11. Production
(PBF1) presented in Figure 9 describes the process of breaking a face surrounded
by one interior that has already been broken in one direction. There are analogous
productions (PBF1_11) and (PBF11) presented in Figures 10 and 11 which de-
scribe the process of breaking a face surrounded by one interior that has already
been broken in one direction and another interior that has already been broken in
two directions, and the process of breaking a face surrounded by two interiors that
have already been broken in two directions.

The exemplary representative graph grammar production for breaking edges
surrounded by broken faces is presented in Figure 12. There are similar three graph
grammar productions, since an edge may be surrounded by two, three or four faces.

For each element with broken interior (after the virtual refinement) we execute
the graph grammar productions (PBF1), (PBF1.11), (PBF11) and (PEB2),
(PEB3), (PEB4) for its faces and edges. The distinction between virtual and

436

A. Szymczak, M. Paszynski, D. Pardo, A. Paszynska

(¥ (E

(PBF1)

@

g
)
&

G—

)

)

@

E
CE)

v

Had

@

=/

)

Figure 9. Graph grammar production (PBF1) enforcing breaking of a face surrounded by
two interiors broken in one direction

(PB1_11)

my

o~

P

Figure 10. Graph grammar production (PBF1_11) enforcing breaking of a face sur-
rounded by one interior broken in one direction and another interior broken in

two directions

actual refinements is needed for the dead-end detection during the refinement prop-
agation. Both the productions for virtual and actual refinements are quite complex
when they are expressed in a formal way using CP-graph grammar notation. Thus,
in the following sections we will use the simplified notation summarized in Fig-
ure 13. In this simplified notation, we assume that closing of the refinement process
for faces and edges can be expressed by one production B* whose name corresponds
to the virtual refinement executed before. For example, execution of production

o~

N2

\ I\\
(PBF11) I

B

— -
Ay N
—
B\
- ~
F)
B = v
(B '
RN L/ /

&

Figure 11. Graph grammar production (PBF11) enforcing breaking of a face surrounded

by two interiors broken in two directions

Petri Nets Modeling of Dead-End in 8D Anisotropic hp-Adaptive FEM

437

Figure 12. Graph grammar production (PEB2) enforcing breaking of an edge surrounded

by two broken faces

(BY) after the production (VY) requires execution of productions (PBF1) and
(PBF1_11) for all the faces of the element surrounded by broken interiors, as well
as execution of production (PEB2) for all the edges of the element surrounded by
broken faces.

5 MESH ADAPTATION ALGORITHM

The mesh adaptation algorithm as implemented in hp3d code [9], can be summarized
in the following way:

Algorithm 1.

©O© 00 ~NO O W N -

e e S o e e
O© 00 NO O WN - O

L = List of elements el to be refined with refinement kind
do while L not empty
el = get next element from L and its refinement kind
loop through face € faces of element el
if face belongs to big neighbor element then
Store netghbor with its refinement kind at the end of L
Store el and its refinement kind at the end of L
continue do-loop from line 2
endif
enddo
loop through edge € edges of element el
if edge belongs to big meighbor element then
Store netghbor with its refinement kind at the end of L
Store el and its refinement kind at the end of L
continue do-loop from line 2
endif
enddo
break element el in a way kind using the virtual refinement
end while

438 A. Szymczak, M. Paszynski, D. Pardo, A. Paszynska

v | | (BY)
—> —>
— -
(VX) (BX)
—> —>
L L
[\%4) /] 7 B2
[— [t
7 7
vxY) [| | || ®
—> m—
2 2
w2y [% |_ (BYZ)
[m— [t
4 /!
(VX2) 1 7 (Bx2)
| = —>
L L
7 /
vxvz)[| r | |_ (BXYZ2),
[m— [t
L 2

Figure 13. Graph grammar production for anisotropic breaking of a single element

Remark 1. A dead-end scenario occurs when a virtual refinement propagates into
some adjacent element either through a face or an edge, and it is contradictory to
the virtual refinement that has already been selected for the adjacent element.

In the mesh adaptation Algorithm 1, the dead-end happens in line 18, where we
try to break the interior of an element that has already been broken in some other
way.

Petri Nets Modeling of Dead-End in 8D Anisotropic hp-Adaptive FEM 439

6 HIERARCHICAL PETRI NET MODEL

Remark 2. In order to detect a possible dead-end scenario, we need to construct
a hierarchical Petri net with the main page covering the entire mesh, and sub-pages
corresponding to pairs of elements either through a face or through an edge.

We construct the hierarchical Petri net model for the entire mesh, with main
page corresponding to the entire mesh, and with sub-pages corresponding to all el-
ement pairs, either through a face or through an edge. Because of the 1-irregularity
rule enforced over the entire mesh, all the pairs of elements are at the same level
of adaptation. Each sub-page corresponding to a single pair of elements considers
refinement request for any of the elements in the pair, with possible propagation to
the other element from the pair. The sub-page considers also all possible refinement
requests coming from the external elements. Thus, we consider all possible combina-
tions of two virtual refinement requests, and check if they result in a dead-end. The
hierarchical Petri net model has been constructed in such a way that actual dead-
end detection is performed by the sub-pages covering two-element patches of the
mesh. The hierarchical Petri net sub-page for finite elements adjacent along X axis
is depicted in Figures 14 and 15. For the sake of saving space, we skip similar hie-
rarchical Petri net sub-pages for finite elements adjacent along Y and Z directions.
The Petri nets considered in this paper are defined as hierarchical colored Petri nets
(compare [39], p. 177, definition 10.16) where we utilize only one color (we have only
one type of token). We use the composition method like for the hierarchical colored
Petri net with fusion of places. The sub-pages are related with the main page by
socket and port nodes. In particular, the socket is the place in the main page of the
hierarchical Petri net that is shared with the sub-page. The socket place from the
point of view of a sub-page is called a port. In other words, the socket and port
are the two names of the same place, common for main page and for some sub-page
(compare [39], p. 176).

Since the propagation of dead-end may also occur through an edge, as it is
depicted in Figure 4, it is also necessary to consider patches of elements adjacent
through edges. Each element has six neighbors through faces, where there are actu-
ally three symmetric Petri nets, for adjacency along X, Y and Z directions. There are
also twelve edges, and there are twelve possible adjacent neighbors through edges.
The Petri net sub-page for adjacency through edges is similar to the sub-pages
reflecting the adjacency through faces, but only the refinements in the direction
perpendicular to the edge may occur there. For sake of saving space, we do not
present this Petri net here. The Petri net arcs define all possible execution paths for
a round of mesh element refinements by enforcing dependency relationships between
relevant transitions (productions). Whenever only one of a set of grammar produc-
tions can be executed, the corresponding Petri net transitions depend on a common
place with a single token. Whenever execution of a production blocks execution of
another production, an inhibitor arc is used between the corresponding Petri net
transitions (actually between the intermediate place and the dependent transition).

A. Szymczak, M. Paszynski, D. Pardo, A. Paszynska

440

[
o

o
| OO Viﬁnﬂ.w%@%
/ﬁg@ﬁﬁw&rﬂf

\ﬁéﬁ\xwﬂ@ SRS
‘\w/‘ ‘ 5 g -

IS
<S err

chical Petri net with a dead-end for finite elements

adjacent along X axis

Figure 14. First part of the hierar

441

Petri Nets Modeling of Dead-End in 8D Anisotropic hp-Adaptive FEM

chical Petri net with a dead-end for finite elements

nt along X axis

Figure 15. Second part of the hierar
adjace

442 A. Szymczak, M. Paszynski, D. Pardo, A. Paszynska

Each hierarchical Petri net subpage contains two starting places (P1 and P2) — one
for each mesh element of the modeled pair. P1 and P2 are fusion places shared
between all sub-pages covering common mesh elements (a given mesh element can
be part of up to six element pairs). The two upper rows of Petri net transitions
are named after the grammar productions they represent. Numbers at the end of
transition names denote the corresponding mesh element to which a given transition
pertain to. Firing any of those transitions models executes a corresponding grammar
production. The remaining Petri net transitions model the following mesh element
transformations:

e VXA - request (virtual) to break along X axis the adjacent sub-element

e VYA - request (virtual) to break along Y axis the adjacent sub-element

e VZA —request (virtual) to break along Z axis the adjacent sub-element

e VXYA —request (virtual) to break along X and Y axis the adjacent sub-element

e VXZA —request (virtual) to break along X and Z axis the adjacent sub-element

e VYZA —request (virtual) to break along Y and Z axis the adjacent sub-element

e BXA — transformation breaking along X axis the adjacent sub-element

e BYA — transformation breaking along Y axis the adjacent sub-element

e BZA - transformation breaking along Z axis the adjacent sub-element

e BXYA — transformation breaking along X and Y axis the adjacent sub-element

e BXZA — transformation breaking along X and Z axis the adjacent sub-element

e BYZA - transformation breaking along Y and Z axis the adjacent sub-element

e BXYZA - transformation breaking along all 3 axis the adjacent sub-element

e VP — propagation of (virtual) refinement request onto the other element

e BP — transformation executing the propagated refinement

e VB - transformation converting any virtual refinement into a three-directional

virtual refinement.

Transitions whose names end with prim model the same graph transformations as
the corresponding transitions without prim at the end of the name but reachable
by a different execution path (that is, with vs. without refinement propagation).
A mesh (sub-)element can be broken for the second time (transitions B [D]A[#],
where [D] stands for any direction(s) and [#] is the number of concerned mesh
element) only when the adjacent element is already broken in the same direction at
least once. This can be achieved in either of the following two ways:

1. The adjacent element has been broken in the required direction independently.

2. The required refinement is propagated onto the adjacent element (e.g. P33 —
VP2 — P49 — BP2 for the “left” element in the pair).

Petri Nets Modeling of Dead-End in 8D Anisotropic hp-Adaptive FEM 443

An alternative to the above two scenarios is modeled in the Petri net by means of
places P65—P70. Single breaking of a mesh element in a set D of directions unin-
hibits the single breaking of the adjacent (sub-)element in a subset D of directions
(places P65—P68). A second virtual refinement of a mesh element in fewer than
three directions at the same time inhibits the refinement to be propagated from
the adjacent mesh element (places P69 and P70). It is critical that each pair of
adjacent mesh elements is covered with a Petri net subpage of appropriate type. To
this end, the hierarchical Petri net generation algorithm for a given finite element
mesh has been developed.

Assumption 1. All elements of the mesh to be analyzed are at the same adaptation
level. This is a direct consequence of the 1-irregularity rule that must be fulfilled
over the mesh.

Algorithm 2. Generation of a hierarchical Petri net for a given 3D finite element
mesh

1. Create the main page of the hierarchical Petri net.

e Create a Petri net place for each element of the mesh being analyzed.

e For each pair of adjacent (by face in any direction: along X, Y or Z axis; or
by any of the twelve edges) mesh elements, create a Petri net transition and
connect the corresponding places to this transition with arcs.

e Create two output places for each transition and connect each place to its
corresponding transition with an arc.

2. Bind the main page of the hierarchical Petri net with the sub-pages.

e Substitute each transition in the main page with an instance of appropriate
sub-page type, depending on whether the input places to the given transition
represent mesh elements that are face-adjacent along X, Y or Z axis, or
adjacent by one of the twelve edges.

e The input places of each transition in the main page become the socket nodes
to the substituted sub-page instance and are bound to the port nodes (places
P1 and P2) in the substituted sub-page instance.

3. The output places of each transition in the main page become the socket nodes
to the substituted sub-page instance and are bound to the port nodes (places
P63 and P64) in the substituted sub-page instance.

4. Each port node is a global fusion, i.e. there is a single instance of given place
shared by all sub-page instances of the hierarchical Petri net.

Figure 17 presents the main page of hierarchical Petri net generated for an ex-
emplary computational mesh consisting of 8 elements, depicted in Figure 16. Places
Elem[#] correspond to mesh elements with a given number. All Elem[#] places
in the main page are input sockets, bound to port nodes (places P1 and P2) of

444 A. Szymczak, M. Paszynski, D. Pardo, A. Paszynska

Figure 16. Exemplary eight finite element mesh

sub-page instances of appropriate type. All P[#] places in the main page are out-
put sockets, bound to port nodes (places P63 and P64) in sub-pages. Socket
nodes in the main page and corresponding port nodes in sub-pages are places by
means of which sub-pages are bound to the main page, comprising a coherent model.
For precise definitions of socket nodes and port nodes, we refer to [39], page 176.
Transitions Facel2, Face34, Face56 and Face78 are substituted with instances
of a sub-page modeling a mesh element pair that is face-adjacent along X axis.
Transitions Facel4, Face23, Face57 and Face68 are substituted with instances
of a sub-page modeling a mesh element pair that is face-adjacent along Y axis.
Transitions Facelb, Face26, Face38 and Face47 are substituted with instances of
a sub-page modeling a mesh element pair that is face-adjacent along Z axis. Tran-
sitions Edge[#][#] are substituted with instances of a sub-page modeling a mesh
element pair that is edge-adjacent in appropriate direction.

Remark 3. Complexity of the proposed model can be estimated by the number of
adjacent element pairs in a computational mesh (directly determining the number of
sub-pages in the hierarchical Petri net model). This number is highest for (regular)
hexahedral meshes and can be expressed as ((z1)yz+xz(yl)z+xy(z1)) for the number
of face-adjacent element pairs, plus 2(((min(z,y)1) max(z,y) + min(z,y) + 1)z +
((min(y, z)1) max(y, z) + min(y, z) + 1)x) for the number of edge-adjacent element
pairs, where z, y, z denote the number of elements in X, Y and Z directions,
respectively.

The number of reachable states of Petri net is computed automatically using the
PIPE software. We got the following numbers: 5391 states for face-adjacent element
pair in dead-end prone graph grammar, 3918 states for edge-adjacent element pair
in dead-end prone graph grammar, 5859 states for face-adjacent element pair in
dead-end free graph grammar, and 3918 states for edge-adjacent element pair in
dead-end prone graph grammar.

Remark 4. The grammar is not dead-end-free.

Petri Nets Modeling of Dead-End in 8D Anisotropic hp-Adaptive FEM 445

A aa 1 1 aa
| | 14 |
' | | B [| | | xvB) |
| —> |/ / | A /
| 1 T I~ 2T
\ % \
1 aa A1 1/
|] | _J | _
(XB) ' | | /] (vzB) ‘
= |/ /| /1 / ==/
Pz B 7/77| [. 7| e 7/7\
L L L
A /1 1~
_J | . | | _
(zB) [(XzB) \
l s J= 2 s =1/
L / _ /]
‘ L L

Figure 18. Additional graph grammar productions for removing of the dead-end problem

A. Szymczak, M. Paszynski, D. Pardo, A. Paszynska

446

llﬂluﬁ..w%h’ % . I
i e w@%ﬂ“ﬁﬁ?ﬁw/«‘
W >N JMV‘! ,,'r.i. . -

=

t

along X axis

Figure 19. First part of dead-end free hierarchical Petri net for finite elements adjacen

447

in 3D Anisotrop

ling of Dead-End

448 A. Szymczak, M. Paszynski, D. Pardo, A. Paszynska

Proof. Tt is clearly visible that the following sequence of fired transitions (in the
subpage for a mesh element pair adjacent along X axis) VY1, BY1, VZ2, BZ2,
VYA1l, VZA2, VP2, VP1 leads to a dead state. In this state, two mutually
contradicting refinement requests have occurred on both pair elements, leading to
a dead-end scenario. O

7 ENHANCED GRAMMAR

In this section, we provide some additional graph grammar productions that allows
us to overcome the deadlock problem. Figure 18 presents productions that have
been added to the previously defined grammar. These graph grammar productions
update the broken interior of an element in order to merge two different refinement
requests. The implementation of this additional graph grammar productions in the
mesh adaptation Algorithm 1 requires to replace the line 18 with the following lines:

18a if element el interior is already broken then

18b replace the virtual refinement of element el by the mixture of
18c actual_refinement_kind and the new refinement kind

18d else

18e break element el in a way kind using the virtual refinement
18f endif

Figures 19 and 20 present the counterparts of the dead-end detecting Petri net
sub-page reflecting the enhanced grammar, for finite element pairs adjacent along
X axis. It is also possible to construct analogous Petri nets for elements adjacent
along Y and Z directions, as well as corresponding dead-end free Petri net sub-
page for elements adjacent through an edge. Transitions VB1 and VB2 have been
added to the hierarchical Petri net sub-pages, with arcs from places P69 and P70,
respectively. Firing the newly added transitions effectively uninhibits transitions
BP2 and BP1 respectively, should any of the latter had been previously inhibited
(by firing a transition representing a contradicting refinement request). This result
demonstrates that executing any of the newly added grammar productions reconciles
the contradicting refinement requests. Additionally, arcs BP2 — P64 and BP1 —
P63 have been added to reflect the fact that actual execution of the propagated
refinement brings a given mesh element to the next adaptation level.

Remark 5. The enhanced grammar is dead-end-free.

Proof. Reachability graph has been generated from PIPE [7] for a given Petri net
and given initial marking (shown in the figures). The initial marking reflects the
intention of breaking each mesh element once. The reachability graph contains no
dead state (the Petri net is alive), which implies that the grammar modeled by the
Petri net is dead-end-free. O

Petri Nets Modeling of Dead-End in 8D Anisotropic hp-Adaptive FEM 449

8 NUMERICAL RESULTS

We have executed the hp3d code with the original mesh adaptation algorithm over
a problem consisting of the simulation of 3D direct current DC borehole resistivity
measurements in deviated wells. A quantity of interest, in this case the voltage,
is measured at a receiver electrode located in a logging instrument that is moved
along the borehole. Thus, logging instruments are used to estimate the electrical
conductivity of the sub-surface material, with the ultimate objective of describing
oil or gas bearing formations. In this section, the behavior of a resistivity logging
instrument is simulated by performing computer-based simulations of resistivity
logging instruments in a borehole environment [23]. The 3D simulations of resistivity
measurements in deviated wells, where the angle between the borehole and the
formation layers is not equal to 90 degrees, are of particular interest to the oil
industry. We consider different electrode configurations (see left panel in Figure 21)
and dip angles, which is the angle of incidence between the well and the formation
layers.

The strong formulation is the following: Find u : @ 3 # — w(z) € R where
Q C R3 the electrostatic scalar potential such that —div (cVu) = V - J in €, (the
conductive media equation), where V - J is the load (divergence of the impressed
current) and o represents the conductivity of the media, defined according to right
panel in Figure 21. The electrostatic scalar potential u is related to the electric field
E by E'= —Vu. The boundary conditions are defined as u = 0 on 0f2.

The strong formulation is transformed into the weak one: Find v € V such that

ou 3v
b(u,v)=1(v) YoeV b(u,v) /Z 81‘28561 /2:11836z

where V = H} (Q).

The adaptive algorithm from the hp3d code [9] generates a sequence of compu-
tational grids delivering exponential convergence of the numerical error with respect
to the mesh size. The sequence of meshes is obtained by performing & refinements
(by breaking selected elements in one of eight possible cases) or p refinements (by
modifying the polynomial order of approximation on finite element edges, faces, and
interiors). This adaptation process is performed by considering a sequence of coarse
and fine grids, and by selecting the optimal refinements over the coarse grid resulting
from comparison of the coarse and fine grid solutions, compare Figure 22. In this
paper we omit the details of the algorithm selecting the optimal refinement, and we
refer to [26] for their description.

The original mesh adaptation algorithm from hp3d code stopped after executing
several h refinements due to a dead-end scenario. This motivated us to construct
the graph grammar model of the adaptation algorithm, as summarized in Figure 13,
as well as to define Algorithm 2 for constructing hierarchical Petri net based on
the nets presented in Figures 14-15, in order to analyze the possibility of a dead-
end scenario in the Algorithm 2. The hierarchical Petri net detected a dead-end,

450 A. Szymczak, M. Paszynski, D. Pardo, A. Paszynska

°
w500
wlsoo

5 [Ohm-m]
FULL PATCH ONE PATCH 1 []
025m | | z=1[m
® S 0.25[m] |
oL N i 0.1 [Ohm-m]
TOP VIEW @ j) 2=0 [m]
R =1 [m]
sl 5 [Ohm-m]
soevew [] L 1D0 [L1

0.000001[Ohm-m] 10 [Ohm-m]

Figure 21. Left panel: The geometry of antennas. Right panel: The conductivities of the
borehole, mandrel and formation layers in cylindrical coordinates.

N*

optimal mesh

coarse mesh fine mesh

Figure 22. The sequence of coarse, fine and optimal grids generated by the self-adaptive
hp-FEM algorithm

meaning the adaptation algorithm from [9] needed corrections, and this motivated us
to extend the graph grammar with additional graph grammar productions presented
in Figure 18. Next, we used the Algorithm 2 for construction of the hierarchical Petri
net based on the augmented nets presented in Figures 19-20, including the extended
graph grammar model. The new hierarchical Petri net was dead-end free, and this
allowed us correct the original adaptation algorithm from Ap3d and to overcome
the dead-end problem as well as to finish the computation process. The problem
of propagation of electromagnetic waves has been solved for a sequence of positions
corresponding to different locations of the logging tool moving along the borehole, for
axial-symmetric as well as 30 and 60 degrees deviated well. The exemplary resulting
potential at the receiver electrode for a single position of the tool is presented in
Figure 23. The resulting logging curves for different dip angles and different kind of
antennas are presented in Figures 24-25.

From the physical point of view, we observe the following. For the axisymmetric
case (Figure 33), we obtain a response that is independent of the type of antenna,
as physically expected. As we increase the dip angle (Figures 34 and 35), the effect
of the antenna becomes noticeable, being the “one-patch antenna” the one that is
more sensitive to variations in the formation resistivity.

Petri Nets Modeling of Dead-End in 8D Anisotropic hp-Adaptive FEM 451

Figure 23. Exemplary resulting potential at the receiver electrode for a single position of
a logging tool for 60 degrees deviated well

Axisymmetric Problem. Dip angle: 30 degrees.
3 3 r
—3D —— TX Full, RX Full — ——3D — TX Full, RX Full ——

€ O 3D —- TX Patch, RX Patch —— B O 3D —— TX Patch, RX Patch ——
- 2f| + 3D —— ONE PATCH —— - 2f| + 3D —— ONE PATCH ——
S S
e]
81 g1
i |
@ 3
§ 0 'é 0 * ¥ h
g 8 ﬂ_??
a _q g _q
& &

_2 . _20

So2 Z0.01 0 0.01 0.02 -0015 —0.01 -0.005 0 0.005 001 0.015

2nd. Vert. Diff. of Potential (V) 2nd. Vert. Diff. of Potential (V)

Figure 24. Left panel: Logging curves for different antennas for axial-symmetric case.
Right panel: Logging curve for different antennas for 30 degrees deviated well case.

9 CONCLUSIONS AND FUTURE WORK

The main contribution of this paper was the construction of the Petri net model
for the analysis of the anisotropic h-refinement algorithm, as implemented in the

Dip angle: 60 degrees.

—3D —— TX Full, RX Full ——
O 3D —- TX Patch, RX Patch —
2r| + 3D —— ONE PATCH ——

g

Pos. Receiver Electrodes (m)

—_02.01 -0.005 0 0.005 0.01 0.015
2nd. Vert. Diff. of Potential (V)

Figure 25. Logging curve for different antennas for 60 degrees deviated well case

452 A. Szymczak, M. Paszynski, D. Pardo, A. Paszynska

self-adaptive 3D FEM package from [9]. The 3D mesh with hexahedral elements
was modeled by CP-graph model. The mesh transformation rules were modeled by
graph grammar productions. The expression of the mesh adaptation rules by graph
grammar productions allowed a construction of the Petri net model expressing the
anisotropic mesh refinements algorithm. The Petri net model was implemented
in PIPE software, which allowed an automatic analysis of the properties of the
adaptation algorithm. In particular, we detected the possibility for a dead-end in
the execution of the algorithm. This, in turn, motivated us to construct an improved
mesh adaptation algorithm, which was proved to be dead-end free. Based on the
corrected model, we fixed the original adaptation algorithm from [9] to make it
dead-end free. The practical motivation for this work was the dead-end problem
found in the adaptive algorithm during its execution for the borehole resistivity
measurement simulation problem. The Petri net model analysis allowed us to correct
the adaptation algorithm and, in particular, to finish the adaptive computations with
the accuracy required for the borehole resistivity measurements, a problem of great
interest to the geophysical community. The future work may involve construction
of the Petri net to unstructured 3D grids with hexahedral, tetrahedral, prism and
pyramidal elements.

Acknowledgment

The work presented in this paper was supported by Polish National Science Cen-
ter grant No. NN 519 447739 and DEC-2012/06/M/ST1/00363. David Pardo has
received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No. 644602, the
Project of the Spanish Ministry of Economy and Competitiveness with reference
MTM2013-40824-P, the BCAM Severo Ochoa accreditation of excellence SEV-2013-
0323, the CYTED 2011 project 712RT0449, and the Basque Government through
the BERC 2014-2017 program and the Consolidated Research Group Grant 1T649-
13 on Mathematical Modeling, Simulation, and Industrial Applications (M2SI).

REFERENCES

[1] Banas, K.—MicHALIK, K.: Design and Development of an Adaptive Mesh Manip-
ulation Module for Detailed FEM Simulation of Flows. Procedia Computer Science,
Vol. 1, 2010, No. 1, pp. 2043-2051.

[2] BAao, G.—Hu, G.—Li1u, D.: An h-Adaptive Finite Element Solver for the Calcula-
tions of the Electronic Structures. Journal of Computational Physics, Vol. 231, 2012,
No. 14, pp. 4967-4979.

[3] BABUSKA, I.—RHEINBOLDT, W.: Error Estimates for Adaptive Finite Ele-
ment Computations. SIAM Journal of Numerical Analysis, Vol. 15, 1978, No. 4,
pp- 736-754.

Petri Nets Modeling of Dead-End in 8D Anisotropic hp-Adaptive FEM 453

[4]

[5]

[6]

(7]

8]

[9]

[10]

[11]
[12]

[13]

[14]

[16]

[17]

[18]

BanNa$, K.: A Model for Parallel Adaptive Finite Element Software. Proceedings of
15" International Conference on Domain Decomposition Methods, Freie Universitiit
Berlin, 2003.

BECKER, R.—KAPP, H—RANNACHER, R.: Adaptive Finite Element Methods for
Optimal Control of Partial Differential Equations: Basic Concept. SIAM Journal on
Control and Optimisation, Vol. 39, 2000, No. 1, pp. 113-132.

BELYTSCHKO, T.—TABBAR, M.: H-Adaptive Finite Element Methods for Dynamic
Problems, with Emphasis on Localization. International Journal for Numerical Meth-
ods in Engineering, Vol. 36, 1993, No. 24, pp. 4245-4265.

CHUNG, E.—KiMBER, T.—KirBY, B.—MASTER, T.—WORTHINGTON, M.—
KNOTTENBELT, W.: Petri Nets Group Project Final Report, http://pipe2.
sourceforge.net/documents/PIPE2FinalReport.pdf.

DeEmMkowicz, L.: Computing with hp-Adaptive Finite Elements, Vol. 1. Frontiers:
Three Dimensional Elliptic and Maxwell Problems with Applications. Chapman and
Hall/CRC Applied Mathematics and Nonlinear Science, 2006.

DEMKOWICZ, L.—KURTZ, J.—PARDO, D.—PASzYNsSKI M.—RaAcHOWICZ, W.—
ZDUNEK A.: Computing with hp-Adaptive Finite Elements, Vol. II. Frontiers:
Three Dimensional Elliptic and Maxwell Problems with Applications. Chapman and
Hall/CRC Applied Mathematics and Nonlinear Science, 2007.

DEMkKoOwICZ, L.—PARDO, D.—RacHowIicz, W.: 3D hp-Adaptive Finite Ele-
ment Package (3Dhp90) Version 2.0. The Ultimate (?) Data Structure for Three-
Dimensional Anisotropic hp-Refinements. TICAM Report 02-24, 2002.
DeEmkowicz, L.—RaAcnowicz, W.—DEvVL0OO, P.: A Fully Automatic hp-Adapti-
vity. Journal of Scientific Computing, Vol. 17, 2001, No. 1-3, pp. 127-155.

DEVINE, K. D.—FLAHERTY, J. E.: Parallel Adaptive hp-Refinement Techniques for
Conservation Laws. Applied Numerical Mathematics, Vol. 20, 1996, pp. 367-386.

EpwARDS, H. C.—STEWART, J. R.—ZEPPER, J. D.: Mathematical Abstractions of
the SIERRA Computational Mechanics Framework. Proceedings of the Fifth World
Congress on Computational Mechanics, Vienna, Austria, 2002.

ERrRIKsON, K.—JoHNSON, C.: Adaptive Finite Element Methods for Parabolic
Problems I: A Linear Model Problem. SIAM Journal on Numerical Analysis, Vol. 28,
1991, No. 1, pp. 43-77.

GOMEZ-REVUELTO, I.—GARCIA-CASTILLO, L.E.—LLORENTE-ROMANO, S.—
PARDO, D.: A Three-Dimensional Self-Adaptive hp Finite Element Method for the
Characterization of Waveguide Discontinuities. Computer Methods in Applied Me-
chanics and Engineering, Vol. 249-252, 2012, pp. 62-74.

GURGUL, P.—SIENIEK, M.—PASzYNSKI, M.—MADEJ, L.—COLLIER, N.: Two-
Dimensional HP-Adaptive Algorithm for Continuous Approximations of Material
Data Using Space Projection. Computer Science, Vol. 14, 2013, No. 1, pp. 97-112.
KARDANI, M.—NAZEM, M.—ABBO, A.—SHENG, D.—SLOAN, S.: Refined h-
Adaptive Finite Element Procedure for Large Deformation Geotechnical Problems.
Computational Mechanics, Vol. 49, 2012, No. 1, pp. 21-33.

Kyounaioo K.: Finite Element Modeling of Electromagnetic Radiation and Induced
Heat Transfer in Human Body. Ph.D. Thesis, The University of Texas at Austin, 2013.

454

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

31]

[32]

A. Szymczak, M. Paszynski, D. Pardo, A. Paszynska

LAszLOFFY, A.—LoONG, J.—PATRA, A.K.: Simple Data Management, Scheduling
and Solution Strategies for Managing the Irregularities in Parallel Adaptive hp Finite
Element Simulations. Parallel Computing, Vol. 26, 2000, pp. 1765-1788.

Nam, M.J.—PArRDO, D.—TORRES-VERDIN, C.: Simulation of Borehole-
Eccentered Triaxial Induction Measurements Using a Fourier hp Finite Element
Method. Geophysics, Vol. 78, 2013, No. 2, pp. D41-D52.

NieEMmI, A.—BABUSKA, [.—PITKARANTA, J.—DEMKOWICZ, L.: Finite Element
Analysis of the Girkmann Problem Using the Modern hp-Version and the Classical
h-Version. Engineering with Computers, Vol. 28, 2012, No. 2, pp. 123-134.

NocHETTO, R.H.—SIEBERT, K.G.—VEESER, A.: Multiscale, Nonlinear and
Adaptive Approximation. Springer, 2009, pp. 409-542.

PARDO, D.—DEMKOWICZ, L.—TORRES-VERDIN, C.—PASzYNSKI, M.: A Self-
Adaptive Goal-Oriented hp-Finite Element Method with Electromagnetic Applica-
tions. Part II: Electrodynamics. Computer Methods in Applied Mechanics and Engi-
neering, Vol. 196, 2007, No. 37, pp. 3585-3597.

PARDO, D.—TORRES-VERDIN, C.: Sensitivity Analysis for the Appraisal of Hy-
drofractures in Horizontal Wells with Borehole Resistivity Measurements. Geophysics,
Vol. 78, 2013, No. 4, pp. D209-D222.

PARDO, D.—DEMKOWICZ, L.—TORRES-VERDIN, C.—PAszyNskI, M.: Two-
Dimensional High-Accuracy Simulation of Resistivity Logging-While-Drilling (LWD)
Measurements Using a Self-Adaptive Goal-Oriented hp Finite Element Method. STAM
Journal on Applied Mathematics, Vol. 66, 2006, No. 6, pp. 2085-2106.

PARDO, D.—TORRES-VERDIN, C.—PAszYNsKI, M.: Simulations of 3D DC Bore-
hole Resistivity Measurements with a Goal-Oriented hp Finite-Element Method. Part
IT: Through-Casing Resistivity Instruments. Computational Geosciences, Vol. 12,
2008, No. 1, pp. 83-89.

PASzYNSKA, A.—GRABSKA, E.—PAszyNski, M.: A Graph Grammar Model of
the hp Adaptive Three Dimensional Finite Element Method. Part I. Fundamenta
Informaticae, Vol. 114, 2012, No. 2, pp. 149-182.

PASZYNSKA, A.—GRABSKA, E.—PaAszyNsk1, M.: A Graph Grammar Model of
the hp Adaptive Three Dimensional Finite Element Method. Part II. Fundamenta
Informaticae, Vol. 114, 2012, No. 2, pp. 183-201.

PASZYNSKA, A.—PAszyNSKI, M.: Application of a Hierarchical Chromosome Based
Genetic Algorithm to the Problem of Finding Optimal Initial Meshes for the Self-
Adaptive hp-FEM. Computing and Informatics, Vol. 28, 2009, No. 2, pp. 209-223.
PASZYNSKA, A.—PASzYNSKI, M.—GRABSKA,E.: Graph Transformations for Mod-
eling hp-Adaptive Finite Element Method with Mixed Triangular and Rectangular
Elements. Lecture Notes in Computer Science, Vol. 5545, 2009, pp. 875-884.
PASZYNSKA, A.—PAszYNsKI, M.—GRABSKA, E.: Graph Transformations for Mod-
eling hp-Adaptive Finite Element Method with Triangular Elements. Lecture Notes
in Computer Science, Vol. 5103, 2008, pp. 604-613.

PASZYNSKA, A.—PASZYNSKI, M.—SzYMCZAK, A.—PARDO, D.: Petri Nets for De-
tecting a 3D Deadlock Problem in Hp-Adaptive Finite Element Simulations. Procedia
Computer Science, Vol. 9, 2012, pp. 1434-1443.

Petri Nets Modeling of Dead-End in 8D Anisotropic hp-Adaptive FEM 455

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

PASZYNSKI, M.—DEMKOWICZ, L.: Parallel Fully Automatic hp-Adaptive 3D Finite
Element Package. Engineering with Computers, Vol. 22, 2006, pp. 255-276.
WOZNIAK, M.—Lo0$, M.—PAszYNSKI, M.—DALCIN, L.—CALO, V.: Parallel Fast
Isogeometric Solvers for Explicit Dynamics. Accepted to Computing and Informa-
tioncs, 2015.

PaTtrA, A.K.: Parallel HP Adaptive Finite Element Analysis for Viscous Incom-
pressible Fluid Problems. Ph.D. Dissertation, University of Texas at Austin, 1999.
PaTrO, S. K.—SELvAM, P.R.—BoscH, H.: Adaptive h-Finite Element Modeling
of Wind Flow Around Bridges. Engineering Structures, Vol. 48, 2013, pp. 569-577.
PrAazEK, J.—BANAS, K.—Kirowski, J.: Comparison of Message Passing and
Shared Memory Implementations of the GMRES Method on MIMD Computers.
Scientific Programming, Vol. 9, 2001, pp. 195-209.

REMACLE, J.F.—Li, X.—SHEPHARD, M.S.—FLAHERTY, J.E.: Anisotropic
Adaptive Simulations of Transient Flows Using Discontinuous Galerkin Methods. In-
ternational Journal for Numerical Methods in Engineering, Vol. 62, 2005, pp. 899-923.
SzZPYRKA, M.: Petri Nets for Modeling and Analysis of Concurrent Systems.
Wydawnictwa Naukowo-Techniczne, Warsaw, Poland, 2008.

SzYMCZAK, A.—PASZYNSKA, A.—PASzYNSKI, M.—PARDO, D.: Anisotropic 2D
Mesh Adaptation in hp-Adaptive Finite Element Method. Procedia Computer Scien-
ce, Vol. 4, 2011, pp. 1818-1827.

SzyMCzZAK, A.—PASzZYNSKA, A.—PAszYNsSKI, M.—PARDO, D.: Preventing Dead-
lock during Anisotropic 2D Mesh Adaptation in hp-Adaptive FEM. Journal of Com-
putational Science, Vol. 4, 2013, No. 3, pp. 170-179.

ZOLTAN: Parallel Partitioning, Load Balancing and Data-Management Services.
http://www.cs.sandia.gov/zoltan/.

Arkadiusz SZYMCZAK received his M.Sc. (2001) in mathemat-
ics with applications to computer science from the University
of L6dz, Poland. Since then he has been working as a software
engineer, since 2003 being an employee of Sabre Holdings, cur-
rently as a member of Sabre Research Group. He is pursuing his
Ph.D. at the Department of Computer Science, AGH Univer-
sity of Science and Technology, Krakéw, Poland. His research
interests include concurrent and distributed computing.

456 A. Szymczak, M. Paszynski, D. Pardo, A. Paszynska

Maciej PASZYNSKI received his Ph.D. (2003) in mathematics
with applications to computer science from the Jagiellonian Uni-
versity, Krakéw, Poland and habilitation (2010) in computer
science from the AGH University of Science and Technology,
Krakéw, Poland. In 2003-2005, he worked as a postdoctoral fel-
low at the Institute for Computational Engineering and Sciences
(ICES) at The University of Texas at Austin. In summer 2006
and 2007 he worked as a postdoctoral fellow at the Department
of Petroleum and Geosystems Engineering at The University of
Texas at Austin. Since 2007 he is a frequent visitor at ICES
at The University of Texas at Austin, USA, in Basque Center for Applied Mathematics
(BCAM), at the Department of Mathematics, Universidad del Pais Vasco, Bilbao, Spain
and at King Abdullah University of Science and Technology (KAUST), Saudi Arabia. He
is Associate Professor at the Department of Computer Science, AGH University of Sci-
ence and Technology of Krakéw. His research interests include parallel self-adaptive hp
finite element method, parallel direct solvers, models of concurrency and computational
science. He has published over 70 publications (Web of Science) and he has given over
100 presentations. Since 2012 he holds a position of vice-director of the Department of
Computer Science at AGH.

David PARDO received his B.Sc. degree in mathematics from
the University of The Basque Country, Spain, in 2000, and his
M.Sc. and Ph.D. degrees in computational and applied math-
ematics from The University of Texas at Austin, in 2002 and
2004, respectively. Then he worked as a postdoctoral fellow and
research associate at the Petroleum and Geosystems Engineering
at The University of Texas at Austin during the period 2004-
2008. During 2008-2010 he worked as Research Professor and
team leader of the group Multiphysics, Inversion and Petroleum
at the Basque Center for Applied Mathematics (BCAM). Since
September 2009 he is Research Professor at IKERBASQUE, the Basque Foundation for
Sciences. Since September 2010 he is also Research Professor at the University of the
Basque Country. He has published over 90 publications and he has given over 140
presentations. His research interests include computational electromagnetics, petroleum-
engineering applications (borehole simulations), adaptive finite-element and discontinuous
Petrov-Galerkin methods, multigrid solvers, and multiphysics and inverse problems.

Petri Nets Modeling of Dead-End in 8D Anisotropic hp-Adaptive FEM 457

for multi-frontal solvers.

Anna PASZYNSKA received her Ph.D. (2007) in computer scien-
ce from the Institute of Fundamental Technological Research,
Polish Academy of Sciences, Warsaw, Poland. She works as As-
sistant Professor at Faculty of Physics, Astronomy and Applied
Computer Science, Jagiellonian University, Krakow, Poland. She
was a visiting scientist at King Abdullah University of Science
and Technology (KAUST) in Thuwal, Saudi Arabia and The
University of the Basque Country and Basque Center for Ap-
plied Mathematics, Bilbao, Spain. Her research interests in-
clude graph grammar, tree algorithms, and ordering algorithms
She has published over 20 publications (Web of Science).

