
Computing and Informatics, Vol. 32, 2013, 1–22

AN INTELLIGENT GENETIC ALGORITHM
FOR MINING CLASSIFICATION RULES
IN LARGE DATASETS

P. Vivekanandan

Department of Computer Science and Engineering
Park College of Engineering and Technology
Coimbatore, India
e-mail: anandpvivek@yahoo.co.in

M. Rajalakshmi

Department of Computer Science and Engineering and Information Technology
Coimbatore Institute of Technology
Coimbatore, India
e-mail: raji nav@yahoo.com

R. Nedunchezhian

Department of Information Technology
Sri Ramakrishana College of Engineering
Coimbatore, India
e-mail: rajuchezhian@gmail.com

Communicated by Vladimı́r Kvasnička

Abstract. Genetic algorithm is a popular classification algorithm which creates
a random population of candidate solutions and makes them to evolve into a suitable
accurate solution for a given problem by processing them iteratively for several
generations. During each generation the training data set is accessed by the genetic
algorithm only for the population member’s fitness calculation and no other extra
knowledge about the problem domain is extracted from the training data set. Even
the domain knowledge stored in the chromosome code of the population may be

2 P. Vivekanandan, M. Rajalakshmi, R. Nedunchezhian

lost in the future generations due to genetic operations. All the genetic operations
like crossover and mutation are probability based and they do not depend upon
the domain knowledge. This phenomenon makes the genetic algorithm to converge
slowly. This paper proposes a genetic algorithm which tries to gain maximum
knowledge in between the generations and store them in the form of knowledge
chromosomes. The gained knowledge is used to make predictions about the search
space and to guide the search process to an area with potential solutions in the
subsequent generations. This makes the genetic algorithm to converge quickly which
in turn reduces the learning cost. The experiments show that the run time is reduced
considerably when compared with the state-of-the-art evolutionary algorithm.

Keywords: Classification, genetic algorithm (GA), knowledge discovery, scalability

1 INTRODUCTION

Genetic algorithm (GA) is a search technique purely based on the natural evolution
process. It is widely used by the machine learning and data mining community for
the classification rule discovery [1, 2, 3, 4, 5, 6, 7] process. It has been proved that
the performance of GA [6] is comparable with the other classification methodologies
like neural networks, decision trees etc.

During the rule discovery process, the entire GA based algorithms described in
the literature [7] access the training data set repeatedly for the potential candidate
rules fitness calculation. Based on the extracted fitness value, the candidate rules
are processed using the genetic operators to generate new child candidate rules
which have more accurate predictive capabilities than their parents. It can be noted
that during the fitness calculation process no other extra knowledge other than the
fitness value of the rules is extracted from the training data set. However, there are
more possibilities for extracting domain knowledge from the training data set, since
during the GA iterations the training data set records are individually examined and
are accessed repeatedly. If more knowledge can be extracted then such extracted
knowledge can be used to guide the search process quickly into promising areas with
accurate solutions and this will reduce the computational cost, particularly when
the training data size is very large and complex.

The GA proposed in this paper extracts maximum knowledge from the training
data set during each generation and stores them as Knowledge Chromosomes. In
addition to the fitness value, the Knowledge Chromosomes are also used by the GA
operators to process the candidate rules. The proposed method is just an ordinary
GA which extracts and uses domain knowledge without any extra effort and it
does not provide any new memetic operators [8] as done by memetic computing
algorithms or replace any genetic operators [9] as done by estimation of distribution
algorithms. In fact the proposed method can be combined and implemented with
any evolutionary algorithm.

An Intelligent Genetic Algorithm for Mining Classification Rules in Large Datasets 3

In this paper, Section 2 describes the literature review and Section 3 introduces
the general features of GA for classification and the historical knowledge that can
be extracted between generations. The new proposed GA is described in Section 4,
while Section 5 describes the simulation and results. Finally, Section 6 concludes
the paper.

2 LITERATURE REVIEW

Genetic algorithm is purely based on natural evolutionary process and was intro-
duced by Holland [10] in 1975. Slowly it gained wide recognition and several im-
portant classification algorithms like Learning Classifier Systems (LCS) [11, 12] and
Genetics-Based Machine Learning (GBML) [13] emerged from it. Such evolutionary
based methods can be classified into two main approaches based on their chromo-
some representation and learning methods. Algorithms like GABIL [11], GIL [14]
and Hidder [15] employ a single chromosome to represent the whole solution and
each chromosome will contain multiple rules. This type of approach is called Pitts-
burgh approach. Second type of approach is called Michigan approach in which each
chromosome is a fixed length rule and the whole population is the solution for the
classification problem. XCS proposed by Wilson et al. [12] applies Michigan style of
population formation. All the above algorithms design a classification model based
on small data sets.

However, today data sets are large, complex and several techniques have been
proposed to enhance the GA performance and also to reduce their computational
cost. One of the important techniques is parallel processing [18, 19] like GA PV-
MINER [18] which divides the training data set into multiple parts and they are
distributed to multiple processors. Each processor generates the rules for each data
part independently and then the rules generated by the processors are again shared
between all the processors for their fitness calculation.

Incremental learning [20, 21 and 22] is another way of reducing the computa-
tional cost and is widely used for mining large data sets. The initial algorithm
was GAssist system [21] which is a Pittsburgh style classifier. It divides the train-
ing data into several non overlapping strata and uses different strata for different
GA iterations in a sequence. The system is an enhancement of LCS and produces
highly efficient and compact solutions. Later the authors of GAssist created a new
algorithm called BioHEL (Bioinformatics-oriented hierarchical evolutionary learn-
ing) [16, 17, 22] in order to enhance the scalability of GA and make it suitable
for classifying large scale bioinformatics data sets. BioHEL applies iterative rule
learning (IRL) approach [23], which learns the rule one by one and after learning
a rule it excludes those records which the rule predicts correctly from the training
data set and starts the next iteration. Attribute List Knowledge Representation
(ALKR) [24] is an advanced version of BioHEL which identifies relevant attributes
for each rule and constructs the rules only based on the identified relevant attributes
and excludes all other non relevant attributes from the rules. To add and remove

4 P. Vivekanandan, M. Rajalakshmi, R. Nedunchezhian

attributes from a rule ALKR introduces generalization and specializations genetic
operators.

Classification algorithms that are employed for data mining are based on the
above described evolutionary learning methods with slight modifications in rule
representation and fitness calculation [7]. The next section describes the general
features of the GA classification with respect to Data Mining perspective.

3 GENERAL FEATURES OF CLASSIFICATION GA

Classification rules can be considered as a kind of prediction rules where the rule
antecedent (“IF part”) is the conjunction of conditions, say A (conjunction of at-
tribute value pairs A1, A2 . . . An) and the consequent part C (THEN part) is the
class label; an individual rule can be represented as

A1 ∧ A2 ∧ . . . ∧ An THEN C. (1)

In the Pittsburg approach a single chromosome contains a set of rules which
forms the solution to the problem and in the Michigan approach a chromosome
represents a single individual rule.

The GA classification process starts from a population of randomly generated
candidate rules and the rules are processed in sequential steps, such that an accu-
rate solution gradually emerges. The sequential steps are called generations. Each
generation goes through the selection (or testing) phase and the reproduction phase.
During the selection phase, candidate rules accuracy (fitness) is evaluated using the
training data set.

3.1 Historical Knowledge

Generally large amount of knowledge can be captured from the training data set in
between the generations of the GA process, but normally they are not captured and
such kind of knowledge is called historical knowledge.

To understand what kind of knowledge can be gained between generations,
consider a multi class classification problem with three attributes a {a1, a2, a3},
b {b1, b2, b3} and c {c1, c2, c3} and a class label C {C1, C2, C3} (Table 1). Let the
training set consist of six records as described in Table 2

Attribute name Values

a a1, a2, a3
b b1, b2, b3
c c1, c2, c3
C (class label) C1, C2, C3

Table 1. Example problem

An Intelligent Genetic Algorithm for Mining Classification Rules in Large Datasets 5

Attribute values Class

a1 b2 c3 C1

a1 b2 c3 C1

a3 b3 c1 C2

a3 b3 c1 C2

a2 b1 c2 C3

a2 b1 c2 C3

Table 2. Training set

Let GA be used to build a classifier based on the training data set described in
Table 2 for the problem described in Table 1. The classifier will contain classification
rules for classes C1, C2 and C3. Let the rules described by Equations (2) and (3)
be two candidate rules of class C1 and C3 for the above example problem that are
generated during the GA process.

a = a1 and b = b2 and c = c3 then class = C1 (2)

a = a2 and b = b1 and c = c1 and class = C3 (3)

During the fitness calculation process prediction accuracy of both rules is tested
by matching them with the records in the training data set (Table 2). The first
rule (Equation (2)) predicts all the records in the training set of class C1 correctly;
therefore it has high accuracy and this makes it a potential solution for the problem;
but the second rule does not predict any of the class C3 records of the training set
correctly and so it has a low accuracy. In an ordinary GA process, because of high
accuracy the first rule will be treated as seed to generate the child population and
due to low accuracy the second rule will be treated as an unfit solution which may
be discarded or mutated with a high probability. The parts of the high accuracy
rule will be duplicated and parts of the low accuracy rule will be destroyed fully or
partially.

However, during the fitness calculation process, if we examine the attribute
values of the less accurate second rule (Equation 3) separately we can clearly extract
some extra knowledge which is embedded with in it as described below:

1. When the value of both attribute a (a = a2) and b (b = b1) of the rule are
examined separately, they have high confidence (Definition 1) and so they will
have high prediction accuracy for class C3. This is due to the fact that attributes
a and b of class C3 records in the training set (Table 2) have these values and
so they can be a part of a future potential solution for class C3. They both will
form a better building block (schemata) and class C3 rules must be encouraged
to have these values for their a and b attributes in the future generations of
the GA process. When examined separately, the value of attribute c (c = c1)
of the rule has low confidence (Definition 1) for class C3 because no record of
class C3 in the training set (Table 2) has this value for the attribute c. During
the mutation of class C3 rules in the subsequent generations, part of the rule

6 P. Vivekanandan, M. Rajalakshmi, R. Nedunchezhian

corresponding to attribute c must be prevented from taking this value for better
convergence.

2. To determine the predictive capability of the rule, training records of the classes
other than the rule class (class C3) must also be examined. So while comparing
the rule with the records of class C2, it can be identified that the value of
attribute c (c = c1) of the rule has high confidence with respect to class C2

since many of the c attributes of the particular class records in the training set
(Table 2) has this value. It can be a part of a potential solution for class C2. It
can be further identified that a’s (a = a2) and b’s (b = b1) values of the rule can
be considered as low confidence (Definition 1) for class C2 because attributes
a and b of class C2 records in the training set do not have those values. As
discussed earlier, in the future generations Class C2 candidate rule attributes
can be encouraged to have only high confidence values and must be prevented
from having the low confidence values during the GA process.

3. In the same way, it can also be identified that the values of a, b and c of the same
rule have low confidence with respect to class C1 and attributes of its candidate
rules must be prevented from taking these values in the further iterations.

The above knowledge can be extracted and stored between generations and if
done, it can be used to control the GA operators in the further stages of the GA.
By controlling the GA operators the search process can be driven into areas where
the solution exists and can be prevented from entering into a non productive area.
The proposed algorithm in the next section describes how to extract and store such
type of historical knowledge during the GA iterations.

Definition 1. Confidence of an attribute value (with respect to a class): Capability
of an attribute value of being a potential building block for a classs future rules.
High confidence indicates that it predicts the corresponding class records with high
accuracy and will be a part of future rule. Low confidence indicates that it has
poor predictive accuracy and so it will not be a part of the future solution of the
corresponding class.

4 PROPOSED GENETIC ALGORITHM

The proposed method has two major components, namely Population Space and
Knowledge Space, and three major functions, namely Knowledge Extraction func-
tion, Genetic Process and Knowledge Injection function.

Population Space contains the potential solutions for the given problem. In the
Population Space there will be a separate independent sub-population for all the
classes of the problem. The Knowledge Space will contain a Knowledge Chromo-
some and a set of chromosomes called Best Chromosomes for all the classes. The
Knowledge Extraction function extracts maximum knowledge from the candidate
chromosomes and the training data set. Based on the extracted knowledge it up-
grades the Knowledge Space. The Genetic Process applies genetic operators to

An Intelligent Genetic Algorithm for Mining Classification Rules in Large Datasets 7

the population and produces a new child population for the next generation. The
Knowledge Injection function checks the population and modifies them based on
the Knowledge Chromosomes so that the evolution process is guided in a correct
direction.

The pseudo code for the proposed algorithm is described below. In the following
subsections it describes the process of the methodology is described in detail.

Intelligent GA()
Generate the initial population POP1,POP2, . . . ,POPn for all classes C1 to Cn

separately // n-number of classes
Create and Initialize the belief space (Knowledge Chromosomes K1,K2–Kn

and a set Best Chromosomes, BEST1,BEST2–BESTn for all
the classes C1 to Cn)

// BESTn is the set of best chromosomes for class n.
// Kn is Knowledge chromosomes for class n.
Repeat

For each Sub Population POPi

do
Apply Knowledge Extraction function and update the Knowledge Space.
Apply Genetic Process to the chromosomes in the population

and generate new child population.
Apply Knowledge Injection function to the child population

Until the end condition is reached.
Produce the BEST chromosomes of all the classes as the final solution.
The end condition can be either a fixed number of generations or until there is

no increase in the overall fitness value of the population for some fixed number of
generations.

4.1 Population Space

The Population Space contains sub-population for all the classes of the problem.
Each chromosome of the sub-population represents a classification rule for that
particular class. Binary encoding is employed to represent a chromosome. Let there
be n input attributes and one target (class) attribute. The chromosome contains
n + 1 genes. Each gene in the chromosome represents an input attribute and the
last gene represents the class attribute. Let an attribute take m different values. It
will be encoded by using m + 1 binary bits. The m bits starting from the second
bit are used to represent each value of the attribute. The first bit is called flag
bit and it is used to indicate whether the particular attribute forms a part of the
classification rule or not. The population of a class can be considered as a set of
chromosomes representing the best solution at that instant. In the proposed GA
the rules of all the classes are generated separately and so the last gene representing
the class attribute can be optional and if present in the rule it will not have the flag
bit.

8 P. Vivekanandan, M. Rajalakshmi, R. Nedunchezhian

Consider a classification problem with three attributes {a, b, c} and one target
attribute C. Each attribute a, b and c can take any one of the three values from the
domain set {(a1, a2, a3), (b1, b2, b3), (c1, c2, c3)} and the target attribute will take any
value from the domain set {(C1, C2, C3)}. The example chromosome coding and its
meaning is shown in Table 3.

Attribute a b c C

Code 1010 0001 1100 100

Rule If a = a2 and c = c1
Then C = C1

Table 3. Chromosome coding

4.2 Knowledge Space

Knowledge Chromosomes are created in the Knowledge Space for all the classes
of the given problem. In the Knowledge Chromosome a gene is created for all
the attributes of the problem. The gene contains a set of Knowledge Variables
(or Knowledge Bits) representing all the values that are present in the domain of
the corresponding attribute. Each Knowledge Bit takes any one of the three values
from the set {1, 0,#} and it measures the confidence (Definition 1) of that particular
attribute domain value with respect to the corresponding Knowledge Chromosome
class. If the Knowledge Bit is set to 1 (good) then the domain value corresponding to
that attribute can be considered to have high confidence (Definition 1) with respect
to that particular class; if it is set to 0 (bad) then the particular domain value can
be considered to have low confidence with respect to the particular class. If it is
set to # (unknown) then the confidence status of the particular domain value is
unknown. Initially all the Knowledge Bits of the Knowledge Chromosome of all the
classes are set to the unknown (#) value and then will be modified to 1 or 0 after
each generation based on the knowledge extracted in that particular generation.

Let 001 0#1 10# be a Knowledge Chromosome of class C1 for the example
problem described in Table 1. It has three genes and each gene corresponds to
the three attributes a, b and c of the problem. Each gene of the Knowledge Chro-
mosome will have a representation for all the domain values of the corresponding
attribute indicating their confidence level with respect to its class (in this case it is
for class C1). The first gene in the example indicates that the third domain value a3
of the attribute ‘a’ has the required confidence and the first two domain values a1
and a2 do not have the required confidence for class C1. Similarly, the second gene
indicates that, for the attribute ‘b’, the first domain value b1 does not have the
required confidence and the third value b3 has the required confidence. From the
third gene we can understand that for the attribute ‘c’, the first value c1 has the
required confidence and the second value c2 does not have the required confidence
for class C1. This knowledge stored in the Knowledge Chromosome can be used

An Intelligent Genetic Algorithm for Mining Classification Rules in Large Datasets 9

during the GA process like mutation and crossover to generate accurate rules and
thus making the operators more productive.

Knowledge Space also stores all the best chromosomes that are generated after
each generations for all the classes (BEST1–BESTn) and at the end of the processes
they form a solution to the problem.

4.3 Knowledge Extraction Function

Below the Knowledge Extraction process is described:

For each chromosome in the population
do

Create the Confidence Matrix for the chromosome
Calculate the Gene Confidence of all the genes of the chromosome

with respect to the classes using the Confidence Matrix.
Update the Knowledge Chromosomes of all the classes based

on the Gene confidence of all the genes of the chromosome.
end do
Identify the potential candidate chromosomes and add it to the BEST part

of the Knowledge Space.

4.3.1 Creating Confidence Matrix

Let the problem domain have m attributes (a, b, c–) and n classes (C1, C2, . . . , Cn).
Then the Confidence Matrix is a m row and n column matrix which is created for
all the chromosomes in the population. Each row is associated with one of the gene
attribute values which make the chromosome and each column associated with one
of the n classes (C1 to Cn) of the problem. The matrix cell stores the number of
training records in the training data set that has the attribute value corresponding
to the row of the cell and the class label corresponding to the column of the cell.

All the cell values of the Confidence Matrix of a chromosome are calculated based
on the training data set provided by comparing the records in the data set with the
chromosome. Initially all the cell values of the Confidence Matrix are initialized to
zero.

Consider the training set shown in Table 4 for a problem with three attributes (a,
b and c) and three classes (C1, C2 and C3). Also consider a candidate chromosome
as described by Equation (4).

a = a1 and b = b2 and c = c3 then class = C1 (4)

The Confidence Matrix for the above chromosome is shown in Table 5 which has
three rows (for the genes a = a1, b = b2 and c = c3) and three columns corresponds
to the class labels C1, C2 and C3, respectively. It is calculated based on the training
set shown in Table 4.

10 P. Vivekanandan, M. Rajalakshmi, R. Nedunchezhian

Attribute values Class

a1 b2 c3 C1

a1 b2 c3 C1

a3 b3 c1 C2

a3 b3 c1 C2

a2 b1 c2 C3

a2 b1 c2 C3

Table 4. Training data set

Attribute value/class (C1) (C2) (C3)

a = a1 2 0 0

b = b2 2 0 0

c = c3 2 0 0

Table 5. Confidence matrix

4.3.2 Calculating the Gene Confidence of a Chromosome

After calculating the Confidence Matrix of a chromosome and based on its cell values
the Gene Confidences of all the genes (Attribute value pair) of the chromosome are
calculated not only with respect to the chromosome class but also with respect to all
the other classes For example, Gene Confidence of gene a = a1 of the chromosome
represented by Equation (4) (Confidence Matrix shown in Table 5) is calculated not
only with respect to the chromosome class C1 but also with respect to the other two
classes C2 and C3.

Gene Confidence of a gene (Cgij) at position i (ith row in the Confidence Matrix)
of a chromosome with respect to a class Cj (class represented in jth column of
Confidence Matrix) is calculated using Equation (5).

Cgij =
vij∑n
z=1 viz

(5)

In the equation, z ranges from 1 to n (number of classes) and viz is the cell value
at location i, z (ith row zth column) of the Confidence Matrix corresponding to that
particular chromosome and vij describes the cell value in the same Confidence Matrix
of the corresponding chromosome at location i, j (ith row, jth column).

For the example chromosome a = a1, b = b2 and c = c3 then class = C1

(Equation (4)) the Gene Confidence of its genes (a = a1, b = b1 and c = c1)
with respect to class C1 based on its Confidence Matrix (Table 5) is calculated as
described below:

Gene Confidence of the gene (a = a1) with respect to class C1 = 2/(2 + 0 + 0) = 1

Gene Confidence of the gene (b = b2) with respect to class C1 = 2/(2 + 0 + 0) = 1

Gene Confidence of the gene (c = c3) with respect to class C1 = 2/(2 + 0 + 0) = 1

An Intelligent Genetic Algorithm for Mining Classification Rules in Large Datasets 11

Similarly, all the Gene Confidence values of the genes of the chromosome with respect
to the other two classes C2 and C3 other than the chromosome class are calculated.

4.3.3 Updating the Knowledge Chromosome

If the Gene Confidence of a gene of a chromosome with respect to a class is greater
than the confidence threshold (above 0.7) provided by the user then the correspond-
ing Knowledge Bit of the particular gene in the Knowledge Chromosome of the
corresponding class is set to 1 and if it is less than the proposed threshold, then the
Knowledge Bit will be set to zero. Knowledge Chromosomes of all the classes are
altered similarly based on the genes of the chromosome under consideration. Let
the initial knowledge chromosome for class C1 be as follows:

a b c

#

Table 6. Initial knowledge chromosome for class C1

Let the confidence threshold Cg be 0.7. After calculating the gene confidence
of each gene present in the example chromosome “a = a1 and b = b2 and c =
c3 of class = C1” (Equation (4)) the Knowledge Chromosome of the class C1 indi-
cated in Table 6 will be updated as follows:

a b c

1 # # # 1 # # # 1

Table 7. Knowledge chromosome of class C1 after modification

Modifications to the Knowledge Chromosomes for class C2 and C3 are made in
the same manner.

4.3.4 Best Chromosomes

Best Chromosomes for each class are selected based on the Chromosome predictive
accuracy. The Predictive Accuracy is made up of two terms namely Confidence
Factor and Comprehensibility. The Confidence Factor (Equation (6)) of all the
chromosomes in the population is calculated using their own Confidence Matrix.

Confidence-Factor (CF) = (|A&C| − 1/2)/|A| (6)

where |A| describes the number of examples satisfying all the conditions in the
antecedent A. |A&C| describes the number of examples that satisfy both antecedent
A and consequent C. Intuitively, this metric measures both the antecedent and
consequent cases which hold out of all cases where the antecedent holds. The term
1/2 is subtracted to penalize the rules covering few training examples [2].

12 P. Vivekanandan, M. Rajalakshmi, R. Nedunchezhian

The standard way of measuring Comprehensibility is to count the number of
conditions in the rule. If a rule has at most L conditions, the Comprehensibility of
the rule can be defined as follows:

Comprehensibility (CM) = (L− x)/(L− 1). (7)

where x is the length of the corresponding rule.
The overall Predictive Accuracy (PA) of the chromosome is computed as the

arithmetic weighted mean of CM and CF. The predictive accuracy is given by

PA = W1 · CF + W2 · CM (8)

where W1 and W2 (usually W1 = 0.6 and W2 = 0.4) are the weights defined by the
user.

Chromosomes whose predictive accuracy above a threshold (value above 0.7) are
considered as the best solution and are copied to the BEST set of the Knowledge
Space. After the GA process the chromosomes in the BEST part of the Knowledge
Space are produced as output.

4.4 Genetic Process

After Knowledge Extraction process the genetic process is applied to the popula-
tion to create a new population for the next generation. The genetic process has
four functions, namely fitness calculation, crossover, mutation, Insert and Remove
operators and elitism selection. The genetic operators are applied one by one and
the new population is created.

4.4.1 Calculating the Fitness of Chromosomes and Population

The fitness of the individual chromosomes is their predictive accuracy calculated as
described in Section 4.3.4.

Overall fitness of the population with r chromosomes is

FP =
r∑

j=1

Fj (9)

where Fj is the fitness of the jth chromosome.
Average fitness of the population is

Favg =
FP

r
(10)

4.4.2 Crossover

Selection process for crossover is based on applying the roulette wheel rule. Two best
chromosomes are selected for the crossover process and the crossover employed is a

An Intelligent Genetic Algorithm for Mining Classification Rules in Large Datasets 13

multipoint crossover which produces a single offspring. Each gene value of the first
chromosome is compared with the corresponding gene value of the other chromosome
and one is selected among them for creating the offspring. The selection probability
is based on their Knowledge Chromosome values. If the values are equal then one
of the competing genes is selected with equal probability. If they are different then
the gene with the highest knowledge value has selection probability of 0.7 while the
other gene has the selection probability of 0.3.

4.4.3 Mutation

In general, mutation operation is used to divert the search to a new area and in
a classification GA; the mutation process is just changing the attribute value of
a rule to another random value selected from the domain of the attribute with
a probability called mutation probability.

Let there be a problem with three multi dimensional solution spaces area1, area2

and area3 shown in Figure 1 and let area3 have the potential solution for the problem.
Let us assume that the GA search for the solution was started from area1 and by
mutation it has been diverted to area2. If area2 is unpromising, then again mutation
must be applied to all the chromosomes in the population with high mutation prob-
ability to divert the search to a new area. It is likely that the new area may be an
unexplored area like area3 which may contain the solution or it can be an explored
area like area1. Searching an explored area again will increase the learning cost. As
the knowledge obtained from the previous generation (i.e. area1 is an unproductive
area) is saved in the Knowledge Chromosome, it can be used to guide the mutation
process so that searching an unpromising area repeatedly can be prevented.

To prevent the search from entering into a non productive area and to make
a deep search in the area which has the potential solution, the proposed GA applies
mutation with a varying mutation probability (Pm) which is based on the Knowledge
Chromosome values. Mutation probability Pm ranges between Pl (lower bound) to
Pu (upper bound). If the value of the chromosome gene is considered as unfit (i.e. its
corresponding Knowledge Chromosome value is 0) then its gene mutation probability
is Pu (maximum mutation probability) and, in turn, if Knowledge Chromosome value
of the same gene is 1 then the mutation probability will be Pl (Minimum mutation
probability). On the other hand, if its Knowledge Chromosome value is # then
the mutation will be an adaptive mutation and its value Pm will be based on three
quantities, namely the fitness value of the particular chromosome i (Fi), the overall
fitness of the population (FP), the average fitness of the population (Favg) and the
fitness value of a chromosome in the population whose fitness value is the maximum
(FCmax). If the fitness Fi is less than the average fitness (Favg) of the population
then it is mutated with high probability, and if it is greater than the average fitness
of the population it is mutated with a lower probability. The calculation of Fi, FP
and Favg is described in Section 4.4.1.

Let Vi be the value the knowledge chromosome of a particular chromosome gene.
Then

14 P. Vivekanandan, M. Rajalakshmi, R. Nedunchezhian

Area 1
Area 2

Area 3

Mutation

Mutation

Fig. 1

if Vi = 0 then Pm = Pu

if Vi = # then
if Fi > Favg then Pm = Pl + Pu

FCmax−Fi

FCmax−Favg

else Pm = Pu if Fi ≤ Favg

if Vi = 1 then Pm = Pl

Mutation probability range [Pl, Pu] is fixed by the user. The normal range can
be [0.01, 0.5].

4.4.4 Insert and Remove Operators

Insert and Remove operators [30, 31] are used to control the size of the rule. Insert
operator activates the gene of a chromosome by setting its flag bits which are not
set with a varying probability Pi and Remove operator deactivates a gene of a chro-
mosome by resetting the flag bits which are set with a varying probability Pr. Both
the probabilities ranges from 0 to 0.3 based on the number of genes that take part
in the rule.

4.4.5 Elitism Selection

After every generation, Best Elite percentage (5 %) of chromosomes is considered as
elite and is copied to the next generation unaltered.

An Intelligent Genetic Algorithm for Mining Classification Rules in Large Datasets 15

4.5 Knowledge Injection Function

After completion of an iteration of the genetic process, it has to be ascertained that
the search process is examining an area where there is high possibility of finding
an optimal solution and the search must also be made to avoid the areas which
have been explored already and found unfit. For this purpose the following two
operations are performed based on the Knowledge Chromosome values.

1. If the value of an attribute of the Knowledge Chromosome of a class is 0 and if
the attribute of some chromosomes of the sub population of that class has that
value then all those attribute values are compulsorily mutated to another value.

2. If the value of an attribute in the Knowledge Chromosome is 1 and no cor-
responding chromosomes attribute in the sub population of the class has that
value, then the particular value is compulsorily injected into the population by
altering sufficient percentage of low fitness chromosomes corresponding attribute
gene to have that value.

5 SIMULATION

5.1 Description of the Dataset

The simulation was performed using the 23 data sets obtained from the UCI ma-
chine repository (http://www.ics.uci.edu/). These data sets are normally used
as benchmark data sets for evaluating the algorithms that perform classification
task. The data sets are given in Table 8. The continuous attributes of the data sets
are discretized into 5 equal bins for experimental purpose.

5.1.1 Settings and Parameters

The experiments have been performed on a Pentium 4 (256 MB main memory)
with Windows XP as the operating system, and the proposed Intelligent Genetic
Algorithm (IGA) was developed using Java. Some related parameters are fixed as
follows: Pc = 0.8, Pm = 0.2, Pi = [0, 0.3], Pr = [0, 0.3], W10.7, and W20.3. The
population size for each class is 50 chromosomes. The experiment is repeated until
there is no improvement in the fitness for 10 generations.

5.1.2 Experiment 1

The results of IGA are compared with the recent Michigan style classification GA
(CGA) proposed by Xian-Jun Shi et al. [4] which is a typical example for common
classification methods that are used to mine large data sets in the data mining
domain. The fitness of the algorithm is calculated as described in Section 4.4.1
and its parameters are set similar to IGA implementation (Section 5.1.2) so that
performance of both algorithms can be compared The results are also compared with

16 P. Vivekanandan, M. Rajalakshmi, R. Nedunchezhian

the standard state of art classification algorithms like C4.5 decision tree algorithm
and Nave Bayes (NB) [32] classifier algorithm.

5.1.3 Experiment 2

To check the parallel implementation performance of the proposed algorithm the
parallel implementation of the proposed method is done using four processors and
its performance is compared with PV MINER [18] algorithm which is a famous
GA based classification algorithm for data mining tasks. PV MINER is also imple-
mented by using a parallel setup with 4 processors and the settings and parameters
for both algorithms are similar to those described in Experiment 1. In the proposed
method the data set is divided into four equal parts and distributed to all the four
processors for GA process. After completion of the process the rules generated are
again distributed to all the processors for fitness calculation.

Index Dataset Number Number Number
name of instances of attributes of classes

1 Network intrusion 49 270 41 5

2 USPS Data 9 298 256 10

3 Nursery 12 960 8 5

4 Solar Flare 1 389 10 6

5 Yeast Database 1 484 8 10

6 Car 1 728 6 4

7 Image segmentation 2 310 19 7

8 Thyroid 3 772 28 4

9 Page blocks 5 473 10 5

10 Optical Digits 5 620 64 10

11 Satimage 6 435 36 6

12 Isolet Spoken Letter 7 797 617 26

13 LED Display 10 000 7 10

14 Waveform 10 000 21 3

15 Pen Digits 10 992 16 10

16 Australian sign language 12 546 8 3

17 Letter 20 000 16 26

18 Poker 25 000 10 10

19 Chess (King RootKing) 28 056 6 18

20 Shuttle 58 000 9 7

21 Connect-4 67 557 42 3

22 Adult 48 842 14 2

23 German credit data 1 000 20 2

Table 8. Data set description

An Intelligent Genetic Algorithm for Mining Classification Rules in Large Datasets 17

Average Classification Error (%)

Index DataSet name C4.5 NB CGA IGA

1 Network intrusion 2.3 2.4 3.1 2.1

2 USPS Data 26.4 24.1 21.9 21.2

3 Nursery 9.0 9.1 13.2 11.4

4 Solar Flare 10.2 7.5 9.0 7.2

5 Yeast Database 31.9 31.77 34.9 33.2

6 Car 5.2 6.2 6.4 7.2

7 Image segmentation 22.7 18.6 21.1 21.8

8 Thyroid 5.0 3.2 3.7 3.4

9 Page blocks 12.0 11.2 11.3 10.5

10 Optical Digits 18.6 16.7 12.8 11.8

11 Satimage 14.6 13.1 10.1 10.8

12 Isolet Spoken Letter 22.9 21.4 15.6 15.2

13 LED Display 11.6 11.5 12.6 12.3

14 Waveform 12.3 11.2 8.8 8.0

15 Pen Digits 12.4 11.8 12.6 11.5

16 Australian sign language 11.4 10.6 11.3 11.1

17 Letter 12.7 12.1 11.6 11.0

18 Poker 52.5 48.0 49.5 44.1

19 Chess 32.2 31.0 30.6 29.6

20 Shuttle 4.2 4.6 7.1 5.8

21 Connect-4 27.9 26.1 24.5 23.8

22 Ipums-la-99 16.4 12.2 18.1 17.9

23 German Credit data 19.2 18.1 19.1 18.4

Table 9. Classification error

Method C4.5 NB CGA IGA

C4.5 0/0/23 4/19/0 8/15/0 6/17/0
NB 19/4/0 0/0/23 15/8/0 10/13/0
CGA 15/8/0 8/15/0 0/0/23 2/21/0
IGA 17/6/0 13/10/0 21/2/0 0/0/23

Table 10. Win/lose/tie records of rival algorithms with regard to their learning efficiency
across 23 datasets

5.2 Performance

To compare the average classification error of all four algorithms described in Ex-
periment 1, a 10-fold validation test is performed. The training data is divided into
10 parts of which 9 parts are used to generate the classification model and one part
is used as test data. The average of the results is shown in Table 9. The win/lose/tie
(w/l/t) record is calculated for each pair of the methods for which the experiment
is performed; it represents the number of data sets in which an algorithm, wins,
loses or ties when compared with the other algorithm regarding accuracy. Such

18 P. Vivekanandan, M. Rajalakshmi, R. Nedunchezhian

Total Run Time (s)

Index Data Set name CGA IGA

1 Network intrusion 3 940 1 660.3

2 USPS Data 835.2 350.6

3 Nursery 315.6 175

4 Solar Flare 125.7 75.8

5 Yeast Database 126.6 73.0

6 Car 105.8 65.52

7 Image segmentation 219.5 93.8

8 Thyroid 355.6 160.8

9 Page blocks 435.3 240.8

10 Optical Digits 555.5 225.6

11 Sat image 610.8 300.6

12 Isolet Spoken Letter 855.6 425.0

13 LED Display 750.4 390.0

14 Waveform 850.5 415.14

15 Pen Digits 875.2 420.2

16 Australian sign language 1 010.4 575.44

17 Letter 2 040.2 1 020.4

18 Poker 2 120.1 1 075.4

19 Chess (King Root King) 2 115.2 1 025.4

20 Shuttle 4 628.1 2 525.94

21 Connect-4 6 355.1 3 080.28

22 Adult 1 136.1 480.4

23 German Credit data 118.6 65.64

Table 11. Run time

(w/l/t) record is calculated for all algorithms with respect to run time. A two-tailed
binomial sign test can be applied to wins versus losses. If its result is less than
the critical level of 0.05, the wins against losses are statistically significant and the
winning algorithm has advantage over the loser. The statistical w/l/t records for
classification error and run time for all the methods are listed in Tables 9 and 10,
respectively.

From the results in Tables 9 and 10, it can be identified that the error rated of
the proposed methods is lower when compared with all other methods. Traditional
algorithms like C4.5 NB perform well for data sets with lower number of attributes
and classes. Standard classification GA and proposed Intelligent GA performance is
far better for complex data sets with more attributes and class labels. Performance
of the proposed method is also better when compared with the standard classification
GA. This is due to the fact that the proposed method extracts the domain knowledge
during every iteration which helps understand the search domain characteristic fully
and the proposed method performs search only in areas with good solution which
will generate rules with higher accuracy.

An Intelligent Genetic Algorithm for Mining Classification Rules in Large Datasets 19

Average Classification Total Run
Error (%) Time (s)

Index DataSet name PV MINER IGA PV MINER IGA

1 Network intrusion 3.1 2.1 2 626.6 1 106.8

2 USPS Data 23.9 21.2 556.8 233.7

3 Nursery 13.2 11.4 83.7 36.6

4 Solar Flare 9.0 7.2 77.1 30.5

5 Yeast Database 34.9 33.2 77.7 23.3

6 Car 6.4 6.2 83.8 30.3

7 Image segmentation 21.1 21.8 146.3 62.5

8 Thyroid 3.7 3.8 237.0 107.2

9 Page blocks 11.3 10.5 290.2 147.2

10 Optical Digits 12.8 11.8 370.3 190.4

11 Sat image 10.1 10.8 407.2 207.0

12 Isolet Spoken Letter 15.6 15.2 570.4 283.3

13 LED Display 12.6 12.3 500.2 253.3

14 Waveform 8.8 8.0 567 290.0

15 Pen Digits 12.4 11.5 583.4 313.46

16 Australian sign language 11.3 11.1 673.6 386.9

17 Letter 11.9 11.0 1 360.1 713.6

18 Poker 51.2 44.1 1 413.4 716.9

19 Chess (King Root King) 30.6 29.6 1 410.1 750.2

20 Shuttle 7.1 5.8 3 085.4 1 483.9

21 Connect-4 27.5 25.8 4 236.7 2 053.5

22 Ipums-la-99 18.3 17.9 757.4 320.2

23 German Credit data 19.1 18.4 99.0 37.0

Table 12. Comparison of parallel execution of the proposed method with PV MINER

The run time of the proposed method and its counterpart CGA is presented in
Table 11. The proposed method is faster than its counterpart by almost 80 % to
130 %. For complex domains with large attributes and classes the proposed method
converges much faster. This is again due to the fact that the search is guided and
not random. Parallel implementation of the proposed method and the PV MINER
algorithm is compared in Table 12. The results show that, although implemented in
parallel the proposed method will have good accuracy and run time when compared
to its counterpart.

6 CONCLUSION

Genetic Algorithm is popularly used for classification rule discovery in data mining.
The learning cost associated with the rule discovery process is very high. This is
due to the fact that except the knowledge embedded in the gene of a chromosome
no other domain knowledge is used by GA in the search process. In this paper it

20 P. Vivekanandan, M. Rajalakshmi, R. Nedunchezhian

has been demonstrated that GA can extract considerble domain knowledge from
the training data set between generations. An efficient way of storing the gained
knowledge and utilizing it in the subsequent generations has been proposed in this
paper and this makes the GA process to converge quickly. It has been proved
experimentally that learning cost of the proposed algorithms is lower than that of
the state-of-the-art GA based algorithms and its accuracy is comparable with other
classification methods. In future, attempts will be made to make GA much faster
and use it to mine large data sets like data streams.

REFERENCES

[1] Noda, E.—Freitas, A. A.—Lopes, H. S.: Discovering Interesting Prediction Rule
With a Genetic Algorithm. Proceedings of the 1999 Congress on Evolutionary Com-
putation, Volume 2.

[2] Dehuri, S.—Mall, R.: Predictive and Comprehensible Rule Discovery Using
a Multi-Objective Genetic Algorithm. Knowledge Based Systems, Vol. 19, 2006,
pp. 413–421.

[3] Guan, S. U.—Zhu-Collard, F.: An Incremental Approach to Genetic-Algorithms
Based Classification. IEEE Transactions on Systems, Man and Cybernetics, Part B,
Vol. 35, 2005, No. 2, pp. 227–239.

[4] Shi, X.-J.—Lei, H.: A Genetic Algorithm-Based Approach for Classification Rule
Discover. Proceedings of 2008 IEEE International Conference on Information Mana-
gement, Innovation Management and Industrial Engineering, pp. 175–178.

[5] Kwedlo, W.—Kretowski, M.: Discovery of Decision Rules from Databases:
An Evolutionary Approach. Second European PKDD ’98 Symposium, Nantes, France,
pp. 23–26.

[6] Yang, L.—Widyantoro, D. H.—Ioerger, T.—Yen, J.: An Entropy-Based
Adaptive Genetic Algorithm for Learning Classification Rules. Proceedings of the
2001 Congress on Evolutionary Computation, pp. 790–796.

[7] Freitas, A. A.: A Survey of Evolutionary Algorithms for Data Mining and Know-
ledge Discovery. In: A. Ghosh and S. Tsutsui (Eds.): Advances in Evolution Comput.,
Springer-Verlag 2002, pp. 819–845.

[8] Bacardit J.—Krasnogor, N.: Performance and Efficiency of Memetic Pittsburgh
Learning Classifier Systems. Evolutionary Computation (EC), Vol. 17, 2009, No. 3,
pp. 307–342.

[9] Bacardit, J.—Krasnogor, N.: Smart Crossover Operator With Multiple Parents
for a Pittsburgh Learning Classifier System. In GECCO 06: Proceedings of the 8th

Annual Conference on Genetic and Evolutionary Computation, ACM Press 2006,
pp. 1441–1448.

[10] Holland, J. H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press 1975.

An Intelligent Genetic Algorithm for Mining Classification Rules in Large Datasets 21

[11] De Jong, K. A.—Spears, W. M.: Learning Concept Classification Rules Using
Genetic Algorithms. Proceedings of the International Joint Conference on Artificial
Intelligence, Morgan Kaufmann 1991, pp. 651–656.

[12] Wilson, S. W.: Classifier Fitness Based on Accuracy. Evolutionary Computation,
Vol. 3, 1995, No. 2, pp. 14–17.

[13] Freitas, A. A.: Data Mining and Knowledge Discovery with Evolutionary Algo-
rithms. Springer-Verlag 2002.

[14] Janikow, C. Z.: A Knowledge-Intensive Genetic Algorithm for Supervised Learning.
Machine Learning, Vol. 13, 1993, No. 2-3, pp. 189–228.

[15] Aguilar-Ruiz, J. S.—Riquelme, J. C.—Toro, M.: Evolutionary Learning of
Hierarchical Decision Rules. IEEE Transactions on Systems, Man and Cybernetics,
Part B, Vol. 33, 2003, No. 2, pp. 324–331.

[16] Bacardit, J.—Krasnogor, N.: Empirical Evaluation of Ensemble Techniques for
a Pittsburgh Learning Classifier System. 9th International Workshop on Learning
Classifier Systems (IWLCS 2006), Springer, Lecture Notes in Artificial Intelligence
(2006).

[17] Bacardit, J.—Krasnogor, N.—Biohe, N.: Bioinformatics-Oriented Hierarchi-
cal Evolutionary Learning. Nottingham Reprints, University of Nottingham 2006.

[18] Araujo, D. L. A.—Lopes, H. S.—Freitas, A. A.: A Parallel Genetic Algorithm
for Rule Discovery in Large Databases. Proc. IEEE Systems, Man and Cybernetics
Conference, Volume 3, Tokyo 199, pp. 940–945.

[19] Wilson, R.: Scalable Parallel Genetic Algorithms. Artificial Intelligence Review,
Vol. 16, 2004, pp. 153–168.

[20] Giráldez, R.—Aguilar-Ruiz, J. S.—Santos, J. C. R.: Knowledge-Based Fast
Evaluation for Evolutionary Learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part C, Vol. 35, 2005, No. 2, pp. 254–261.

[21] Bacardit, J.: Pittsburgh Genetics-Based Machine Learning in the Data Mining
Era: Representations, Generalization, and Run Time. Ph. D. thesis, Ramon Llull
University, Barcelona, Spain 2004.

[22] Bacardit, J.—Stout, M.—Hirst, J. D.—Sastry, K.—Llorà, X.—Krasno-
gor, N.: Automated Alphabet Reduction Method with Evolutionary Algorithms for
Protein Structure Prediction. Proceedings of the 9th Annual Conference on Genetic
and Evolutionary Computation, ACM Press 2007, pp. 346–353.

[23] Venturini, G.: A Supervised Inductive Algorithm with Genetic Search for Learning
Attributes Based Concepts. In: Brazdil, P. B. (Ed.): Machine Learning: ECML-93
– Proc. of the European Conference on Machine Learning, Springer-Verlag, Berlin,
Heidelberg 1993, pp. 280–296.

[24] Bacardit, J.—Burke, E. K.—Krasnogor, N.: Improving the Scalability of
Rule-Based Evolutionary Learning. Memetic Computing, Vol. 1, 2009, No. 1,
pp. 55–67.

22 P. Vivekanandan, M. Rajalakshmi, R. Nedunchezhian

P. Vivekanandan is currently working as a Professor in Department of Computer Science
and Engineering, Park College of Engineering and Technology, Coimbatore, Tamilnadu,
India. He has more than twelve years of teaching experience. He obtained his B. E.
(computer science and engineering) from Bharathiar University, Coimbatore, India and
his M. Tech (distributed computing systems) from Pondicherry University, Pondicherry,
India. At present he is also a research scholar of Anna University, India. His research
interests include knowledge discovery and data mining, soft computing and distributed
computing. He has published many research papers in national/international conferences
and journals. He has attended several seminars and workshops in the past ten years. He
has also organized several symposiums and workshops. He has guided more than 20 UG
projects. He is a life member of ISTE and also a member of Computer Society of India.

M. Rajalakshmi received her B. E. (CSE) degree from Bharathiar University, M. E.
(CSE) degree from PSG College of Technology and PhḊ. from Anna University, Chennai.
She is working as an Associate Professor in the Department of Computer Science and
Engineering & Information Technology at Coimbatore Institute of Technology, Coimbat-
ore, India. She has 18 years of teaching and research experience. Her areas of interest
include data mining, distributed computing, data structures and algorithms and database
management systems. She is a life member of ISTE. She guided many B.E and M. E.
projects.

R. Nedunchezhian is currently working as Professor and Head of Department of IT,
Sri Ramakrishna Engineering College, Coimbatore. Previously he worked as the Vice-
Principal of Kalaignar Karunanidhi Institute of Technology, Coimbatore. He also served
as Research Coordinator of the Institute and Head of Computer Science and Engineering
Department (PG) at Sri Ramakrishna Engineering College, Coimbatore. He has more
than 20 years of experience in research and teaching. He has obtained his B. E., M. E. and
Ph. D. degrees in computer science and engineering. He has guided numerous UG, PG
and M. Phil projects and conducted several sponsored conferences and workshops funded
by private and government agencies. Recently he has obtained funding from AICTE for
conducting research in data mining. He is guiding Ph. D. scholars of Anna University,
Bharathiar University and Manonmaniam Sundaranar University. His research interests
include knowledge discovery and data mining, soft computing, distributed computing,
and information security. He has published 2 books, 50 research papers in international
journals, 13 research papers in international conferences and 10 in national conferences.
He has produced two Ph. D.s, and one more scholar has submitted her thesis recently. He
is a Life Member of Advanced Computing and Communication Society and Indian Society
for Technical Education. He is a reviewer for several international journals/conferences.

