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Abstract. The AutoDock suite is widely used molecular docking software consisting
of two main programs — AutoGrid for precomputation of potential grid maps and
AutoDock for docking into potential grid maps. In this paper, the acceleration
of potential maps generation based on AutoGrid and its implementation called
FastGrid is presented. The most computationally expensive algorithms are accele-
rated using GPU, the rest of algorithms run on CPU with asymptotically lower time
complexity that has been obtained using more sophisticated data structures than in
the original AutoGrid code. Moreover, the CPU implementation is parallelized to
fully exploit computational power of machines that are equipped with more CPU
cores than GPUs. Our implementation outperforms original AutoGrid more than
400x for large, but quite common molecules and sufficiently large grids.
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1 INTRODUCTION

Recent advances in the hardware architecture of graphics processing units (GPUs)
made it applicable for high performance scientific computing. Many of GPU com-
puting applications belong to the field of computational chemistry where they are
used mainly for quantum chemical calculations [3] and molecular dynamics [1, 4].
Molecular docking is another field of computational chemistry with great potential
for GPU computing utilization.

Molecular docking is a method for prediction of a position and an orientation of
one molecule to another when bound to each other to form a stable complex. One
of the categories of molecular docking, which is important in computer-aided drug
design, is the protein-ligand docking where a small molecule of a ligand (putative
drug) is docked into a binding site of a protein. Calculation of interaction energy
between the protein and the ligand is the most computationally demanding part
of docking algorithms. The interaction energy is usually calculated as a sum of
pairwise interactions between the ligand and protein atoms. Two main types of
atom-atom interactions are electrostatic and van der Waals (vdW) interactions, even
though some docking programs also use interactions describing hydrogen bonds and
solvation effects. Van der Waals interactions are short-range, they decay as the
inverse sixth power of an atom-atom distance. Hence vdW interactions can be
neglected for atoms that are too distant in space and are calculated only for atoms
closer than a user-specified cutoff distance decreasing computational requirements.
Electrostatic interactions, calculated from atomic partial charges using Coulomb’s
law, are long-range, they decay as the inverse of an atom-atom distance. The cutoff
approach is thus not applicable here. For large systems with ten thousands of atoms,
fast approximation methods were developed [5, 6, 7] but for mid-ranged systems of
few thousands of atoms, which are typically used in protein-ligand docking studies,
electrostatic interactions must be calculated using summation over all atoms (called
the direct summation algorithm). Although this is computationally demanding, it
is well suited for parallel algorithms.

One of the most widely used software for protein-ligand docking is the AutoDock
program [2, 8]. It uses genetic algorithms to find a position, an orientation or
a conformation of a ligand molecule in a binding site of a protein (or other large
molecule such as DNA). The molecule of the protein is treated as a rigid body
which enables to precalculate electrostatic and vdW potentials on a grid. The
interaction energy of the ligand atom with protein atoms can be calculated from
a linear interpolation of the values of grid points. AutoDock uses the AutoGrid
program to calculate electrostatic and vdW potential grid maps. The algorithm
implemented in AutoGrid is not well optimized and it does not utilize a GPU. Since
the calculation of grid maps is a computationally demanding task, especially for big
or dense grids, an implementation of optimized algorithms which would utilize the
GPU power is desirable.

We present FastGrid software which implements fast algorithms for the calcula-
tion of electrostatic and vdW potential grid maps here. The electrostatic potential
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is calculated using a parallel algorithm utilizing GPU hardware. The calculation of
other potentials was improved by implementing a fast algorithm for finding atoms
within a specified distance range.

2 POTENTIAL MAPS GENERATION

The AutoGrid generates an electrostatic grid map and multiple non-electrostatic
potential maps (including the desolvation, van der Waals, and the hydrogen-bond
potential), one for each atom type. It also generates a map containing the charge-
dependent term of desolvation potential. Each grid map is a three-dimensional
lattice of regularly spaced points. For each point, the potential energy of the probe
atom given by the molecule is computed.

Algorithm 1 Scheme of the AutoGrid main loop
1: for all points of the grid do
2:  for all atoms of the molecule do
3 compute the electrostatic potential
4 if the distance between the point and the atom < the cutoff value then
5: compute the desolvation potential
6
7
8

compute the van der Waals potential
compute the hydrogen-bonds potential
end if
9:  end for
10: end for

Algorithm 1 sketches the main loop of AutoGrid, whose efficiency is crucial for
overall AutoGrid performance. From the computational point of view, there are two
kinds of energies:

e The long-range energies influence all points of the grid, thus for a n x n x n grid
and m atoms, the problem complexity is O(m - n®).

e The short-range energies use the cutoff approximation (i.e. only near atoms are
used for energy evaluation) yielding O(n®) time complexity.

The electrostatic potential evaluation is most critical for large molecules because of
its time complexity. However, its computation is very regular (i.e. suitable for SIMD
processors), thus it can be computed using a GPU very efficiently [1]. The rest of
potentials is computed only for the near atoms (i.e. closer than the cutoff distance)
and we leave these computations on a CPU, which has two reasons: first, these
computations yield an irregular memory access pattern, which is not very suitable
for a GPU; second, the CPU and the GPU should work concurrently to fully exploit
the computational power of a system.

One of the demanding tasks in the main program loop is the calculation of
the distance between a grid point and an atom. This value is used to evaluate
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the electrostatic potential and it is also necessary in other potentials calculations
for finding atoms closer than the cutoff distance. In the original AutoGrid code,
the value is calculated within the compute the electrostatic potential part of the
loop and is further available for other parts of the loop where the cutoff atoms
are searched. Moving the electrostatic potential calculation from the CPU to the
GPU makes the distance value unavailable for other parts of the loop calculated on
the CPU. Calculating the distance once again on the CPU would increase the time
complexity from O(n?) to O(m - n®). Although the cutoff atoms can be searched
during the GPU computations, it has two disadvantages; first, the GPU algorithm
has to build a list of found atoms which influences its performance; second, the CPU
and GPU computations cannot overlap easily. The optimal solution to the problem
is an implementation of advanced algorithm for finding atoms closer than the cutoff
distance.

3 MAP COMPUTATIONS USING CUTOFF
3.1 The Cutoff Grid

The key requirement for the data structure is the ability to obtain a list of atoms
located in the cutoff distance from a given lattice point, ideally in time complexity
O(1). Therefore, we introduce a 3-dimensional grid having the same spatial size
and position in space as the potential map but is considerably coarser. The grid is
divided into a set of regularly-sized rectangular boxes. Each box represents a bucket
containing atoms that lie in the cutoff distance from it. Thus, an atom may fall into
several neighboring buckets, making them slightly overlap each other. The memory
address of the bucket is directly computed from a position in space.

Creation of the grid is based on a sphere-box intersection where each atom is
represented as a sphere with a radius being the cutoff distance, and each bucket
is represented as a box. If the sphere and the box intersect, the atom falls in the
bucket. To reduce the number of possible intersections, each sphere is bounded by
another box whose opposite corners denote a 3D range of buckets and only those
are tested with the particular sphere. This implies that the maximum amount of
intersections which need to be computed for one atom can be directly derived from
the cutoff distance, which is a constant. Therefore, the time complexity for creating
the grid is O(n) where n is the number of atoms.

The original algorithm for calculating potential energies in a given lattice point,
where fine-grained cutting off takes place, is then performed on the obtained list
of atoms from the corresponding bucket instead of being performed on the whole
molecule. Therefore, the overall asymptotic time complexity of the potential evalu-
ation depends on the grid size and atoms density in the near neighborhood of the
lattice point (which is upper bounded by a constant).
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3.2 Hydrogen Bonds Potential

The part of the hydrogen bonds potential computation is searching for the closest
hydrogen from a lattice point, which was originally implemented using a linear
search. We have rewritten it using kd-tree data structure [9] filled with hydrogens
only. This solution yields time complexity of searching O(log m-n?) for m hydrogens
and an X n X n grid.

Using the cutoff grid would not help here: If a bucket at a given point does not
contain a hydrogen, looking in the neighboring buckets and comparing the closest
hydrogens from each of them in linear time would not be very efficient.

3.3 Parallelism

In order to fully exploit the power of multiple CPU cores, which are commonly
available in the today’s machines, we decided to use OpenMP! — the C compiler
extension that facilitates the use of multi-threading.

In FastGrid, a potential map is divided into slices perpendicular to the Z di-
rection, having the same width and height as the potential map and being 1 lattice
point thick. Each thread then takes a not yet processed slice and computes it. This
approach generates small enough jobs to maintain proper load balancing across all
CPU cores for the algorithm to scale well, while the overhead of assigning jobs to
threads is almost unmeasurable.

4 ELECTROSTATIC MAP COMPUTATION ON THE GPU

In this chapter, brief overview of CUDA architecture is given and the GPU imple-
mentation of the electrostatic potential computation is described.

4.1 GPU Architecture and CUDA

For our purposes, we have chosen CUDA-enabled GPUs because of their performance
and sufficient programmability. Detailed description of nVIDIA GPU architecture
and CUDA is out of the scope of this paper and can be found in [10], we provide
here only the brief overview of the CUDA threading and memory model necessary
to understand the implementation of electrostatic potential calculation.

The today’s hi-end GPUs consist of tens of multiprocessors having access into
global memory. Each multiprocessor is equipped with multiple ALU cores perform-
ing the same instruction at a time. Thus, a set of threads (called a warp) should
follow the same program path to fully utilize the multiprocessor. The code within
a warp can diverge, however, the different branches are performed in serial. Because
the GPU executes instructions in order, hiding of memory latencies is given by
switching warps (which is implemented in hardware) — if a warp waits for a memory

! http://www.openmp.org
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transaction, the GPU can run another warp. Because of the memory latency-hiding
mechanism, the number of threads running on the GPU should be an order of mag-
nitude higher than the number of GPU cores.

In CUDA, code for the GPU is written as a kernel function, which is executed
as a GPU thread multiple times in parallel. The GPU threads are organized into
a thread block and the thread blocks are organized into a block grid. All threads
within one block can communicate via shared memory and can be synchronized via
hardware implemented barrier. The grid consists of multiple thread blocks running
the same code. This model provides a natural and scalable mapping to the GPU
hardware architecture. All threads in one thread block are executed on the same
multiprocessor, allowing them to use its shared resources. For a good utilization of
the multiprocessor resources, the block size has to be a multiple of a warp size and
a few warps have to run on each multiprocessor. For a good utilization of the GPU,
the sufficient number of blocks have to be executed to utilize all multiprocessors.

The GPU memory subsystem is very fast, but most memory access models are
uncached and the code has to meet some restrictions to exploit the huge memory
bandwidth or short latencies of some types of memory. The global memory is acces-
sible from all multiprocessors for reading and writing. It is an order of magnitude
faster than system RAM if it is accessed coalesced. The latency of operations in
global memory is in hundreds of GPU cycles. The texture memory is read-only
memory whose caching is optimized for a 2D spatial locality. The latency of the
cache hit in texture memory is high, thus it can be used to improve the bandwidth
when data is accessed multiple times or the data access is not regular enough to
exploit the bandwidth of global memory. The constant memory is read-only and
cached too, but the latency of the cache hit is as short as accessing a register if all
threads within one warp access the same address. Thus, it can be used for constants
that are accessed by many threads in parallel.

Currently, the arithmetic throughput and the memory bandwidth of GPUs are
an order of magnitude higher than CPU ones. Moreover, the GPUs have specialized
cores for some operations used frequently in graphics calculations and thus can
improve performance even more when these operations are used.

4.2 Implementation

As a basis, we have used the published acceleration of the direct Coulomb summa-
tion [1]. The potential map resides in global memory, because its access pattern
can be easily coalesced. Considering only one of the atoms is accessed at a time, we
place them in constant memory and because of its limited size, just over 4 000 atoms
fit there, so several kernel invocations are required. The GPU thread calculates 1-8
lattice points (see below), sums up potential energies of atoms, and stores them in
the lattice.

The method discussed in [1] computes only one slice of the lattice per a kernel
invocation, but this approach does not scale well on small maps. Therefore, we
execute the kernel on the whole lattice to allocate enough thread blocks on mul-



The Accelerated AutoGrid Potential Maps Generation for Molecular Docking 1331

tiprocessors. Because the GPU can run a thread block as a whole, the initialized
potential map must be padded to the size of a portion of map a thread block com-
putes. It is more efficient to compute lattice points lying outside of the original
potential map than explicitly handling boundary conditions, considering the GPU
cannot handle divergent code branching efficiently in general.

The loop over lattice points can be unrolled by 8 in the Z direction, allowing
the computation of 8 lattice points per thread, which increases performance as some
of the computations can be shared. Unrolling the outer loop in the Z direction is
the only viable option, otherwise doing it in other directions would waste too much
space and computational resources due to padding to the thread block size and the
small maps would not perform as well as the large ones. We disable unrolling if the
cost of padding in the Z direction exceeds 150% of the original potential map. The
thread block allocates 16 x 8 threads, and based on the fact whether unrolling is
enabled or not, it computes the lattice segment of size either 16 x 8 x 8 or 16 x 8 x 1.

4.3 Dielectrics Computation

AutoGrid uses constant and distance-dependent dielectrics. The implementation of
the former is straightforward and is described in [1].

We have implemented two variants of the distance-dependent dieletric compu-
tation on the GPU:

e The first variant uses a precalculated look-up table placed in texture memory
and indexed by the distance from an atom. Because the distances from a lattice
point are similar for consecutive atoms, it gives a good spatial locality in texture
accesses if the distances between lattice points are not too large. In this case,
it provides the best performance in comparison with other memory types for
sufficiently large gridmaps.

e The second variant directly computes dielectrics in the code. It is used in cases
where the texture memory approach is slower, especially with small gridmaps.

The FastGrid chooses between the two automatically. Because the efficiency of
texture memory depends on the longest edge of the lattice rather than the over-
all number of lattice points, FastGrid uses the second variant if the inequality
max(z,y,z) < 160 holds (where z, y, z are the lattice dimensions), which works
for most sizes of potential maps.

5 EVALUATION

The FastGrid has been evaluated using a machine equipped with Intel Core2 Quad
Q9550 (2.83 GHz), 8 GB RAM and two GeForce GTX 280 connected via PCI-E 2.0
8x. The half of the Collagen, type IV, alpha 2 structure (PDB? ID 1t60, 25 448
atoms) has been used for benchmarking.

2 http://www.pdb.org/pdb/
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5.1 The Speedup Over AutoGrid
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Fig. 1. The speedup of FastGrid over AutoGrid. Left: using various grid sizes, right: using
various numbers of atoms for 50 x 50 x 50, 150 x 150 x 150 and 350 x 350 x 350 grids
and distance-dependent dielectrics.

Figure 1 depicts the speedup of our implementation over original AutoGrid
and its scaling according to the grid size and the number of atoms. The FastGrid
outperforms AutoGrid in an order of magnitude even for quite small grids or quite
small molecules if a finer grid is used.

However, because AutoGrid uses only one CPU thread, its performance can be
better if multiple problems are solved in parallel on a multi-core CPU. If multiple
GPUs are present in the system, it is meaningful to run multiple instances of Fast-
Grid too, if the GPU is the bottleneck, which is analyzed in the following chapter.

5.2 Analysis of FastGrid Performance

A deeper analysis of FastGrid performance helps us find a well-balanced machine
configuration and can help the decision whether multiple instances of FastGrid using
multiple GPUs should run at the same time to improve the overall performance. Be-
cause of higher time complexity of the GPU computations, the GPU performance
is the bottleneck for larger molecules. According to the results depicted in the
left graph in Figure 2, the multiple instances of FastGrid using multiple GPUs are
meaningful only when distance-dependent dielectrics is used with the given molecule
and the machine. If less powerful GPUs or larger molecules are used, multiple in-
stances can be more beneficial. The GPU performance is reduced when smaller grids
are used because of reducing the parallelism (thousands of threads have to run on
a GPU to fully exploit its arithmetic and memory throughput). The right graph
in Figure 2 depicts the scaling of the electrostatic potential evaluation. The elec-
trostatics with the distance-dependent dielectric potential evaluation scales worse,
probably because a good utilization of texture caches requires large enough prob-
lems. The computation of constant dielectrics reaches the maximum throughput
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when using a 100 x 100 x 100 grid. The fluctuation of the results for larger grids is
caused by two aspects — padding, which enforces a computation of a larger grid than
is actually needed, and by utilizing such a number of blocks that is not a multiple of
the count of GPU multiprocessors. The number of atoms does not affect the scaling
of the electrostatic potential computation, but the memory copy overhead is more
significant when less atoms are used (the size of copied grids remains the same, while
the time spent on the computation is lower with less atoms).

The switch from the direct dielectrics computation to using the look-up table
(see Section 4.3) is noticeable in the right graph in Figure 2, where the performance
grows again around the size of the lattice 160°.
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Fig. 2. Left: the ratio of GPU/CPU computation time (overall and without the CPU —
GPU — CPU memory copy) for various molecule sizes; right: the scaling of the GPU
implementation for various grid sizes.

Because the algorithms with worse time complexity are executed on the GPU,
the speed of FastGrid is asymptotically limited by performance of the GPU. The
performance of the electrostatic potential calculations with distance-dependent di-
electrics is 24 391 million of atoms evaluations per second (MEvals/s) and with con-
stant dielectrics it is 54 770 MEvals/s. The CPU code runs about 72 MEvals/s for
both distance-dependent and constant dielectrics, yielding 338 x and 761 x speedup,
respectively. However, these values are the asymptotic bound of the speedup re-
quiring an immoderate amount of memory and computational time, thus we have
performed the measurements on more commonly sized problems.

5.3 Analysis of FastGrid Arithmetic Accuracy

The today’s GPUs implement the IEEE-754 standard for floating point arithmetics
with a few deviations, affecting the numeric accuracy. Thus, despite the FastGrid
performs equivalent computations to AutoGrid, the results vary slightly. The abso-
lute errors (which are rounded to thousandths in output gridmap files) vary from 0
to 0.008 for all lattice points. The analysis of absolute and relative errors of FastGrid
is depicted in Table 1.
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Absolute error (kcal/mol) | Maximum relative error
0.001 5.93.107°
0.002 4.134-10°6
0.003 2.85-10°6
0.004 6.06- 108
0.005 3.81-10°8
0.006 4.55-10°8
0.007 5.32.10°8
0.008 6.08 - 108

Table 1. The difference of FastGrid results compared to AutoGrid. The table shows maxi-
mum relative error for each absolute error value that has been obtained.

The small maximum relative errors suggest that all absolute errors occur in the
case of large energies, where the accuracy is not critical (the molecular docking
is based on searching a minimum of energy function, thus the accuracy of high
energy points is not important). Moreover, the absolute error is at most an order of
magnitude higher than the smallest absolute value that can be stored in grid maps
and the relative error roughly descends with the growing absolute error, thus the
results are fairly accurate for all energy values.

6 CONCLUSION AND FUTURE WORK

The acceleration methods of the potential maps generation in AutoGrid yielding

up to two orders of magnitude speedup have been presented. We have analyzed

the potential maps generation in AutoGrid and designed the hybrid CPU/GPU

parallel architecture of the new implementation called FastGrid. The efficient GPU

implementation of the electrostatic potential evaluation with the novel extension

allowing to compute the potential with distance-dependent dielectrics is presented.
The possible improvements of FastGrid are in the following areas:

e To get more performance, FastGrid could choose an appropriate algorithm and
tweak its parameters based on the machine it is running on.

e The CPU code can be improved by a vectorization.

e The CPU/GPU load should be balanced better by using both CPU and GPU
variants of one particular potential evaluation simultaneously.
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