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Abstract. This paper focuses on a design case study of a natural hand gesture
system for users with intact motion control of the metacarpophalangeal joint and
thumb basal joint of the hand after brachial plexus injuries. The lexicon of hand
gestures had eight entries and was demonstrated to be natural and ergonomic with
the limited hand motions. A cooperative multi-cue system was proposed for the key
hand posture recognition of the proposed hand gestures. We utilized the designed
system into a remote smart car control and electric wheelchair control. Experimen-
tal a results demonstrated the robustness and potential feasibility of the system in
human-computer interaction for the proposed users.
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1 INTRODUCTION

Vision-based hand gesture interfaces are increasingly popular in a variety of applica-
tion domains, such as medical assistance, entertainment, human-robot interaction,
etc. There are a number of factors that affect the design methodology, including ac-
curacy, intuitiveness, comfort, lexicon size, availability, and responsiveness [1]. And
human gestures can be described in different levels of representation [2].

To be accurate, hand gesture systems must operate at an almost zero error rate,
especially in medical assistive systems, to guarantee the safety of users. Considering
the users’ errors, additionally techniques [3] such as automatic obstacle detection
and avoidance, have been developed to enhance the reliability of systems. In order
to ensure a good user experience, the following requirements should be addressed:

• System latency has to be close to 45 ms for practical applications [4].

• Designed lexicons must be ergonomic, to avoid the “Gorilla arm” syndrome.

• The provided lexicon size should allow a variety of device control, at the same
time, prevent the high mental load of gesture recall and low learnability.

In the domain of human-robot interaction, e.g., electric wheelchair control, many
systems have been proposed for intelligent wheelchair control [1, 3]. Here we only
review the recent systems classified as vision-based gesture systems for intelligent
wheelchair control, summarized in Table 1 (more details can be referred to [1, 3]).

The traditional control interfaces for motorized devices include joysticks, key-
pads, etc. But it is important to develop natural interfaces that allow users control
devices adapted to their abilities, especially for the disabled with limited physical
abilities, e.g., peoples with brachial plexus injuries. Brachial plexus injury is an ge-
nerous term for a variety of conditions with disabled functions of the brachial plexus
nerve network which originates in the fifth (C5), sixth (C6), seventh (C7) and eighth
(C8) cervical, and first thoracic spinal nerves (T1), and branches off to form most
of the other nerves that control movement and feeling of the shoulder, arm, fore-
arm, and hand. Obstetric brachial plexus palsy and other trauma may cause the
injuries [15]. According to different injured nerves, symptoms of the injuries may
vary greatly, e.g, an injury of the upper brachial plexus nerves (C5 and C6) may
lead to loss of motion around the shoulder and ability to flex the elbow, while an
injury of the lower brachial plexus nerves (C7, C8, and T1) may attribute to loss of
motion in the wrist and hand.

In this paper, we focused on a natural hand gesture system design for users with
brachial plexus injuries. The types of motor impairments restricted on the disabled
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System Gesture component Motion pattern Lexicon
size

The proposed system Hand Limited finger
movement

8

H. Jiang, et al. (2012) [5] Hand Hand movement 8
G. C. Lee, et al. (2012) [6] Head Head movement 5
Y. Zhang, et al. (2011) [7] Hand Hand movement 5
J. S. Ju, et al. (2009) [3] Face and mouth Face-inclination

and mouth-shape
7

I. Yoda, er al. (2007) [8] Head Head movement 7
K. Posada-Gomez,
et al. (2007) [9]

Hand Hand movement 4

P. Jia (2007) [10] Head and nose Frontal face
movement

5

C. Shan, et al. ((2007) [11] Hand Hand movement 5
S. P. Kang, et al. (2004) [12] Hand Finger and wrist

movement
4

S. P. Kang, et al. (2003) [13] Hand Finger and wrist
movement

9

I. Moon, et al. (2002) [14] Head Head movement 4
SIAMO(2001)[15] Head Head movement 5

Table 1. Vision-based gesture systems for intelligent wheelchair control

functions of shoulder, arm, forearm, and even wrist, with intact motoric control
of the metacarpophalangeal joint and thumb basal joint of the hand, which are
commonly caused by the injury of the upper brachial plexus nerves. In order to offer
a more available and convenient interface for this purpose, a natural and ergonomic
hand gesture vocabulary was designed with the consideration of factors including
limited hand motions, user-friendly design, and distraction detection. The multi-
cue (i.e., color, motion and shape cues) system was utilized to detect and classify
the words in the hand gesture vocabulary. A customized motion history image
technique with the adaptive time segmentation was used to accurately calculate
motion direction and motion area size of the hand gestures. The shape cues employed
in the system included statistical moments, silhouette perimeter, and shape aspect
ratio information. Each cue served as an efficient classifier with a low computing load
and high accuracy in specific lexical entries in the system, and the whole multi-cue
system could acquire great performance on recognition of all lexical entries.

2 HAND GESTURE VOCABULARY

The designed hand gesture vocabulary consisted of eight commands with five key
hand postures and three compound ones, as shown in Figure 1. The correspond-
ing commands of each lexicon entry for motorized device control might be “Go”,
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“Left turn”, “Right turn”, “Keep”, “Stop”, “Back”, “Right turn and go”, and “Left
turn and go”. The hand motion in the vocabulary was limited to the abduction
and adduction of the thumb, index finger, ring finger, and little finger. In our
previous research [16], the proposed hand gesture vocabulary was demonstrated to
have the characteristics including intuition, comfort, low mental load, and the high
learnability. Considering atypical capabilities for motor control and hand gestural
expression of patients with upper brachial plexus injuries, the motion joints involved
in the vocabulary were reduced to the metacarpophalangeal joint (MCP) and the
thumb basal joint (TBJ).

Figure 1. The designed hand gesture vocabulary

3 AN COOPERATIVE MULTI-CUE SYSTEM FOR HAND GESTURE
RECOGNITION

In order to efficiently and accurately detect and recognize the words in the vocab-
ulary, a multi-cue based system was proposed, which used features covering the
hand-like color, finger motion, and hand shape information. The system was de-
ployed with a fixed hand-top mounted web camera and a fixed background using
a coarse black cotton cloth. The descriptors of the motion and the shape were used
to detect and recognize the hand gestures. The schematic diagram of the proposed
multi-cue system is shown in Figure 2, where CS indicated the operation of color
segmentation and SGi (i = 1, . . . , 5) represented one of the five key hand postures in
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the system. MG and SG meant the gestures derived from the motion and shape in-
formation respectively. And MSG was the gesture concluded both from the motion
and the shape descriptors.

Figure 2. The proposed multi-cue system for hand gesture recognition

The operation in the SG, MSG were as follows:

SG =

{
i, if C(SGi) ∩R(SGi) ∩Hx(SGi) = 1
NULL, otherwise,

(1)

MSG =

{
MG or SG, if MG is equal to SG
NULL, otherwise.

(2)

In the motion pathway of the multi-cue system, the method of frame-based
motion history images was used to calculate the motion states of finger joints. The
motion direction, motion location, and motion area size were adopted to distinguish
each finger motion. For example, the radial abduction of the TBJ had features
including:

1. motion direction was close to 150 degrees,

2. motion was located in the leftmost of all motion blobs.

In the shape pathway, three shape descriptors i.e., the horizontal mass center
(Hx), circumference (C), and aspect ratio (R) of hands, were employed to classify
the gestures. In order to acquire 100 % accuracy, each descriptor could vote for from
one to up to four candidates depending on its distinctness in the gestures.
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3.1 Color Segmentation

Skin color based hand segmentation is a popular method because of its ease of im-
plementation and speed, but it also has limitations with respect to strong lighting
change and accuracy [17]. In the system, a novel single-threshold segmentation
method in the red channel of the RGB color space was proposed to accurately dis-
criminate the hand from the fixed black background. The red channel was employed
because of its maximal similarity to skin color in the RGB color space. The problem
of the background color selection was studied in our previous research [16] and the
results demonstrated that the pure black acquired the best performance in segment-
ing hands because of its robustness to lighting change and shadows. The simplified
design of the background made the system robust to strong illumination change with
a high performance, as shown in Figure 3.

Figure 3. Hand segmentation from the weak and strong lighting conditions respectively

3.2 Motion Pathway

Each finger joint has its typical motion range. For example, the normal motion
range of the MCP abduction and adduction is 30 degrees, and the radial abduc-
tion of the TBJ is 60 degrees [18]. The heuristic prior knowledge of the finger
motion offers a convenient and accurate way to detect and classify hand postures.
The motion history image (MHI) method is a good choice to motion analysis [19].
In this paper, we proposed a customized motion history image technique with
the adaptive time segmentation to calculate the motion direction and the motion
size.
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3.2.1 Silhouette Generation

Suppose that Rf (x, y) was a frame in a video sequence or a web camera with the
frame number of f . The thresholding frame Tf (x, y) was determined as follows:

Tf (x, y) =

{
255, if Rf (x, y) ≤ ς
0, otherwise.

(3)

The silhouette Sf (x, y) was generated according to Equation (4).

Sf (x, y) =

{
255, if Tf (x, y)− Tf−1(x, y) > 0
0, otherwise.

(4)

3.2.2 Frame-Based Motion History Images

In this paper, the frame number was used as the timestamp in the motion history
image fMHIf (x, y) which was updated as follows:

fMHIf (x, y) =

{
0, if (f − fMHIf (x, y)) < ξ
f ∗ τ, if (Sf (x, y)) > 0,

(5)

where ξ is the maximum memory time of motions, and τ is the time duration
constant of a frame.

3.2.3 Finger Motion Segmentation and Gradient Calculation

To improve robustness to user differences in the motion duration between two suc-
cessive hand gestures, each motion duration Ψ(Ψ ≤ ξ) was counted for further
finger motion segmentation. The customized motion history image with adaptive
time segmentation (TfMHIf (x, y)) was calculated as follows:

TfMHIf (x, y) =

{
255, if (f − fMHIf (x, y)) ≤ Ψ
0, otherwise.

(6)

Each finger motion blob was then calculated in the TfMHIf (x, y) according
to the algorithm in [20]. In order to handle problems of the surrounding boundary
of the fMHIf (x, y) and small amounts of noises, an erosion operation was applied
to shrink the fMHIf (x, y) before finger motion segmentation. There were distinct
borders among timestamps in fMHIf (x, y). The gradient orientations ∆i of the
boundary points was calculated as follows [21]:

∆i = arctan
Dxi

Dyi

, (7)

where Dxi and Dyi are the spatial derivatives in the X and Y directions of the
boundary points.
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3.2.4 Finger Motion Direction

Motion direction of each finger motion blob was calculated as follows:

Λ =
∑
i∈Γ

∆i

n
, (8)

where Γ is the set of the valid boundary points with non-zero gradient orientations,
and n is its element number. We must be careful when summing the elements with
gradient orientations closing to 0 degree or 360 degrees. The frequencies of the ∆i

existing in the first quadrant F1 and the fourth quadrant F4 were counted. Then
the ∆i and Λ were revised as follows:

∆i = ∆i + 360, if (F1 + F4)/n > υ and F1/n > ω and F4/n > ω, (9)

Λ =

{
Λ, if Λ < 360
Λ− 360, otherwise,

(10)

where υ is a minimal proportion of the sum of F1 and F4 in Γ, and ω is minimal
proportion of the F1 and F4 in Γ. One example of the finger motion calculation
of the hand gesture changing from “Go” to “Stop” is shown in Figure 4. Motion
direction of each finger appears to have a fixed mean with a small deviation with
respect to the heuristic prior knowledge of the finger motion.

Figure 4. An example of the finger motion calculation of hand gesture changing from “Go”
to “Stop”

3.3 Gesture State Transition Network

In order to classify the hand gestures basing on the motion information, a full-
connected state transition network of gestures was maintained in the system, as
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shown in Figure 5. For example, for the transition from “Go” to “Keep”, only the
abductions of the TBJ and the MCP of the little finger were expected.

Figure 5. The state transition network of the hand gestures

3.4 Shape Pathway

3.4.1 Hand Shape Normalization

In our system, some simple but distinctive descriptors were used, i.e., the horizontal
mass center, circumference, and aspect ratio of hands. The hand region was normal-
ized to a fixed height so as to get a common basis for multi-cue based hand posture
recognition. The computing method was defined as follows.

1. According to the method in [20], contours were computed in the image Tf (x, y)
defined in Equation (3). The one with maximum area was selected as the hand
contour HC.
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2. Let the height and the width of the HC be HCW and HCH respectively, and
the finger tip of the middle finger get a maximum Maxy in the y axis of the
image Tf (x, y). HC(x, y) was one of the elements in HC. The normalized hand
contour was redefined as Equation (11).

HC = {HC(x, y)|y ≥Maxx −H}, (11)

where H is the normalized height of hands. It could be set according to anthropo-
metric data of hands, or based on the individual.

3.4.2 Shape Descriptions

The shape descriptors were computed in the normalized hand contour. The hori-
zontal mass center Hx and the aspect ratio R were calculated as follows:

Hx =

∑
x,y(HC(x, y)× x)

W ×∑
x,yHC(x, y)

, (12)

R =
HCW

H
. (13)

The circumference C is defined as the pixel number of the most outer contour
of the HC. The typical values of the Hx, C, and R in the five key hand postures of
the vocabulary are shown in Table 2.

Gesture descriptor Hx C[points] R

“Go” 0.517 568 0.621
“Left turn” 0.635 627 0.882
“Right turn” 0.422 656 0.785
“Keep” 0.549 729 1.030
“Stop” 0.544 1 096 1.065

Table 2. The typical values of the Hx, C, and R in the five key hand postures of the
vocabulary

As shown in the Table 2, the shape descriptor of the Hx is distinct among “Left
turn”, “Right turn”, and the other words, the R has noticeable differences among
the gestures except for “Keep” and “Stop”, and the C has a clear boundary between
“Stop” and the other gestures.

3.5 Gesture Spotting

The gesture recognition was executed only in the first static frames fsf which were
defined as follows:

fsf = {f |(Wf−1 −Wf−2 > κ) and (Wf −Wf−1 ≤ κ)}, (14)
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where Wf is the width of the normalized hand region in the f−th frames and κ is the
maximum amount of the width change in the static frames. The compound gestures
in the system are determined unless two successive fsf satisfy Equation (15):

fsfi − fsfi−1 ≤ Θ, (15)

where Θ is the maximum time constant between fsf . For example, the “Back”
gesture is determined when the following conditions are met:

• The result of gesture recognition is “GO” in the fsfi−1 frames;

• The result of gesture recognition is “Keep” in the fsfi frames;

• Equation (15).

4 THE EXPERIMENTAL RESULTS

The proposed hand gesture interface was implemented in the intelligent wheelchair
control and smart car control. The experiments were carried out in the indoor and
outdoor environments in our campus. The frame size of the camera was 320× 240.
The system was running on a computer with an Intel Core 2 Duo CPU P8400 @
2.26 and 1.92 GHz under Windows XP. The implemented system operated as about
of 15 frames per second without parallel implementation.

4.1 Experiment I: Remote Control of the Smart Car

In the control of the smart car, only five key hand postures were used, i.e., “Go”,
“Left turn”, “Right turn”, “Keep”, and “Stop”. Their corresponding control com-
mands of the smart car were “Go ahead”, “Turn left”, “Turn right”, “Go back”, and
“Stop”. The designed hand gesture platform, smart car, and test map are shown
in Figure 6. The smart car was navigated to run the test map 10 times. Five
able-bodied subjects (five male), ranging in age from 23 to 27, participated in the
experiment. The performance is shown in Table 3.

Lexicon entry Recall Precision

“Go” 1 1
“Left turn” 1 1
“Right turn” 95 % 1
“Keep” 96 % 1
“Stop” 1 1

Table 3. Performance of the remote control of the smart car
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Figure 6. The designed hand gesture platform, the smart car, and the test map

4.2 Experiment II: Intelligent Wheelchair Control

In the condition of the intelligent wheelchair control, the hand gesture platform
was mounted into the right armrest of the wheelchair. We tested the system in
the outdoor environment with strong lighting changes as shown in Figure 7. The
wheelchair was freely controlled for almost half an hour. The control commands

Figure 7. Intelligent wheelchair control in the outdoor environment



A Natural Hand Gesture System for People with Brachial Plexus Injuries 379

Lexicon entry Recall Precision

“Go” 1 1
“Left turn” 1 1
“Right turn” 1 1
“Keep” 1 1
“Stop” 1 1
“Back” 0.92 1
“Right turn and go” 0.96 1
“Left turn and go” 0.94 1

Table 4. Performance of the intelligent wheelchair control in the outdoor environment

covered each lexicon entry in the vocabulary for 50 times at least. The performance
is shown in Table 4.

5 DISCUSSIONS

The advantages of the system can be summarized in the following:

1. The computer vision based interface

Vision-based interfaces have the advantages such as nonintrusion, passive sens-
ing, low cost, etc. They can be served to many applications aside from hand
gesture interfaces, e.g., identification and attention monitoring [22].

2. The hand gesture interface

Comparing to other gesture-based interfaces, such as the head-based, the mouth-
based, and the body based, hand gesture interfaces make heads unoccupied
which is important for multi-task operation in dairy life.

3. Limited hand motions

The hand motion in the designed vocabulary is limited to the abduction and
adduction of the thumb, index finger, ring finger, and little finger. The involved
motion joints are reduced to the MCP and the TBJ. The above features make
the system more available and convenient to most of users.

4. The user-friendly design

The lexicon size in the system is 8 which is various enough for device control
and is just easy for users to remember and to perform. The system can run in
real-time with good experiences for users as “no delay”.

5. The multi-cue system

The system combines the motion and the shape features in the key hand posture
recognition. Each descriptor acts as a weak classifier with the high accuracy and
low computing load. The whole multi-cue system is robust to users’ differences
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and environment changes. When considering other shape descriptors, for exam-
ple, hand finger tip detection, our proposed three shape descriptors are more
simple and distinct in classifying the hand gesture in the system.

People with upper brachial plexus injuries usually reserve the ability of motoric
control of their fingers, but not the shoulders, arms, or elbows. The proposed
hand gesture system only requires the limited hand motions as mentioned above.
In addition, our system offers a comfortable platform for patients to perform the
gestures. The multi-cue system guarantees the recognition accuracy and robustness
to strong lighting changes and users’ errors. The proposed system offers a feasible
and natural interface for users with intact motoric functions of hands to interact
with external environments.

6 CONCLUSIONS

The natural and ergonomic vision-based hand gesture interface system was proposed
for intelligent human-computer interaction aiming at a special group of people. The
multi-cue system was designed for accurately recognition of the designed hand ges-
ture vocabulary which had the characteristics of limited finger joint motion and
the user-friendly priority. The fMHI technique was used in the motion pathway for
motion information calculation. The shape pathway included the descriptors of the
horizontal mass center, circumference, and aspect ratio of silhouettes. The proposed
hand gesture interface was tested in the applications of the intelligent wheelchair
control and smart car control, and got the good performance under the environments
of strong lighting changes and users’ errors.
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