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Abstract. Given a graph G = (V,E) and k source-sink pairs {(s1, t1), . . . , (sk, tk)}
with each si, ti ∈ V , the Min-Sum Disjoint Paths problem asks to find k disjoint
paths connecting all the source-sink pairs with minimized total length, while the
Min-Max Disjoint Paths problem asks for k disjoint paths connecting all the source-
sink pairs with minimized length of the longest path. We show that the weighted
Min-Sum Disjoint Paths problem is FPNP-complete in general graphs, and the un-
weighted Min-Sum Disjoint Paths problem and the unweighted Min-Max Disjoint
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Paths problem cannot be approximated within Ω(m1−ε) for any constant ε > 0 even
in planar graphs, assuming P 6= NP, where m is the number of edges in G. We give
for the first time a simple bicriteria approximation algorithm for the unweighted
Min-Max Edge-Disjoint Paths problem and the weighted Min-Sum Edge-Disjoint
Paths problem, with guaranteed approximation ratio O(log k/ log log k) and O(1),
respectively.

Keywords: Disjoint paths, min-sum, min-max, computational complexity, approxi-
mation algorithms
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1 INTRODUCTION

The disjoint paths problem is a classical problem in combinatorial optimization
and graph theory. The problem finds its many applications in practical areas such
as network routing and VLSI-design. Nowadays the disjoint paths problem has at-
tracted much attention due to the rapid development of the communication network
technology. See the monograph due to Korte et al. [11] and the remarkable thesis
of Kleinberg [8] for more details. The Maximum Vertex-Disjoint Paths problem
(MVDP) and the Maximum Edge-Disjoint Paths problem (MEDP) are two classical
disjoint paths problems, which ask to find vertex- (edge-) disjoint paths to connect
as many as possible source-sink pairs in a given graph [8, 2, 9]. In this paper,
we study the Min-Sum Disjoint Paths problem and the Min-Max Disjoint Paths
problem.

1.1 The Problems and the Notation

Two paths are said to be vertex-disjoint if they do not share any vertex, and
are said to be edge-disjoint if they do not share any edge. In the Min-Sum Dis-
joint Paths problem, we are given a graph G = (V,E) with weight (a.k.a. length)
we ≥ 0 defined for every e ∈ E, and a set of k source-sink vertex pairs D =
{(s1, t1), (s2, t2), . . . , (sk, tk)}. The goal of the problem is to find k disjoint paths
to connect every source-sink pair, such that the total length of these paths is min-
imized. The instance of the Min-Max Disjoint Paths problem is the same as that
of Min-Sum Disjoint Paths, while the problem is to find k disjoint paths to connect
every source-sink pair with minimized length of the longest path.

If the weights are identical for all edges (without loss of generality, we may as-
sume that we = 1 for every edge e), then we call the problem unweighted. According
to the convention, the terms EDP and VDP denote the decision problems of MEDP
and MVDP, respectively. When we talk about disjoint paths, we mean edge-disjoint
paths and/or vertex-disjoin paths. Source and sink are also called terminals. We
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interchangeably use the term source-sink pair and the term terminal pair. We say
that an instance of the problem is feasible if all source-sink pairs can be connected
by disjoint paths.

Throughout this paper, we use n and m to denote, respectively, the number
of vertices and the number of edges in graph G. As usual, we use I to denote
an instance of some problem. Assume I is an instance of some minimization prob-
lem Π. Let OPT(I) denote the cost of an optimal solution to I, and A(I) denote
the cost of an approximate solution found by algorithm A on instance I, where
A is an approximation algorithm dealing with the problem Π. The approximation
ratio of algorithm A is defined as the supremum1 of A(I)

OPT
(I) over all instances of

problem Π. As we are dealing with the Min-Sum Disjoint Paths problem and the
Min-Max Disjoint Paths problem, we also use OPTMS(I) and OPTMM(I) for clarity
to denote the cost of optimal solutions to the Min-Sum Disjoint Paths problem and
the Min-Max Disjoint Paths problem, respectively. For example, for the Min-Max
EDP problem and its approximation algorithm A, A(I) should be the length of the
longest path in the solution found by algorithm A on instance I, while OPTMM(I)
should be the length of the longest path in an optimal solution to instance I.

1.2 Related Works

In general, the disjoint paths problem appears to be a hard problem. Karp [7] proved
the classical undirected VDP and EDP problems (given a graph and k terminal
pairs, the problem asks whether there are k vertex- (edge-) disjoint paths to connect
all the terminal pairs) are NP-complete. For directed graphs, Fortune, Hopcroft
and Wyllie proved that the VDP and EDP problems are NP-complete even for
k = 2 (i.e., there are only two terminal pairs). The disjoint paths problem becomes
tractable only for several classes of graphs such as undirected graphs with bounded
tree-width [17] and directed acyclic graphs [4]. As there are many works about the
disjoint paths problem, we mainly focus on its min-sum version and min-max version
in the following.

First we state some works about the Min-Sum Disjoint Paths problem. Suurballe
and Tarjan [18] gave a polynomial-time algorithm for finding a pair of edge-disjoint
paths from one specified source to each possible sink of shortest total length in
a directed graph. Yang and Zheng [21] extended the algorithm in [18] to solve the
problem that finds the shortest two disjoint paths from one source s to a pair of
sinks (t1, t2) for every such pair. This problem is equivalent to the Min-Sum EDP
problem with constraints that k = 2 and s1 = s2.

For the general case that there are k terminal pairs in the problem, Brandes,
Neyer and Wagner [1] proved that the unweighted Min-Sum EDP problem and the
unweighted Min-Max EDP problem are NP-hard in planar graphs, even if the graph
fulfills the Eulerian condition and the maximum degree of the graph is 4.

1 In general, to calculate precisely the supremum is not easy. People often use a good
upper bound as the approximation ratio.
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For planar graphs, some cases of the min-sum disjoint paths problem are solvable
in polynomial time. Colin de Verdière and Schrijver [3] showed that the Min-Sum
VDP problem can be solved in O(kn log n) time for a directed or undirected planar
graph G, provided that s1, s2, · · · , sk are incident with a face s, and t1, t2, · · · , tk are
incident with a face t, where s and t are two distinct faces of G. By extending the
results of [3], Kobayashi and Sommer [10] proved that the Min-Sum Disjoint Paths
problem can be solved in polynomial time for planar graphs, when k = 2 and the
terminals are incident with at most two faces.

Next we show the related works about the Min-Max Disjoint Paths problem.
Li, Thomas and Simchi-Levi [12] considered the problem of finding two disjoint s-t
paths such that the length of the longer path is minimized. They showed that both
of the four versions of the problem, i.e., the graph may be directed or undirected, and
the paths may be edge-disjoint or vertex-disjoint, are strongly NP-hard. They also
gave a pseudo-polynomial time algorithm for the problem in directed acyclic graph.
Kobayashi and Sommer [10] showed that the Min-Max Disjoint Paths problem when
k = 2 can be solved in O(n2) time for undirected graphs with tree-width at most 2.

For the general case that there are k terminal pairs, the unweighted Min-Max
EDP problem is NP-hard in planar graphs, even if the graph fulfills the Eulerian
condition and the maximum degree is 4. This was proved by Brandes, Neyer and
Wagner [1].

The bounded-length disjoint paths problem closely relates to the Min-Max Dis-
joint Paths problem. Itai, Perl and Shiloach [6] proved that it is NP-hard to find the
maximum number of disjoint s-t paths such that every path has bounded length.
Tragoudas and Varol [19] gave a stronger hardness result by showing that it is NP-
complete to decide whether an unweighted graph contains a pair of edge disjoint
s-t paths such that neither has more edges than a given length bound. They also
gave a polynomial time algorithm to compute the maximum number of edge disjoint
shortest s-t paths in a weighted graph.

1.3 Our Results

We systematically study the Min-Sum Disjoint Paths problem and the Min-Max
Disjoint Paths problem. There are several versions of the problems, according to

1. whether the input graph is directed or undirected,

2. whether the input graph is weighted or unweighted, and

3. whether the output paths are edge-disjoint or vertex-disjoint.

We prove new and strong complexity and approximation hardness results for
the Min-Sum Disjoint Paths problem and the Min-Max Disjoint Paths problem,
generalizing the results of Brandes, Neyer and Wagner [1]. We give a simple bicriteria
approximation algorithm for the first time to the unweighted Min-Max EDP problem
and the weighted Min-Sum EDP problem, although the problems are very hard with
respect to the approximation hardness as we prove.
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Specifically, we show that the weighted Min-Sum Disjoint Paths problem is
FPNP-complete both in undirected and directed graphs, and the unweighted Min-
Sum Disjoint Paths problem and the unweighted Min-Max Disjoint Paths problem
cannot be approximated within Ω(m1−ε) for any constant ε > 0 even in planar
graphs, unless P = NP. Notice that the approximation hardness of the unweighted
problems implies the same hardness for the weighted problems. It is well known that
the classical decision problems EDP and VDP (i.e., to decide whether the input
instance is feasible) are NP-complete [7]. Although the Min-Sum Disjoint Paths
problem and the Min-Max Disjoint Paths problem include EDP and VDP as their
subproblems, our results are strong since we prove all of the above complexity and
approximation hardness results even if we know in advance that the given instance
is feasible for EDP or VDP.

Then we give a simple bicriteria approximation algorithm for the unweighted
Min-Max EDP problem and the weighted Min-Sum EDP problem, with bi-factors
(O(log k/ log log k), O(log n/ log log n)) and (O(1), O(log n/ log log n)), respectively.
The first factor in the bi-factor is the approximation ratio, while the second factor
is the so-called congestion, that is, the maximum number of paths per edge in the
solution. Our algorithm is based on randomized rounding and runs in polynomial
time. In fact, our algorithm shows that whenever the linear program of the instance
(for both of the two problems) has a fractional feasible solution, the instance admits
an integral solution whose congestion is at most O(log n/ log log n). Since solving
linear program tells us whether the fractional feasible solution exists, our algorithm
avoids to decide whether the instance is feasible for EDP, which is a NP-complete
problem as previously mentioned.

2 COMPUTATIONAL COMPLEXITY OF WEIGHTED MIN-SUM
DISJOINT PATHS

Recall that a feasible instance of the disjoint path problem means that all the source-
sink pairs in the instance can be connected by (vertex- or edge-) disjoint paths.
Given a graph, a set of k terminal pairs and a bound B, in the decision version of
the Min-Sum VDP problem we are asked whether there are k vertex-disjoint paths
connecting all the terminal pairs such that their total length is at most B. We can
prove that the decision version of the Min-Sum VDP problem is NP-complete even
if the problem is restricted in feasible (for VDP) instances, by a reduction from the
VDP problem as follows. (The same holds for the decision version of the Min-Sum
EDP problem. Here we just take the Min-Sum VDP problem as an example.) It
is easy to see that the decision version of Min-Sum VDP is in NP. Let I1 = (G,D)
be an instance of VDP. In the instance I2 = (G′, D′, B) of the decision version
of Min-Sum VDP, let D′ = D, B = |E(G)|, and G′ be the graph G with one
additional edge (si, ti) for every terminal pair (si, ti) whose weight is B + 1. Then
I1 is feasible iff there are k vertex-disjoint paths in I2 whose total length is at
most B.
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In the following we shall prove a stronger complexity result, that is, the weighted
Min-Sum Disjoint Paths problem in general graphs is FPNP-compete. Recall that
the complexity class FPNP is the set of all functions from strings to strings that can
be computed in polynomial time by a deterministic Turing machine with access to
a SAT oracle. FPNP is just the function version of the class PNP (a.k.a. ∆2P), which
is at the second level of the polynomial hierarchy. The complexity class FNP, which
is the function version of the class NP, is contained in FPNP. If an optimization
problem is FPNP-complete, then the problem is NP-hard. But the opposite direc-
tion is believed not true. So in this sense FPNP-complete is a stronger complexity
conception than NP-hard.

It is known that the Max Weight SAT problem is FPNP-complete [15]. In Max
Weight SAT, we are given a formula φ in conjunctive normal form with positive
integer weight for every clause. The problem is to find a truth assignment τ for the
variables in φ such that the total weight of satisfied clauses under τ is maximized. We
shall reduce Max Weight SAT to Min-Sum Disjoint Paths by the reduction between
function problems (please refer to [15] for the definition) to prove that weighted
Min-Sum Disjoint Paths is FPNP-complete. We mention here that the well-known
TSP problem is another important FPNP-complete problem.

Lemma 1. Min-Sum Disjoint Paths is in FPNP.

Proof. It is easy to see that the decision version of Min-Sum Disjoint Paths is in NP.
Fix an instance of the Min-Sum Disjoint Paths problem. By scaling technique, we
may assume that all the edge weights are integral. Let wmin be the minimum of edge
weights, and Wtot be the total weight of edges in the instance. By a binary search
in the interval [k · wmin,Wtot], using a SAT oracle, we can compute the minimum
total length of such k vertex-disjoint (or edge-disjoint) paths. At each step we ask
the oracle to decide an instance of the decision version of the Min-Sum Disjoint
Paths problem. The binary search terminates when the width of the current search
interval is less than 1. This requires O(logWtot) steps, which is polynomial in the
input size of the instance.

Let OPTMS be the total length of an optimal solution to the instance we just
computed. Then, for every edge e, remove it temporarily from the graph, and make
a query for the resulted decision problem with bound B = OPTMS. If the answer is
“yes”, remove the edge from the graph permanently; otherwise put the edge back to
the graph. By repeating the above procedure, we can eventually find all the edges
that form an optimal solution to the problem. The lemma follows. �

Construction of the instance of Min-Sum EDP. First consider the Min-Sum
EDP problem. Given an instance I1 = (φ,w) of Max Weight SAT, we depict how to
construct the instance I2 = (G,w,D) of Min-Sum EDP. Without loss of generality,
we assume that each clause in φ contains at least 2 literals. We also assume that
in every clause of φ, no literal appears more than once or appears together with its
complement. We assign a gadget similar to that in Figure 1 to each variable xi.
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Inspired by the work due to Donald Knuth (which was cited in [7]), we get our
gadget. As an example, assume variable x1 appears positively in clauses ci1 and ci2 ,
and appears negatively in clauses cj1 , cj2 and cj3 . Then we assign to x1 the gadget
in Figure 1. For each clause cq (q should be one of i1, i2, j1, j2 and j3), there
is a terminal pair (sq, tq). For each terminal pair (sq, tq) there is a zigzag path
connecting sq and tq and a thick edge also connecting sq and tq, called the survival
edge. The survival edge for (sq, tq) has weight wq (recall that wq is the weight of the
corresponding clause cq in instance I1), while all the non-survival edges have weight
zero. In all these variable gadgets, the sources and sinks corresponding to the same
clause are identical. Let G′ be the resulted graph. Notice that in graph G′ there is
only one survival edge for each source-sink pair.
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Fig. 1. Gadget for variable

Notice that in G′ every terminal has degree strictly greater than 2. Let v be
any terminal. Applying on v the transformation in Figure 2 [14] can decrease the
degree of v by 1. By recursively applying on v the transformation, we can decrease
the degree of v eventually to 2. All the newly introduced edges in the transforma-
tions have weight zero. The dashed edge (not belonging to the graph) in Figure 2,
called the demand edge, indicates that its two endpoints form a source-sink pair.
The transformation preserves the following invariant: if all the source-sink pairs
introduced in the transformation are satisfied, then any path through v before the
transformation must still pass through v after the transformation, and only one such
path is allowed.

Now the degree of terminal v is 2 after the final transformation. This implies
that the path satisfying other source-sink pair cannot pass through v, otherwise the
source-sink pair of terminal v cannot be satisfied by disjoint paths. So for every



30 P. Zhang, W. Zhao, D. Zhu

source-sink pair corresponding to some clause, the path connecting it is restricted
within just one variable gadget. The resulting graph after the consecutive transfor-
mations is just our final graph G. This gives the instance I2 of weighted Min-Sum
EDP.
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Fig. 2. The gadget used to decrease the degree of vertex v by one

Lemma 2. The reduction from the instance I1 of Max Weight SAT to the in-
stance I2 of Min-Sum EDP can be finished in polynomial time.

Proof. For every variable, we can assume that the number of its occurrences in φ is
bounded by the number of clauses in φ. Therefore the graph G′ can be constructed
in polynomial time. In graph G′, a terminal v has degree being the number of literals
in its corresponding clause. So the transformations used to decrease the degrees of
terminals can also be finished in polynomial time. �

Denote by Wtot the total weight of all clauses in φ. Then we have Lemma 3.

Lemma 3. OPT(I1) = Wtot −OPTMS(I2).

Proof. Consider an optimal solution S∗ of the instance I2 with solution value
OPTMS(I2). For variable xi, if S∗ uses the horizontal zigzag paths in its corres-
ponding gadget, then xi is assigned the truth value 1. If S∗ uses the vertical zigzag
paths in its corresponding gadget, then xi is assigned the truth value 0. Otherwise
S∗ does not use any zigzag path in the gadget of xi, and in this case xi is assigned
any truth value. This gives a truth assignment τ for formula φ.

Then consider terminal pair (sj, tj) corresponding to clause cj. If (sj, tj) is
connected by zigzag path in the gadget of some variable xi contained in cj, then
(sj, tj) consumes zero weight in the optimal solution S∗. Without loss of generality,
suppose that (sj, tj) is connected by the horizontal zigzag path. By the construction
of the gadget, variable xi appears positively in clause cj. Since xi is assigned 1, cj is
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satisfied under τ . Conversely, if (sj, tj) is not connected by any zigzag path in the
gadgets of variables in cj, then (sj, tj) must be connected by the survival edge, which
weighes wj. So, in the gadget corresponding to each variable, say xi, in cj, there
must be terminal pairs other than (sj, tj) that use the zigzag paths whose types
(horizontal or vertical) are opposite to that of the zigzag path of (sj, tj) (according
to our assumption, this zigzag path is not used by (sj, tj)). This implies that xi is
assigned a truth value such that its literal in cj is false. Thus we know that all the
literals in cj are false, and hence cj is unsatisfied under τ .

So, the total weight of satisfied clauses of formula φ under truth assignment τ
is Wtot −OPTMS(I2). Furthermore, τ must be an optimal solution to I1, otherwise
S∗ is not optimal. The lemma follows. �

Theorem 1. Even restricted in feasible instances, the weighted Min-Sum EDP
problem and the weighted Min-Sum VDP problem are FPNP-complete both in undi-
rected and directed graphs.

Proof. Since there are survival edges in the instance I2 of Min-Sum EDP, I2 is
always feasible. Moreover, since all terminals have degree 2 in graph G, and all
other vertices have degree 3, the edge-disjoint paths are identical to the vertex-
disjoint paths in graph G. By Lemma 1, Lemma 2 and Lemma 3, the theorem
follows in the case of undirected graphs.

For the directed case, it is easy to assign a direction for every edge in the variable
gadget. Since for a source-sink pair the source has in-degree 0 and the sink has out-
degree 0, we do not need the transformation in Figure 2. Again, in the resulting
graph the edge-disjoint paths are identical to the vertex-disjoint paths, and we also
have OPT(I1) = Wtot −OPT(I2). We have finished the proof of the theorem. �

3 APPROXIMATION HARDNESS FOR MIN-SUM DISJOINT PATHS
AND MIN-MAX DISJOINT PATHS

We first prove the approximation hardness for the unweighted Min-Sum Disjoint
Paths problem in planar graphs. The hardness result can be directly extended to
the unweighted Min-Max Disjoint Paths problem. Our proof is based on the work
in [14] about the NP-completeness of the EDP and VDP problems in undirected
planar graphs.

Let us first focus on the case of vertex-disjoint paths. We shall reduce the
NP-complete problem planar 3SAT(E3) [13, 14] to the unweighted Min-Sum VDP
problem by gap-introducing reduction [20]. Given a planar conjunctive normal for-
mula φ, with each clause containing at most three literals and each variable appear-
ing exactly three times, the planar 3SAT(E3) problem asks whether φ is satisfiable.
Suppose that there are M clauses and N variables in φ. Without loss of generality,
assume that each variable has two positive occurrences and one negative occur-
rence (otherwise we can flip all the occurrences of the violated variable to meet the
requirement).
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Construction of the instance of Min-Sum VDP. We assign the variable gad-
get Gv in Figure 3 to each variable xi, and assign the clause gadget Gc in Figure 3
to each clause cj that possesses three literals. Denote by G2

c the gadget resulted by
removing vertex l3j from Gc. If cj has just two literals, then assign cj the gadget G2

c .
Fix any constant c > 1. There is a path from source aj to sink bj in the clause
gadget, called the survival path, which is drawn by thick line in the gadget. The
length of the survival path is dN ce.

The dashed line in variable and clause gadgets, which is not part of the gadgets,
means that its two endpoints form a terminal pair. The variable gadget Gv has
three literal vertices. The left vertex l3i corresponds to the negative occurrence ¬xi,
and the right two vertices l1i and l2i correspond to the two positive occurrences xi.
The clause gadget has three literal vertices, corresponding to the three literals in the
clause respectively. Note that the literal vertices in Gv and Gc for the same literal are
identical. This gives the whole graph G̃ (not including the survival paths). Graph G̃
together with all the survival paths form the graph G′. Since φ is planar formula,
it is clear that G′ is a planar graph.
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Fig. 3. Gadgets for variables and clauses

Denote by G̃c the gadget resulted by removing the survival path from Gc. We
give Lemma 4 and Lemma 5 with respect to Gc. Extending these two lemmas to G2

c

is trivial.

Lemma 4 ([14]). G̃c satisfies the following two properties:

1. G̃c remains feasible for VDP if any at most two literal vertices are removed from
G̃c, but turns infeasible if all the three literal vertices are removed;

2. If other terminal pair not in G̃c uses one of the paths between any two literal
vertices of G̃c, G̃c turns infeasible for VDP.

Since there is a survival path in Gc, we get Lemma 5 by generalizing the con-
clusion in Lemma 4. The existence of the survival path makes Gc having better
properties.
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Lemma 5. The graph G′ resulted from the above reduction is always feasible for
VDP. Moreover, φ is satisfiable if and only if there exists a feasible solution to G′

which does not use any survival path.

Proof. It can be verified that Gc satisfies the following two properties:

1. If any at most two literal vertices are removed, there exists a feasible solution to
Gc which does not use any survival path, whereas if all the three literal vertices
are removed, then any feasible solution to Gc must use the survival path.

2. If other terminal pair not in Gc uses one of the paths between any two literal
vertices of Gc, Gc turns infeasible.

So, no matter whether φ is satisfiable, G′ is always feasible due to the survival paths.

Suppose that there is a truth assignment satisfying φ. Then terminal pair (si, ti)
in Gv can be connected by the path corresponding to the literal whose truth value
is false. Since φ is satisfied, each clause gadget has at least one literal vertex not
traversed. By the above property 1, every clause gadget Gc is feasible and no survival
path is used.

Conversely, there exists a feasible solution to G′ which does not use any survival
path. The above property 2 guarantees that the path connecting terminal pair
(si, ti) in Gv has to be entirely in Gv. This gives a truth assignment τ for every
variable. Suppose that the gadget corresponding to variable xi is Gv. If si and ti
is connected by the path through vertex l3i in Gv, then assign xi the truth value 1.
Otherwise si and ti is connected by the path through vertex l2i , and xi is assigned the
truth value 0 in this case. Since the feasible solution to G′ does not use any survival
path, by the above property 1, there exists at least one literal vertex in Gc which is
not used by any variable gadget. Because the literal corresponding to this vertex is
true, the clause corresponding to Gc is satisfied. So the formula φ is satisfied under
the truth assignment τ . �

Theorem 2. Even restricted in feasible instances and in undirected planar graphs
the unweighted Min-Sum VDP problem and the unweighted Min-Sum EDP problem
cannot be approximated within Ω(m1−ε) for any small constant ε > 0, unless P =
NP.

Proof. First we prove the theorem for the vertex-disjoint paths case. Let I1 = φ be
an instance of planar 3SAT(E3). By the construction of the instance of Min-Sum
VDP (at the beginning of Section 3), we get an undirected planar graph G′. It is
easy to see that the maximum degree of G′ is 4. By applying the transformation in
Figure 2, we can decrease the degree of non-terminal vertex to 3 and the degree of
terminal vertex to 2. Let G be the final graph. Denote by I2 = (G,D) the resulted
instance of Min-Sum VDP.

Since φ is a conjunctive normal formula with each clause containing at most 3
literals and each variable appearing exactly 3 times, we know that N ≤M ≤ 3

2
N .
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If φ is satisfiable, by Lemma 5, we have

OPTMS(I2) ≤ c1M + c2N ≤ c0N,

where c0 = c1 + c2, c1M is the total length of vertex-disjoint paths connecting the
terminal pairs in all the clause gadgets, and c2N is the total length of vertex-disjoint
paths connecting the terminal pairs in all the variable gadgets. We charge the length
of paths used to connect the introduced terminal pairs in the transformation on the
literal vertices to c2N (by carefully counting, one can see that c1 ≤ 55 and c2 ≤ 15).

If φ is unsatisfiable, then we have

OPTMS(I2) > dN ce ≥
(

1

c0
N c−1

)
c0N.

By the construction of the instance I2 of Min-Sum VDP, we have m = Θ(N c+1),
where m is the number of edges in G. So we know N = Θ(m1/(c+1)). This gives
the gap 1

c0
N c−1 = Θ

(
m1−2/(c+1)

)
. By setting c = 2

ε
− 1 for any small constant

ε > 0, we get the approximation hardness Ω(m1−ε) for unweighted Min-Sum VDP
in undirected planar graphs.

Since in graph with maximum degree 2 for terminals and maximum degree 3
for other vertices the vertex-disjoint paths are identical to the edge-disjoint paths,
we also obtain approximation hardness Ω(m1−ε) for unweighted Min-Sum EDP in
undirected planar graphs. The theorem follows. �

By the well known transformation from undirected graph to directed graph for
disjoin paths as shown in Figure 4, we obtain Theorem 3. Moreover, by the proof
of Theorem 2, we know that the approximation hardness results in Theorem 2 also
apply to the Min-Max Disjoint Paths problem, resulting in Theorem 4. The proof
of Theorem 3 and Theorem 4 are omitted.

Fig. 4. Transformation from undirected graph to directed graph

Theorem 3. Even restricted in feasible instances and in directed planar graphs,
for any small constant ε > 0, the unweighted Min-Sum VDP problem and the
unweighted Min-Sum EDP problem cannot be approximated within Ω(m1−ε), unless
P = NP.

Theorem 4. Even restricted in feasible instances and in (undirected and directed)
planar graphs, for any small constant ε > 0, the unweighted Min-Max VDP prob-
lem and the unweighted Min-Max EDP problem cannot be approximated within
Ω(m1−ε), unless P = NP.
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Since assuming m = Ω(n) does not lose generality, the unweighted Min-Sum
Disjoint Paths problem and the unweighted Min-Max Disjoint Paths problem also
have approximation hardness Ω(n1−ε) for any small constant ε > 0 even in planar
graphs, where n is the number of vertices in graph G.

4 THE RANDOMIZED APPROXIMATION ALGORITHMS

The complexity and approximation hardness of the Min-Sum Disjoint Paths prob-
lem and the Min-Max Disjoint Paths problem show that efficient heuristics for the
problems may be useful in practice. Several heuristics and experimental results for
Min-Sum EDP are given in [1]. Other than experimental results, we give for the first
time an efficient approximation algorithm with guaranteed performance ratio for the
problems, allowing that some constraints are slightly violated. Although the prob-
lems are very hard in terms of complexity and approximation hardness, we can get
an (O(log k/ log log k), O(log n/ log log n))-approximation for the unweighted Min-
Max EDP problem and an (O(1), O(log n/ log log n))-approximation for the weighted
Min-Sum EDP problem. Our algorithm is based on randomized rounding.

Some Concepts and the Notation. The approximation algorithm with a bi-
factor performance ratio is often called a bicriteria approximation algorithm. In the
bi-factor of our algorithm, the first parameter is the approximation ratio, and the
second parameter is the maximum number of paths per edge in the solution, called
congestion. Recall that the term congestion has been defined in Section 1.3.

Let p be any simple path. Define w(p) =
∑

e∈pwe as the length of path p. In
the unweighted case, w(p) is just |p|, the number of edges in path p. Let S be
a solution (We view S as a set of paths) to some disjoint paths problem. Define
LENmax(S) = maxp∈S{w(p)} as the length of the longest path in solution S ′. Defined
LENtot(S) =

∑
p∈S w(p) as the total length 2 of solution S.

For an instance I of the unweighted Min-Max EDP problem and its solution S,
define the stretch of solution S as LENmax(S)

OPTMM(I)
. Note that the stretch of solution S

is just its approximation ratio. For the sake of analysis of our algorithm, we need
the notion of the stretch of S against L for some quantity L, which is defined as
LENmax(S)

L
.

For an instance I of the weighted Min-Sum EDP problem and its solution S,
define the stretch of solution S as LENtot(S)

OPTMS(I)
. Also, for the sake of analysis of our

algorithm, we need the notion of the stretch of S against OPTf for some quantity

OPTf , which is defined as LENtot(S)
OPTf

.

2 We define the total length of solution S as
∑

p∈S w(p) in terms of paths. Another
definition of the total length is

∑
e : contained in S we, which is defined in terms of edges.

For a (bicriteria) solution S with congestion larger than one,
∑

e : contained in S we is ob-
viously at most

∑
p∈S w(p), implying that Theorem 6 still holds if we adopt the seemingly

more traditional definition
∑

e : contained in S we of total length.



36 P. Zhang, W. Zhao, D. Zhu

Note that for the unweighted Min-Max EDP problem and the weighted Min-
Sum EDP problem, the congestion of the solutions found by our algorithm is only
O(log n/ log log n), a super-constant, while the stretch of our solutions is a constant
or a super-constant.

4.1 LP Relaxation and Approximation Algorithm
for Unweighted Min-Max EDP

First we consider the unweighted Min-Max EDP problem. The graph in the instance
can be directed or undirected. The fractional linear program for unweighted Min-
Max EDP is shown as (LP1).

(LP1) min L (1)

s. t. ∑
p : e∈p

f(p) ≤ 1, ∀e ∈ E (2)∑
p∈Pi

f(p) = 1, ∀i ∈ [k] (3)∑
p∈Pi

|p|f(p) ≤ L, ∀i ∈ [k] (4)

f(p) ≥ 0, ∀p ∈ P
L ≥ 0

The linear program (LP1) view the disjoint paths problem as a multicommodity
flow problem. In the linear program (LP1), Pi denotes the set of all the possible
simple paths from si to ti, and P is the union of all Pi for 1 ≤ i ≤ k. For each
path p ∈ Pi, we define a variable f(p) ∈ [0, 1] which denotes the flow value on p
for terminal pair (si, ti). Consider the integral version (that is, f(p) ∈ {0, 1} and
L ∈ {1, 2, . . . ,m}) of (LP1). Then (2) specifies the capacity constraint for every
edge, (3) specifies the connectivity requirement for every terminal pair, and (4)
specifies that the maximum length of flow path used for every terminal pair should
not exceed L. The objective function (1) is to minimize the length of the longest
path that has ever been used. The symbol [k] in constraint (3) and (4) stands for
the set {1, 2, . . . , k}.

Notice that although (LP1) has exponential size, we can obtain a solution to
(LP1) in polynomial time, since there is a polynomial-size linear program equivalent
to (LP1). The polynomial-size linear program for unweighted Min-Max EDP can
be obtained by the method introduced in [5]. We can first solve the equivalent
polynomial-size linear program, then get an optimal solution to (LP1) by using the
flow decomposition method.
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For completeness, we give the polynomial-size integer linear program formulation
for the unweighted Min-Max EDP problem, as shown in (IP ). Suppose that the
underlying graph G is directed.

(IP ) min L (5)

s. t. ∑
i∈[k]

f iu,v ≤ 1, ∀(u, v) ∈ E (6)

∑
(u,v)∈E

f iu,v −
∑

(v,w)∈E

f iv,w ≥ 0, ∀i ∈ [k],∀v ∈ V (7)

∑
(si,v)∈E

f isi,v = 1, ∀i ∈ [k] (8)

∑
(u,v)∈E

f iu,v ≤ L, ∀i ∈ [k] (9)

f iu,v ∈ {0, 1}, ∀i ∈ [k],∀(u, v) ∈ E
L ∈ {0, 1, 2, . . . ,m}

For each edge (u, v) ∈ E and for each terminal pair (si, ti), we define a variable
f iu,v ∈ {0, 1} to denote the capacity used on edge (u, v) by terminal pair (si, ti); and
for each terminal pair (si, ti), we add an edge (ti, si) to E. Only variable f iti,si is
defined for edge (ti, si). Let F = {(t1, s1), . . . , (tk, sk)}. Every edge e ∈ E has unit
capacity. Then (6) denotes the capacity constraint for every edge, (7) states that
the total flow out of vertex v is at most the total flow into it, and (8) states that
for each terminal pair there must be a flow with value 1. Note that if (7) holds for
every vertex, it actually holds with equality, implying the flow conservation at each
vertex. By the integrality of the linear program, (9) states that the length of path
for every terminal pair (si, ti) should not exceed L. Then the objective function (5)
is to minimize the maximum length of paths ever used. Furthermore, since every
edge has unit capacity, the paths in the solution must be edge-disjoint.

The linear program formulation for the undirected graph is similar to the di-
rected case. For each edge (u, v) ∈ E\F , we define two variables f iu,v and f iv,u to
denote the flow value from u to v and that from v to u on edge (u, v) for terminal
pair (si, ti), respectively. For the added edge (ti, si) ∈ F , we only define one variable
f iti,si .

Suppose we have an optimal solution (f, L) to the fractional relaxation of (IP ).
Then we can get an (optimal) solution to (LP1) by using the flow decomposition
method. For simplicity, we assume that the underlying graph G is directed. Fix
any terminal pair (si, ti). Let Gi be the graph (V (G), E(G)) with capacities {f iu,v}
defined on edges. By the reachability method, we can extract a simple path p
from si to ti along nonzero-capacity edges. The flow value f(p) is defined as the
minimum capacity of edges in path p. For each edge (u, v) ∈ p, decrease its capacity
to f iu,v − f(p); then delete all the edges with zero capacity from Gi. That is, we use
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up at least one edge once we find an (si, ti)-path. The procedure is repeated until
ti is unreachable from si in the current Gi. Note that the number of (si, ti)-paths
with positive flow value obtained in this manner is polynomial in n, the number of
vertices in G.

Now we give the approximation algorithm for the unweighted Min-Max EDP
problem, as shown in Algorithm A. Algorithm A is a simple randomized approxi-
mation algorithm. It first solves (LP1) to get an optimal solution (f, L), then rounds
f to an integral solution by randomly picking a path p ∈ Pi as casting a |Pi|-side
die, whose each side denotes a path in Pi. To improve the probability of obtaining
a solution with guaranteed performance, Algorithm A repeats the above randomized
rounding procedure for sufficient times.

Algorithm A for unweighted Min-Max EDP

1. if (LP1) has no solution, then return “infeasible” and halt.

2. Compute an optimal solution (f, L) to (LP1).

3. repeat the following steps from 4 to 8 for r = d2 log ne times. In the jth

iteration, do

4. let Sj ← ∅.
5. for each terminal pair (si, ti) do

6. Choose p ∈ Pi exclusively at random with probability f(p).

7. let Sj ← Sj ∪ {p}.
8. end

9. end

10. Find a solution from {Sj} such that its stretch against L is at most α and its
congestion is at most β. If there is no such solution, then pick any one from
{Sj}. Let S be the selected solution.

11. return S.

The parameters α and β in Algorithm A will be given in the proof of Lemma 6.

Lemma 6. Let I be an instance of the unweighted Min-Max EDP problem, and
S ′ be the solution found in any iteration of Algorithm A on instance I. Then S ′

connects all the terminal pairs. Moreover, S ′ satisfies the following properties with
probability > 1

2
:

1. The stretch of S ′ is at most O(log k/ log log k) (i.e., the length of the longest
path in S ′ is at most O(log k/ log log k)OPT(I)), and

2. The congestion of S ′ is at most O(log n/ log log n) (i.e., the maximum number
of paths per edge in S ′ is at most O(log n/ log log n)).

Proof. Consider the iteration that generates S ′. Since we pick a path p ∈ Pi as
casting a |Pi|-side die for each terminal pair (si, ti), obviously S ′ connects all the
terminal pairs. Then we turn to the property 1 in the lemma.
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Fix any terminal pair (si, ti). For every edge e contained in some path in Pi,
define random variable Ze

i to denote whether edge e is used to connect terminal pair
(si, ti). If e is in some path p ∈ Pi which is selected by Algorithm A, then Ze

i = 1,
otherwise Ze

i = 0. Then define random variable

Zi =
∑
e : e∈q
q∈Pi

Ze
i

to be the length of the path in S ′ connecting (si, ti).

By definition of Ze
i , we have

E[Ze
i ] =

∑
p : e∈p
p∈Pi

f(p).

So,

E[Zi] =
∑
e : e∈q
q∈Pi

E[Ze
i ] =

∑
e : e∈q
q∈Pi

∑
p : e∈p
p∈Pi

f(p) =
∑
p∈Pi

f(p)|p| ≤ L,

where the last inequality is due to constraint (4).

About the fractional optimum L of (LP1), we have

L ≥
∑
p∈Pi

f(p)|p| ≥ min
p∈Pi

{|p|}
∑
p∈Pi

f(p) = min
p∈Pi

{|p|} ≥ 1

by constraints (4) and (3).

Define α = 2 ln k
ln ln k

. Set δ = α · L
E[Zi]
− 1. Since E[Zi] ≤ L, we have δ > 0. By the

Chernoff bound, we obtain

Pr[Zi > αL] = Pr[Zi > (1 + δ)E[Zi]]

<

(
e

1 + δ

)(1+δ)E[Zi]

=

(
e · E[Zi] ln ln k

2 ln k · L

)2 ln k·L/ ln ln k

≤
(

1

4k

)L
≤ 1

4k

when k is sufficiently large, where the last inequality holds since L ≥ 1.
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Define random variable Z = LENmax(S
′), and denote by B1 the event that

Z > α ·OPT(I). Then we know that

Pr[B1] ≤ Pr[Z > αL]

= Pr[∃i, Zi > αL]

≤
k∑
i=1

Pr[Zi > αL]

≤ 1

4
. (10)

There may be some edges used for many times in solution S ′. For the sake of
the analysis to property 2, fix any edge e ∈ E. For each path p ∈ P , define random
variable Xp as 1 if p is chosen and as 0 otherwise. Then define random variable

Xe =
∑
p : e∈p

Xp

as the number of times that e is used in the procedure of randomized rounding for
all terminal pairs. Then we know that E[Xp] = f(p) and

E[Xe] =
∑
p : e∈p

E[Xp] =
∑
p : e∈p

f(p) ≤ 1

by constraint (2).
Define β = 3 lnn

ln lnn
. Set δ = β

E[Xe]
−1. Since E[Xe] ≤ 1, we have that δ > 0. Again

by the Chernoff bound, we have

Pr[Xe > β] = Pr[Xe > (1 + δ)E[Xe]]

<

(
e

1 + δ

)(1+δ)E[Xe]

=

(
e · E[Xe] ln lnn

3 lnn

)3 lnn/ ln lnn

≤
(
e · ln lnn

3 lnn

)3 lnn/ ln lnn

<
1

4n2

when n is sufficiently large.
Denote by B2 the event that there is an edge e ∈ E such that Xe > β. Then we

know

Pr[B2] ≤
∑
e∈E

Pr[Xe > β] <
1

4
. (11)

By inequalities (10) and (11), we have Pr[B1 +B2] < 1/2. This gives the lemma.
�
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Theorem 5. As long as (LP1) has a fractional feasible solution, in polynomial time
Algorithm A outputs a solution S that connects all the terminal pairs. Moreover,
S satisfies the following properties

1. the stretch of S is at most O(log k/ log log k),

2. the congestion of S is at most O(log n/ log log n)

with high probability.

Proof. Since (LP1) is feasible, Algorithm A will output a (bicriteria) solution S
to the problem. By repeating the procedure of randomized rounding for d2 log ne
times, we get a solution to the problem satisfying all the properties in the theorem
with probability at least 1− 1/n2.

An optimal solution to (LP1) can be computed in polynomial time. Note that
when we obtain an optimal solution to (LP1) by the flow decomposition method, the
number of (si, ti)-paths with positive flow value is polynomial in n for each terminal
pair (si, ti). This shows that the randomized rounding procedure of Algorithm A
takes polynomial time. Therefore the running time of Algorithm A is polynomial.
This completes the proof. �

Remarks about Algorithm A. If the instance of Min-Max EDP is feasible for
EDP, then (LP1) must have a fractional feasible solution. In this case Algorithm
A outputs a solution to the problem with the guaranteed stretch and congestion.
The subtle case is that, even if the instance of Min-Max EDP is not feasible for
EDP, Algorithm A still may output a solution with the guaranteed stretch and
congestion, provided that (LP1) has a fractional feasible solution. Since solving
(LP1) (e.g., by the ellipsoid algorithm) tells us whether it has a fractional feasible
solution, Algorithm A gets around the issue of deciding the NP-complete EDP
problem.

Corollary 1. For feasible instances of the unweighted Min-Max EDP problem,
Algorithm A outputs in polynomial time a bicriteria solution with stretch

O
(

log k
log log k

)
and congestion O

(
logn

log logn

)
. Moreover, if Algorithm A returns infea-

sible, then the instance of the unweighted Min-Max EDP problem is not feasible for
EDP.

4.2 LP Relaxation and Approximation Algorithm
for Weighted Min-Sum EDP

The fractional linear program for the weighted Min-Sum EDP problem is similar to
that of the unweighted Min-Max EDP problem, as shown in (LP2).
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(LP2) min
∑
p∈P

w(p)f(p)

s. t. ∑
p : e∈p

f(p) ≤ 1, ∀e ∈ E∑
p∈Pi

f(p) = 1, ∀i ∈ [k]

f(p) ≥ 0, ∀p ∈ P

Our approximation algorithm for the weighted Min-Sum EDP problem is very
similar to Algorithm A for the unweighted Min-Max EDP problem, except that in
step 10 the algorithm should find a solution from {Sj} such that its stretch is at
most α against OPTf (LP2) (instead of L) and its congestion is at most β. Of
course, step 1 and step 2 in Algorithm A should be modified in the obvious way.
For clarity, let us call the algorithm for weighted Min-Sum EDP Algorithm B. The
parameters α and β in Algorithm B will be given in Lemma 7.

Lemma 7. Let I be an instance of the weighted Min-Sum EDP problem, and S ′ be
the solution found in any iteration of Algorithm B on instance I. Then S ′ connects
all the terminal pairs. Moreover, S ′ satisfies the following properties with probability
> 1

2
:

1. The stretch of S ′ is at most O(1) (i.e., the total length LENtot(S
′) is at most

O(1)OPTMS(I)), and

2. The congestion of S ′ is at most O(log n/ log log n) (i.e., the maximum number
of paths per edge in S ′ is at most O(log n/ log log n)).

Proof. We only prove property 1 in the lemma. Define random variable Y to be
the total length of S ′. Then,

E[Y ] =
∑
p∈P

w(p) Pr[p ∈ S] =
∑
p∈P

w(p)f(p) = OPTf (I) ≤ OPTMS(I).

Notice that the expected total length of S ′ is always lower than OPTMS(I). By
Markov’s inequality, for any constant c > 0, the probability of Y > c ·OPTMS(I) is
upper bounded by 1/c. We choose α = 4 so that the probability of Y > 4·OPTMS(I)
is at most 1

4
. Combining with the analysis for edge congestion in Lemma 6 completes

the proof of the lemma, where the parameter β is set to be 3 lnn
ln lnn

. �

The proof of the following Theorem 6 is straightforward and is omitted.

Theorem 6. As long as (LP2) has a fractional feasible solution, in polynomial time
Algorithm B outputs a solution S that connects all the terminal pairs. Moreover,
S satisfies the following properties
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1. the stretch of S is at most O(1),

2. the congestion of S is at most O(log n/ log log n)

with high probability.

5 CONCLUSIONS

We systematically study the complexity and approximation hardness of the Min-
Sum Disjoint Paths problem and the Min-Max Disjoint Paths problem. We give for
the first time a randomized bicriteria approximation algorithm for the weighted Min-
Sum EDP problem and the unweighted Min-Max EDP problem in general graphs.
We suspect that the weighted Min-Sum Disjoint Paths problem is FPNP-complete
even in more constrained graphs. In fact, Min-Sum Disjoint Paths can be proved
to be still FPNP-complete in 3-regular graphs by slight modifications of the gadgets
used in Theorem 1. In addition, can one get an approximation algorithm for Min-
Sum Disjoint Paths or Min-Max Disjoint Paths, with slightly relaxed approximation
ratio but constant bound on the congestion? Both the problems are interesting.
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