Computing and Informatics, Vol. 32, 2013, 549-571

A MODEL TO OVERCOME INTEGRITY CHALLENGES
OF AN UNTRUSTED DSMS SERVER

Majid GHAYOORI, Mostafa S. HAGHIJOO

Computer Engineering Department

Iran University of Science and Technology (IUST)
Narmak, Tehran, Iran

e-mail: {ghayoori, haghjoom}@iust.ac.ir

Communicated by Isabel Campo Plasencia

Abstract. Despite the fact that using the services of outsourced data stream servers
has been welcomed extremely, still the problem of obtaining assurance about the
received results from these untrusted servers in unsecure environment is one of the
basic challenges. In this paper, we present a probabilistic model for auditing received
results from an outsourced data stream server through unsecure communication
channels. In our architecture, the server is considered as a black box and the
auditing process is fulfilled by cooperation between the data stream owner and users.
Our method imposes an ignorable overhead on the user and needs no change in the
structure of the server. The probabilistic modeling of the system proves algorithms
convergence and the experimental evaluations show very acceptable results.

Keywords: Data stream security, data stream integrity, data stream management
system, data stream management system outsourcing, query assurance

1 INTRODUCTION

Although some academic and commercial Data Stream Management Systems
(DSMS) have been developed [1, 2, 3, 4, 5] and their usage is growing rapidly [6],
many enterprises are not able to start up and pay the expenditure of such systems.
That is why they are interested in receiving the service of data stream processing
from a third party server. The idea of using outsourced processing services has
already been used in Database Management Systems (DBMS), and the concept of
Database As the Service (DAS) has been considered as its solution [7]. Figure 1

550 M. Ghayoori, M. S. Haghjoo

shows the architecture of an outsourced DSMS. In this architecture, a Data Stream
Owner (DSO) sends the data records as a stream to the server and the server applies
registered users’ queries on the data stream and sends the results back.

—— Query
Data Stream

Owner Main Data Stream—§»{ DSMS Server

Output Stream

Fig. 1. System architecture of an outsourced DSMS

To exploit this idea, users must be assured about security of communication
channels as well as about accuracy and honesty of the outsourced server. An at-
tacker could arrange a Man-In-The-Middle (MITM) attack and inject some spu-
rious records in results or prevent transmission of some result records to users.
In addition, an external untrusted server could send inaccurate or incomplete re-
sults for different reasons, including software bugs, increasing its benefits, allocat-
ing less resources, misleading users, etc. To ensure integrity of results received
from an untrusted server in an unsecure environment, users need mechanisms to
audit correctness, freshness and completeness of results [8]. Correctness of re-
sults means keeping the main volume of data without making any changes in it.
To keep the freshness we should make sure that received results are generated
based on the latest stream records and not on previous ones. Completeness of
results means that the user should receive the whole records of the results, not just
a part of it, which is the most complicated task in the integrity auditing mecha-
nisms.

In this paper, we present a model to audit integrity of results by users. In our
model, integrity auditing is accomplished through cooperation between users and
the data stream owner. The data stream owner injects some fake records to the
real stream and sends it to the server. The users, who are aware of the fake records
identification and generation procedure, apply their query on the fake data stream
and compare the results with the received fake records. In our method, the accuracy
of the system can be adjusted based on the user request.

The main contributions of this paper are as follows:

Presenting an architecture for auditing integrity of outsourced DSMS server.

Probabilistic modeling of the system.

Formulating the accuracy of the auditing level based on received results.

e Implementation of the system and evaluation of the results.

This paper is organized as follows. Section 2 describes related works. Section 3
describes problem statement and preliminary assumptions. Section 4 presents our

=4

Overcoming Integrity Challenges of DSMS Servers 551

method. Section 5 focuses on the integrity auditing algorithms, and Section 6 expe-
rimentally evaluates our method. Section 7 proves the convergence and correctness
of the algorithms, and finally, Section 8 concludes the paper.

2 RELATED WORKS

The integrity auditing methods can be categorized in two major categories, namely
authenticated data structure (ADS) based method, and probabilistic methods.

So far, the most popular authenticated structure, used for integrity auditing,
is Merkle Hash-Tree (MH-Tree) [9]. In [10] an extended model of MH-Tree, based
on B+-Tree, is presented. In this model, record domains are divided into some
ranges and records tree is built upon these ranges. This model is designed for
executing continuous range queries and supports one-time queries as well. This
model can audit correctness and completeness of results. In order to eliminate the
tree refreshes, an algorithm to divide the data stream into some trees is presented
in [8].

To exploit these two ADS-based methods, like every ADS-based method, the
server must be restructured based on the selected ADS. This is not an acceptable
precondition for many third party SDMS service providers because they serve their
DSMS services for some customers at the same time. Thus, they could not restruc-
ture for any customer. In addition, all DSMS servers have their stream-processing
engine, in which their staff are experienced and professional. They have designed
their hardware infrastructure based on their stream processing engine. Obviously,
replacing their engine by another one is in conflict with the spirit of outsourcing
DSMS services. Our method considers the server as a black box and needs not any
changes in it. Also, as we know, the server load shedding is one of the necessary
techniques in DSMS engines when they encounter high input load [11]. Because
these two methods strictly check the completeness of results, they alarm on absence
of any results record. As a result, they could not tolerate server load shedding
and take it as an attack. Our method can tolerate previously agreed load shed-
ding.

Based on our studies, there is one research that uses probabilistic methods [12,
13]. This method is designed for analyzing the network data traffic, and is called
Polynomial Identity Random Synopses (PIRS). In this method, the user continu-
ally calculates some synopses of the received data stream and compares them with
expected ones for auditing the integrity. This method supports COUNT and SUM
queries and has an acceptable computation and memory overhead. In PIRS, users
must have access to data stream for calculating synopses. The users’ access to main
data stream is not a realistic presumption because it has a high overhead to commu-
nication channels when users have access to a limited low bandwidth communication
channel. In our model, users need not have access to main data stream and they
can audit received results by evaluating the results.

552 M. Ghayoori, M. S. Haghjoo

3 PROBLEM STATEMENT AND PRELIMINARY ASSUMPTIONS

In an outsourced DSMS, the users should be assured about integrity of the results
received from the untrusted server in an unsecure environment. In order to confirm
the integrity, the user should make sure about the points below:

Completeness: No record is deleted from the expected results.

Correctness: All the received records have originated from the data stream source
and there are no spurious records in them.

Freshness: The received results from the server are prepared based on the latest
received records from data streams.

In this research, we introduce an efficient method for auditing completeness in a set-
ting consisting of the data stream owners, the server and the users. In this method,
there is no need to make any modification in the structure and functionalities of the
server.

The initial assumptions in this system are as follows:

e The channels between the data stream owner, the server and the users are not
secure and Man-In-The-Middle attacks are probable. Therefore, attackers may
modify some result records, inject some spurious records in results and/or drop
some records from them.

e The server is not secure and trustable. The problems of the server are of two
types:

— The server is lazy or works less, i.e. it does not answer the user’s query
completely or answers with delay.

— The server is malicious, i.e. it intentionally deletes some records from the
results or changes them.

e The users do not have a direct connection with the data stream owner and their
connection is only possible trough the server.

e The users and the data stream owner can transfer limited amount of data at the
beginning of the system start up.

e The processing power of the users is limited. We should not possibly impose
any kind of extra overhead to them.

e The records are transferred between the data stream owner, the server, and the
users as encrypted.

e A data stream received from a data stream owner p is an infinite series of indexed
records as S, = {ro,71,...}. Records arrive one at a time sequentially. A sliding
window of size n contains n records as (r r-). This model is referred
to as record-based sliding windows [14].

T—ndlrt

Overcoming Integrity Challenges of DSMS Servers 553

e The user k registers query @ on the data stream p (Q];) as follows:

SELECT *

FROM S,

WHERE Condition(Ay, Ag, ..., An)
WINDOW SIZE n SLIDE EVERY t (t >=n).

In these queries, Condition(Ay, As, ..., Ay), is any combination of conditional
phrases defined on attributes of S, which are combined with logical operators
(AND, OR, NOT).

e The result of applying query Q’; on S, is an infinite series of records (R’;):
Ry ={ri|(r; € S,) A (Vk € N,i € [kt —n+ 1,k7]) A (r;satisfies Q¥)} (1)

Based on the above assumption, the main subject in this study is developing a new
method for auditing the integrity of received results from an untrusted DSMS server
in an unsecure environment without making any change in the server.

4 OUR METHOD

In our method, the Data Stream Owner (DSO) injects some fake records into the
real stream records. The users can also generate such records in parallel with the
DSO. The DSO sends records to the server in encrypted form, so the server is unable
to distinguish fake records from real ones. The server executes the user queries on
all records (real and fake ones) and sends the results to the users. Because the users
are aware of fake records, they are able to separate fake results from the real ones
and judge the integrity of the results.

4.1 Our System Architecture

Our system architecture is shown in Figure 2. To keep records confidential, all
records are encrypted before being sent to the server (the server executes queries
on encrypted data). Some methods for executing queries on encrypted data are
presented in [15, 16, 17]. The methods of encryption and of executing queries on
encrypted data are irrelevant to our research. According to the figure, there is
a common part in the data stream owner and the users for the fake data stream
generation. The server and users in the format of Service Level Agreement (SLA)
agree on the maximum Load Shedding Ratio (LSR). In addition, the data stream
owner and users agree on the Fake Records Ratio (FRR).
Data stream owner adds a header to all data stream records as follows:

Vr Real Data Stream : H, = Hash(ai|az|...la,) (2)
Vr' FakeData Stream : H, = Hash(ai|az|...|a,)+ 1.

The users use the above header to audit correctness of the results and to separate
real records from fake ones [18].

554 M. Ghayoori, M. S. Haghjoo

Real Data
Stream #1
............... —1--
| Data Stream Source #1 .
: |
| .
| Fake Data I
Integrity Level =---s----- i Steam I
I Generation |
| |
Fake Data |
| Steam .
y
| |
| (Fake records injection .
: |
! |
! |
| .
I < Encryption > '
|
| .
! Client Querier #1 |
' |
|
N - Fake Data I Encrypted Encrypted
Integrity Level ---------- i Steam I DS #1 DS #n
i Generation I
! i
. Fake Data . v v
| Steam | / \
! i
Integrity Alarm ------ Ir --------- Results Inj(egrlty I
| Analyzing I
' [
| | Encrypted
_ : Query DSMS Server
Client Query — — —| -_———

: Encrypted
| Results

Fake
Records
Filter

Lo ' \ /

uondAioeqg
JuondAioug

Output
Results

Fig. 2. System architecture

Overcoming Integrity Challenges of DSMS Servers 555

To implement the above architecture, we have to overcome the following chal-
lenges:

1. Synchronization of the data stream owner and users in the fake data stream
generation.

2. Generating the fake records so that there should be some fake records in each
user’s query.

3. Synchronization of applying queries by the server and users.

In this section, we present our algorithms to the first two challenges and the last
challenge is described in the next chapter.

4.2 Fake Data Stream Generation

4.2.1 Fake Records Position

To achieve synchronization between the data stream owner and the users, the fake
record positions must be determined by a deterministic function. In this research,
we design an algorithm based on a pseudo-random-number-generation function for
determining the fake record positions. In our algorithm, the initial seed and the
selected pseudo-random number generation function should be transferred as sym-
metric keys between the data stream owner and the users through a secure channel.

The data stream owner determines the fake record positions by the following
key steps:

1. The data stream owner adds a timestamp (ts) to all records (real and fake ones).
This field is a small integer and has no significant effect on the record size.

2. The data stream owner classifies the data stream into a sequence of rather large
consecutive windows named the General Window (GW). The data stream owner
sets the timestamp of the first record in any general window to zero.

3. The length of general windows (Lgw) is much larger than the users’ Query
Windows (QW) (Legw >> n), so a single general window includes a considerable
number of query windows. Due to the large length of the general windows, we
assume that in each general window, at least some records are sent to the users
as results of their queries.

4.2.2 Fake Records Generation

The fake records must be generated as a fake data stream by the data stream owner,
and then merged with the real data stream. Additionally, the users have to produce
the same fake data stream synchronized with the data stream owner. Therefore, to
produce the fake data stream, we must address the following problems:

1. Coordination of the data stream owner and users in the fake data stream gene-
ration.

556 M. Ghayoori, M. S. Haghjoo

Method 1: A simple method to produce the same sequence of the fake records
by the data stream owner and users is to pre-generate and save them. This
method imposes a rather low computing overhead on the data stream owner
and users, but the system suffers a considerable storage, and more impor-
tantly, data transmission overhead through the limited secure channel be-
tween the data stream owner and users.

Method 2: The data stream owner and users may use a deterministic func-
tion to generate the fake data stream. The initial value of this function is
transferred between the data stream owner and the users through a secure
channel. This method has less memory overhead, but it does have some
computing overhead. This overhead strongly depends on the fake records
ratio.

2. Maximum coverage of the fake records in the query results.

The more fake records in the users’ query results, the more reliable the integrity
auditing. To generate fake records, we use the simulation and production methods.
These methods are based on the probability distribution function, which is obtained
from statistical analysis of the real records.

In the literature, some distribution functions are proposed for different applica-
tions. For example, the Zipfian distribution function is used for simulating the size of
cities, the length of English words, or the frequency of a word’s repetition in a text;
measurement errors are usually estimated by a Gaussian function, and the period of
system failure is estimated by a Poisson or Negative Exponential function [19]; etc.

In [20], a method for record generation is proposed based on the domain values
distribution histogram. In [21] and [22], which simulate web page access streams and
telecommunication systems, respectively, this problem is well-studied, and a distri-
bution function is presented. The records generated by these systems are simulated
based on a self-similar model. Another record generator algorithm is presented
in [19]. In this study, a multidimensional data stream, based on the probability
distribution of domains, is proposed. A hierarchical (tree) structure is built and
records are generated based on that structure.

In our system, we do not present a new method for fake records generation;
rather, we use existing methods that are presented by other researchers. Our fake
record generator depends on the specifications of the system and its environment as
well as on the statistics of the real records. Each of the functions introduced above
may be used in one or more application areas.

5 INTEGRITY AUDITING OF RESULTS

Users are aware of the fake records generation algorithm; thus, they can determine
the fake records that are expected to appear in the results by performing their query
on the generated fake records. Now, they are able to verify the integrity of the results
by comparing the expected records with the records they actually received.

Overcoming Integrity Challenges of DSMS Servers 557

To implement the above process, the users must determine the exact position
of server query window (Figure 3) and apply their queries to the fake data stream
synchronously.

User Submitted Server begins
his query query execution

t-
Data .
Stream n records delay:?——n%L %nﬁ/ %nﬁ/

7

\

Fig. 3. Delay of server before starting query execution

In the rest of this section, first we present the algorithm of the estimation of
server query window position and then the complete the algorithm for integrity
control of results.

5.1 Estimating Position of Server Query Window by Users

Users must execute their queries on the fake data stream and compare the results
with received records. In continuous queries, the data stream is divided into con-
secutive sliding query windows of ¢ records, and the query is applied only to the
n first records (n < t) of each query window (Figure 3). In order to compare the
fake records with the expected ones, the users’ query window must be synchronous
with the server’s query window. The users are not aware of the server’s lag time in
start of query execution, so, they have to estimate the position of the server’s query
window using the received records.

In this paper, we present a repetitive algorithm for the estimation of the server
query window position. The abbreviations used in our algorithm are defined in
Table 1.

Abbreviation | Description

GW, current general window

QW; i query window in GW,

tSes minimum received ts in QWy

tSee maximum received ts in QW)

tScs calculated ts of QW) beginning

tSce calculated timestamp of QWj end
tSse timestamp of current received record
tSc_1 timestamp of previous received record
tsy last received ts mapped to QW

Cor number of errors

Table 1. Abbreviations used in algorithm of server query window estimation

In our algorithm, the position of the first query window (QW)) is estimated,

558 M. Ghayoori, M. S. Haghjoo

and the positions of other windows are computed based on QWy. QW) is the first
query window that starts and ends in the current general window (Figure 4).

tsc
ts=0 tsy ts=0

Data
Stream

QW,

fSee First record e

tSes received by user

1]
:

Fig. 4. Position of query windows in general windows

We know that all received records are in the range of query windows; therefore,
after mapping their timestamp to the first query window, we examine the maximum
and the minimum timestamps as start and end of the first query window, respec-
tively. If the estimated query, window size is smaller than the real one, then we
expand it from both sides.

Here is the algorithm:

Algorithm EstimateServerQueryWindow(Intput Current ts){
ts, = (Current_ts mod t) + t //Map Current_ts to first QW
If (Current ts < Previous_ts) // general window is changed
tSes = tSes = (Lgw Mmod t); tsee = tse. - (Lgy mod t);
If (tSg < t) tSe += t; ts. += t;
Else
If ((tSee—tsy>n | tsp-ts.>n) & !(ts.==0 & ts,==0))
// some records are deleted or freshness error
Certt;
If (C.. > ErrorThreshold)
Alarm("Freshness Error");
tSee = tsp; tses = tsy; Cor= 05

End If
Else
Cer = 0;
tSes = Min(tsy,tse); tSee = Max(tsy,ts..);
End If
End If

£Ses = tSes= ((N=(£See-tSes)) /2); tSee = tseotn-1;
Previous_ts = Current_ts;
End of Algorithm EstimateServerQueryWindow

Note 1. Based on our assumptions, we choose general windows large enough so
that some result records appear in them for all the users’ queries. As a result, the
distance between two result records is certainly less than Lgy . Therefore, as shown
in the algorithm, if ts. < ts._1, a new general window is started and we should
determine the position of QW in the new general window.

Overcoming Integrity Challenges of DSMS Servers 559

Note 2. The above algorithm alarms successively if events such as temporary dis-
connection of the network occurs. In this case, some general windows pass without
sending results, and the users must restart their program manually. To skip the
manual restarting, we add an automatic restart mechanism to our algorithm based
on an error threshold. This mechanism also guarantees freshness of the results be-
cause if the server sends old records, it will change the query windows sequence, and
the integrity violation would be captured.

5.2 Integrity-Auditing Algorithm

Figure 5 shows an overall view of the user integrity-auditing algorithm. As seen
in the figure, by receiving each result record, the position of server query window
is estimated. In addition, the user’s query is applied on the user generated fake
records and the results are sent to Check Integrity. Simultaneously, the fake records
in results are selected, and are sent to Check Integrity. To compare the received
fake records with the expected ones, we must execute the EXCEPT operation on the
generated and received fake records. To remove this overhead, it is proved in [20]
that the COUNT of the two sets can be compared instead of comparing them record
by record. The comparison is done based on the requested Integrity Level (IL). Here,
a trigger is generated by Generate Control Trigger to start integrity evaluation of
the current received record set.

.| Estimate Server

™| Query Window
Received
Results DS _| Generate Fake Apply User | ce,
» Query & Count
Data Stream fake records
Integrity
Check Alarm
Integrity
Filter fake c
- records &
Count Them
Control Trigger
Generate
| Control Trigger LSR

Agreement Set

(AS) Integrity

Level

Fig. 5. User integrity audit algorithm schema

=

560 M. Ghayoori, M. S. Haghjoo

The integrity audit algorithm is shown below:

Algorithm EstimateServerQueryWindow(Intput Current_ts){
ts, = (Current_ts mod t) + t //Map Current_ts to first QW
If (Current_ts < Previous_ts) // general window is changed
tSes = tSes = (Loy MOd t); tSee = tSee = (Lgy mod t);
If (tSes < t) tSe, += t; ts. += t;
Else
If ((tSe—ts,>n | ts;-ts,>n) & !(ts,==0 & ts.==0))
// some records are deleted or freshness error
Certt;
If (C.. > ErrorThreshold)
Alarm("Freshness Error");
tSee = tSyj tsSes = tsyi Cor = 05

End If
Else
Cer = 0;
tSes = Min(ts;, tse,); tS.. = Max(tsy, ts..);
End If
End If

£Scs = tSes— ((N=(tSee—tSes))/2); tSce = tscetn-1;
Previous_ts = Current_ts;
End of Algorithm EstimateServerQueryWindow

As shown in the algorithm, an endless loop compares the number of received
fake records with the number of expected ones and detects attacks. Also, in this
loop, we repeatedly estimate the server query window position and audit freshness
of results.

5.3 Considering Load Shedding

Under our preliminary assumptions, the data stream owner, the users and the server
have an agreement on the server’s maximum load shedding schedule. As mentioned
before, to audit the correctness of the results, the users just need to compare the
number of received fake records with the number of expected ones. For considering
load shedding; let C;.; be the number of received fake records and C,y be the number
of expected fake records, then, if C.y > (1—LSR)xC, s, some of the expected records
are not received from the server.

5.4 Defense Against Man-in-the-Middle Attacks

Network connections can be attacked in various ways. A general type of these
attacks is “Man-In—-The-Middle Attack”. The idea behind this attack is to get in
between the sender and the recipient, in order to access the traffic, modify it and
then forward it to the recipient. Some different variants of this kind of attack exist,
but a general definition of a MITM attack may be described as a “Computer security
breach in which a malicious user intercepts — and possibly alters — data traveling
along a network” [23].

Although the server is not trusted in outsourcing DSMS services, the integrity
attacks could be forced in a form of MITM attacks. Here, the attacker may intercept

Owvercoming Integrity Challenges of DSMS Servers 561

the stream results, alter some result records, insert some spurious records into the
results stream, and drop some records from results. Our system can detect all of
these attacks as described below.

The attacker could not intercept the stream results because user’s query and data
stream are encrypted using an encryption key. The user could catch the alteration
of records by record header. Because record header (H,) is generated based on the
one-way hash of all records attributes including timestamp, and the selected one-way
hash function is hidden from attackers, any change in attributes causes the change
of H, and thus could be caught by the user. In the same way, the attacker could
not inject a spurious record in stream results because he/she could not generate
the H, of it. In addition, the attacker could not reply previous results because all
records have timestamps. We discussed the detection of replay attacks that affects
the results freshness in section 5.1. Finally, the user could catch the result records
dropping by detection of fake records absence in the results that the data stream
owner previously injected them into real data stream.

5.5 Integrity Level

In our model, we define the integrity level based on the accuracy of the system in
detecting the integrity attacks. For this purpose, we first present a probabilistic
model to estimate the integrity auditing accuracy of our method and then define
an algorithm to achieve the requested accuracy.

5.5.1 A Probabilistic Model for Completeness Control

In this section, we formulate the escape probability of the server or attackers who
plan to delete some result records, i.e. the probability that our system cannot catch
completeness attacks.

Let the average count of result records in a predefined time range be denoted
by N and fake records ratio be FRR. Because the fake records are distributed uni-
formly in the data stream, the average count of the real records is N x (1 — FRR).
The probability of the server or an adversary deleting only real records from the
results (not discoverable by the user) is:

Nx“’ﬁRR)’l N x (1—FRR) —i @)
N —i '

p =
=0

In the above product, all terms are less than 1, and the largest term is equal to

w. Therefore,

p < (1— FRR)N*(-FRE) (4)

Figure 6 depicts the changes of p based on N for some FRRs. As seen in the figure,
for all FRRs, after receiving 1500 records, the probability of successful attacks
against correctness is approximately zero.

562 M. Ghayoori, M. S. Haghjoo

e FRR = 2%

0.6 == FRR = 1.5%
\\ FRR = 1%
0.4 A
e FRR = 0.5%
\\ == FRR = 0.3%
0.2 1 \ :
0
0 500 1000 1500

Fig. 6. Probability of successful attacks based on the result records count

Note 3. For load shedding, it is enough to replace FRR with FRR-LSR in the
above formula. Then,

p < (1—(FRR— LSR))"*(-(FRR-LSR)) (5)

5.5.2 Determination of Integrity Level

In our model, the integrity level is estimated by the accuracy of detecting the in-
tegrity attacks. Let o be the expected accuracy. Therefore, we have:

1—a< (1— FRR)V*I-FER) (6)

Because the FRR is agreed on by the data stream owner and users, to achieve
the accuracy of «, it is enough to select N so that the above formula could be
observed. Then, we have

Ln(l — a)
(1= FRR) x Ln(1 — FRR)’ (7)

N >

For example, to achieve the accuracy of 0.99 with FRR = 2%, it is enough to
check the results for any 233 received records. We named every NN result records as
a checking window. The “Generate Audit Trigger” section of our algorithm shown in
Figure 5 computes the checking window size, that is the minimum number of result
records (N) required to achieve the expected accuracy based on the fake records
ratio (FRR) and expected integrity level () and produces a “Control Trigger” after
complete receipt of every checking window.

Owvercoming Integrity Challenges of DSMS Servers 563

6 EXPERIMENTAL RESULTS

In order to simulate the data stream owner, the server and the user, we used three
computers with a Pentium IV 2.0 GHz processor (2 Gigabytes main memories).
These three machines were connected through a local network (100 MBps). We
used typical query processor as the kernel of the server. We implemented all the
algorithms in this experiment in Java language using JDK/JREL, 6.

We used a data stream generated based on monitoring web page visits, related to
the World Cup 1998 in the days 40 and 41 which approximately contains 20 000 000
records [24].

6.1 The Attack Model

6.1.1 The Completeness Attacks

In the completeness attacks, the server and/or the adversary does not send some
results to the users. These attacks can be categorized into two classes, the deletion
of some results (deletion attacks) and excessive load shedding.

In our experiments, the server or adversary deletes 5 per cent of the results.
If the server deletes result records with the same probability, the deleted records
are uniformly distributed in the results. We define f (z) as the deletion decision
function:

True, < £
Vr € Results Strem,z = Random (r), 0<x <1, f(z)= ue 9.
False, x> 4=

Load shedding is simulated similarly. Here, v is the LSR in per cent and g () is the
deletion decision function:

True, x< -

vr' € Input St ,* = Rand N, 0z <1, = .
r nput Stream, x andom (1) <z< g(x) {False, s> 2

6.1.2 Freshness Attacks

In freshness attacks, the server and/or adversary sends old results (instead of fresh
ones) to the users. To model these attacks, we define a local data set S that saves
k records. The server or adversary uses this data set to save and resend old results
to the users.

6.1.3 Deletion Detection

Users audit the results in consecutive sliding windows. When the server or attackers
delete records, the system produces an alarm for the corresponding window. How-
ever, the system can only detect the deletion of fake records. Therefore, deletions are

564 M. Ghayoori, M. S. Haghjoo

not detectable until a window with a deleted fake record arrives. This means that
we always detect the records deletion, but there may be a delay. Our experimental
results below show that the delay does not have a significant impact.

To evaluate our method, we defined two measures, the “Detection Delay” and
the “Attack Detection Ratio”, as follows:

Definition 1. The average number of records between record deletion and its de-
tection is called the Detection Delay (DD). Formally,

r, : Deleted record
r; 1 First deleted fake record after ry,
n = Number of deleted fake records

1
DD = — [—k). 10
I (10)
Obviously, a lower DD means the system detects the deletion attacks faster.

Definition 2. The ratio of “number of alarms” over “number of expected alarms”
in per cent is called the Attack Detection Ratio (ADR). This measure shows the
success of the system in attack detection. Formally,

Count(alarms)

ADR = 100 (11)

Count(expected alarm)

Obviously, any ADR > 0 means that the attack is detected, and a higher ADR
means that the system has better performance in the attack detection process.

6.2 Query Window Location

The users must know the server query window position to apply their queries syn-
chronously to the fake data stream. They estimate it by the EstimateServerQuery-
Window algorithm. This estimation is a key step in detecting completeness attacks.
Our experiments show that estimation error approaches zero after receiving a finite
number of result records. We measured this error as the number of records between
the estimated and the real position of the query window. Figure 7 depicts the effect
of fake records ratio as well as the deletion of results (a completeness attack) on the
error of query window position estimation.

The results show that the two factors, result deletion and fake records ratio, have
no significant effect on the error of server query window estimation, and the estima-
tion error approaches zero after receiving a small number of records (60-100 records).

6.3 Completeness Attacks Detection

Figure 8 shows the detection delay based on fake records ratio. As shown in the
figure, our method detects attacks quickly. The maximum delay of detection is not

Overcoming Integrity Challenges of DSMS Servers

50
L 40 e FRR=0.01
(=]
=
5 e FRR=0.02
]
e 30
2 FRR=0.03
g 20
.g e FRR=0.04
)
w 10 s FRR=0.05
0
0 50 100 150 200
Number of recieved results
a) No deletion attack
50
40
5 e De|=0.01
=
°=’ 30 Del=0.02
2
Del=0.03
g 20
B Del=0.04
w
10 97 Del=0.05
0 r : \
0 50 100 150
Number of recieved records

b) Results deletion

Fig. 7. Server query window estimation error

565

high and, as fake records ratio increases, detection delay decreases. For example, for
FRR = 3%, the detection delay lower than 1000 means the attacks are detected at
least after receiving 1000 records which is a small number of records in data stream

processing.

Figure 9 shows the attack detection ratio based on deletion attack for different
FRRs. As shown in Figure 9a), all curves show a positive value for values between
0 and 2 of the deletion attack ratio (even for FRR = 1.0%). This means that all
attacks are detected by the system even for small deletion attack ratios (higher FRR
results in more attack detections). Additionally, for all FRRs, the attack detection
ratio approaches 100, which means deletion attacks are detected in time. Figure 9b)

566 M. Ghayoori, M. S. Haghjoo

3500

3000 AN

2500 \

2000 \

1500 \
1000 \

500

Number of recieved records (DD)

0 T T T T d
0 0.01 0.02 0.03 0.04 0.05

Fake records retio (FRR)

Fig. 8. Detection delay based on deletion attacks for different FRRs

shows that the behavior of the system under excessive load shedding is similar to
that of under deletion attacks. The excessive load shedding detection has a better
initial point on 0 and 2.

Figure 10 shows the attack detection ratio based on the number of received
records (checking window size) for different fake records ratios. As shown in the
figure, by increasing the checking window size, the attack detection ratio increases
and approaches to 100. More fake records cause higher attack detection ratio for
a constant checking window size. The results show a good behavior of our system
in deletion attacks detection. Our system detects all deletion attacks even for small
checking window sizes and the accuracy of detection is decreased by increasing the
checking window size.

6.4 Freshness Attacks Detection

Our experiments on freshness attack detection showed that the system detects all
freshness attacks with any k. It is not an unexpected result because EstimateServer-
QueryWindow algorithm uses record timestamps to check records sequence and any
record with wrong timestamp can be detected by this algorithm.

7 SECURITY STATEMENT

In this section, we prove that our method for integrity auditing of outsourced DSMSs
provides acceptable integrity assurance. Recalling that, the integrity assurance in-
cludes the correctness, completeness, and freshness.

Overcoming Integrity Challenges of DSMS Servers

Attack detection ratio (percent)

100

== FRR=0.01

o= FRR=0.02

@===FRR=0.03

== FRR=0.04

@ FRR=0.05

Attack detection ratio (percent)

0 0.02 0.04 0.06 0.08 0.1
Deletion ratio
a) Results deletion
100

== FRR=0.01

== FRR=0.02

=== FRR=0.03

FRR=0.04

0

0.02

0.04 0.06

Load shedding ratio

0.08

0.1

== FRR=0.05

Fig. 9. Attack detection ratio based on deletion attack for different FRRs

b) Excessive load shedding

567

568 M. Ghayoori, M. S. Haghjoo

__ 100
=
c
3
§ 80 %Q
2
(=] -
£ 60 - FTt | emm=FRR=0.01
c e FRR=0.02
=]
§ 40 FRR=0.03
5 e FRR=0.04
9 20 -
S s FRR=0.05
£
< o0 ,

0 200 400 600 800 1000

Checking window (records)

Fig. 10. Attack detection ratio based on checking window size for different FRRs

Correctness of results is evaluated by a header that is created by the data stream
owner by applying a hash function to the contents of the records. Records are
transferred between the data stream owner, the server and the users in encrypted
forms. To add a spurious record, an attacker must guess the record header and the
encryption key. Thus, the security of correctness audit algorithm depends on the
security of the hash function and of the encryption method. This topic is out of the
scope of this paper.

Below, we prove the correctness of completeness:

Theorem 1. The error of EstimateServerQueryWindow in estimating position of
server query window approaches zero as the number of result records approaches
infinity.

Proof. The positions of the query results are independent from the position of the
server query window in the data stream. Let the query window size be n. The
probability of a record appearing in any position of the query window is 1/n. After
receiving N result records, the appearance probability of at least one record at
position k of any query window is:

=X () s () &

i=1

As "T_l < 1, we have:

N n—1\! 1
S () = e e (1

Owvercoming Integrity Challenges of DSMS Servers 569

Therefore,

1
lim p=—xn=1. (14)
n

N—o0

Thus, as the number of result records increases, the probability of locating at least
one record at any position of query window approaches 1. We have shown already
that the EstimateServerQueryWindow algorithm estimates the position of the server
query window accurately after receiving at least one result record at the beginning
and end of the query window. As a result, as the number of result records increases,
the probability of error in EstimateServerQueryWindow approaches zero. [

Theorem 2. The error probability of the completeness auditing algorithm approa-
ches zero as the number of result records approaches infinity.

Proof. Let N be the number of the result records. If the server deletes only real
records from the results, users cannot discover this deletion. Based on escape prob-
abilistic model in Section 5.5.1, the probability of this situation is

Nx(1-FRR)—1

b= g Nx(lj;ffR)—i. (15)
In this product, all terms are less than 1 and the largest term is w, SO
p < (1 — FRR)N*U-FRR) (16)
Because (1 — FRR) < 1,
lim p = 0. (17)

N—o0

Therefore, the error probability of the completeness auditing algorithm approaches
zero as the number of result records approaches infinity. O

8 CONCLUSIONS

In this paper, we presented a solution for the integrity auditing of query results
received from an outsourced DSMS server. First, we presented an architecture
based on our idea, and then we presented detailed algorithms for each part of the
architecture. We implemented our model and evaluated the results, which showed
very good results. Finally, we proved the correctness of our algorithms.

This paper concentrates on applying queries on one stream. In future, we plan
to consider multiple streams and investigate algorithms for the integrity auditing of
join queries as well.

=

570

M. Ghayoori, M. S. Haghjoo

REFERENCES

1]

2]

8]

]
5]
6]
7]
g
9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

ARrASU, A. et al.: STREAM: The Stanford Stream Data Manager. In: International
Conference on Management of Data 2003. San Diego, California — Proceedings of the
2003 ACM SIGMOD.

CHANDRASEKARAN, S. et al.: TelegraphCQ: Continuous Dataow Processing for
an Uncertain World. in CIDR 2003.

ScHMIDT, S. et al.: Robust Real-Time Query Processing with QStream. In Proceed-
ings of the 31% International Conference on Very Large Data Bases (VLDB). 2005,
Trondheim, Norway 2005.

ABADI, D. et al.: The Design of the Borealis Stream Processing Engine. In Bien-
nial Conference on Innovative Data Systems Research (CIDR ’05) 2005. pp. 277-289.
ABADI, D.J. et al.: A new Model and Architecture for Data Stream Management.
The VLDB Journal, Vol. 12, 2003, No. 2, pp. 120-139.

CHANDRAMOULI, B. et al.: Data Stream Management Systems for Computational
Finance. Computer, Vol. 43, 2010, No. 12, pp. 45-52.

Haciecms, H.—MEHROTRA, S.—IYER, B.: Providing Database as a Service. In
Proceedings of the 18" International Conference on Data Engineering 2002, p. 29.
Li, F. et al.: Enabling Authentication of Sliding Window Queries On Streams. In
VLDB Endowment, Vienna, Austria 2007.

MERKLE, R.C.: A Certified Digital Signature. In Proceedings of the 9" Annual
International Cryptology Conference on Advances in Cryptology 1990.

2nd

PAPADOPOULOS, S.—YANG, Y.—PAPADIAS, D.: Continuous Authentication on Re-
lational Streams. The VLDB Journal, Vol. 19, 2010, No. 2, pp. 161-180.

TATBUL, N. et al.: Load Shedding in a Data Stream Manager. In 29" International
Conference on Very large Data Bases 2003, Volume 29, pp. 309-320.

Y1, K. et al.: Randomized Synopses for Query Assurance on Data Streams. In
Proceedings of the 2008 IEEE 24" International Conference on Data Engineering,
pp. 416-425.

Y1, K. et al.: Small Synopses for Group-by Query Verification on Outsourced Data
Streams. ACM Trans. Database Systems, Vol. 34, 2009, No. 3, pp. 1-42.

BaBcocK, B. et al.: Models and Issues in Data Stream Systems. In Proceedings
of the 218t ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems 2002, pp. 1-16.

DonG, C.—RuUSSELLO, G.—DuLAY, N.: Shared and Searchable Encrypted Data
for Untrusted Servers. In Proceeedings of the 22"d Annual IFIP WG 11.3 Working
Conference on Data and Applications Security 2008, pp. 127-143.

BRINKMAN, R.: Searching in Encrypted Data. In Department of Information and
Computer Science, University of Twente 2007, p. 119.

SoNG, D. X.—WAGNER, D.—PERRIG, A.: Practical Techniques for Searches on En-
crypted Data. In Proceedings of the 2000 IEEE Symposium on Security and Privacy,
p- 44.

Owvercoming Integrity Challenges of DSMS Servers 571

[18] XiE, M. et al.: Integrity auditing of outsourced data. In Proceedings of the 33
International Conference on Very Large Data Bases 2007, pp. 782-793.

[19] WAaNG, X.—Liu, H.—ER, D.: HIDS: A Multifunctional Generator of Hierarchical
Data Streams. SIGMIS Database, Vol. 40, 2009, No. 2, pp. 29-36.

[20] XIE, M. et al.: Integrity Auditing of Outsourced Data. In VLDB Endowment 2007.

[21] DiLL, S. et al.: Self-Similarity in the Web. ACM Trans. Internet Technology, Vol. 2,
2002, No. 3, pp. 205-223.

[22] F1orINI, P.M.: Modeling Telecommunication Systems with Self-Similar Data Traffic.
In Department of Computer Science. 1998, The University of Connecticut, p. 56.

[23] McCFEDRIES, P.: Definition of Man-in-the-Middle. 2002 [cited 2012 2012/02/17];
Available from: http://www.wordspy.com/words/maninthemiddleattack.asp.

[24] BELLARE, M. et al.: A Concrete Security Treatment of Symmetric Encryption. In

Proceedings of the 38" Annual Symposium on Foundations of Computer Science,
1997, p. 394.

Majid GHAYOORI graduated from Iran University of Science and Technology (IUST) in
computer engineering in 1991. He received his M. Sc. in computer engineering (artificial
intelligence) from Amirkabir Industrial University, Tehran, Iran in 1995. After his gradu-
ation, he started to work in some research projects. He accepted as a Ph.D. student in
computer engineering department of IUST under guidance of Dr. Haghjoo (2006), and he
received his Ph.D. from Iran University of Science and Technology (IUST) in 2012. He
currently works in some research projects in database and data stream fileds.

Mostafa S. HAGHJOO graduated from Shiraz University (1978) in applied mathematics.
He changed to computer science and received his M. Sc. and Applied Scientist degrees
from the George-Washington University, Washington, D. C. in 1980 and 1982, respectively.
Finally, he received his Ph.D. from Australian National University in 1995. He is teaching
and perusing research in IUST, Iran for the last two decades.

