
Computing and Informatics, Vol. 29, 2010, 1193–1220

GRID RESOURCE MANAGEMENT AND SCHEDULING
FOR DATA STREAMING APPLICATIONS

Wen Zhang

Chongqing Military Delegate Bureau

General Armament Department of PLA, Chongqing 400060, P.R. China

This work was carried out when the author was with:

Department of Automation

Tsinghua University, Beijing 100084, P.R. China

Junwei Cao

Research Institute of Information Technology

Tsinghua National Laboratory for Information Science and Technology

Tsinghua University, Beijing 100084, P.R. China

e-mail: jcao@tsinghua.edu.cn

Yisheng Zhong

Department of Automation

Tsinghua University, Beijing 100084, P.R. China

Lianchen Liu

National CIMS Engineering Research Center

Tsinghua University, Beijing 100084, P.R. China

Cheng Wu

National CIMS Engineering Research Center

Tsinghua University, Beijing 100084, P.R. China

Manuscript received 27 April 2009; revised 6 November 2009

Communicated by Liberios Vokoros



1194 W. Zhang, J. Cao, Y. Zhong, L. Liu, Ch. Wu

Abstract. Data streaming applications bring new challenges to resource manage-

ment and scheduling for grid computing. Since real-time data streaming is required
as data processing is going on, integrated grid resource management becomes es-
sential among processing, storage and networking resources. Traditional schedul-
ing approaches may not be sufficient for such applications, since usually only one
aspect of grid resource scheduling is focused. In this work, an integrated resource
scheduling approach is proposed and coordinated resource allocation of CPU cycles,
storage capability and network bandwidth is implemented. Resource allocation is
performed periodically with updated information on resources and applications and
heuristic search for optimal solutions is used to assign various resources for running
applications simultaneously. Performance metrics considered in this work include
data throughput and utilization of processors, storage, and bandwidth, which are
actually tightly coupled with each other when applied for grid data streaming ap-
plications. Experimental results show dramatic improvement of performance and
scalability using our implementation.

Keywords: Grid computing, data streaming, resource management, genetic algo-
rithm

Mathematics Subject Classification 2000: 65K10, Secondary 90C59

1 INTRODUCTION

Data streaming applications are becoming more popular recently, such as astro-
nomical observations, large-scale simulation and sensor networks, which brings new
challenges to grid resource management. Characteristics of such applications include
that

1. they are continuous and long running in nature;

2. they require efficient data transfers from distributed data sources;

3. it is often not feasible to store all the data in entirety for later processing because
of limited storage and high volumes of data to be processed;

4. they need to make efficient use of high performance computing (HPC) resources
to carry out computation-intensive tasks in a timely manner.

Grid computing [1] paves a new way to enable such applications with cross-domain
resource sharing and service integration supports.

When there is a shortage of CPU processing capability located at data sources,
there is a requirement that data have to be streamed to computational resources
for processing. For example, LIGO (Laser Interferometer Gravitational-wave Ob-
servatory) [2, 3] is generating 1TB scientific data per day and trying to benefit
from processing capabilities provided by the Open Science Grid (OSG) [4]. Since



Grid Resource Management and Scheduling for Data Streaming Applications 1195

most OSG sites are CPU-rich but storage-limited with no LIGO data available,
data streaming supports are required in order to utilize OSG CPU resources. In
such a data streaming scenario, data should be pulled rather than pushed to the
computational system in the form of streams of tuples, and processing is continu-
ously executed over these streams as if data were always available from local storage.
What’s more, data arrival rates must be controlled to match the processing speeds
to avoid waste of computational capacity or data overflow. Meanwhile, processed
data have to be cleaned up to save space for the subsequently coming data.

Grid enabled data streaming applications require management of various grid
resources, e.g. CPU cycles, storage capability and network bandwidth. In this paper,
an integrated resource management and scheduling system for grid data streaming
applications is developed to improve data throughput, processor utilization, storage
usage and bandwidth utilization in a coordinated way. When a new application
arrives, admission control is invoked to decide whether to start or queue it. Ac-
cepted applications are allocated with appropriate resources at the end of each
scheduling period, together with running ones. A heuristic approach, genetic al-
gorithm (GA) [5] is applied to find satisfactory resource allocation scheme in the
given scheduling period with updated information of resources and applications.
Scheduling evolves periodically with updated status of resources and applications
since the grid is a shared environment where resources are not dedicated. Based on
the Globus toolkit [6], the system is able to discover and manage resources geograph-
ically distributed and belonging to different management domains in a transparent
and secure way. Evaluation results show excellent performance and scalability of
this system.

The rest of this paper is organized as follows: Section 2 provides a formal re-
presentation of the optimization issue with predefined performance metrics; cor-
responding algorithms are elaborated in Section 3; performance evaluation results
are illustrated in Section 4; related work is discussed in Section 5; and Section 6
concludes the paper.

2 GRID DATA STREAMING – PROBLEM STATEMENT

As mentioned above, an integrated resource management and corresponding schedul-
ing algorithms are required to make full resource utilization while keeping optimal
performance of each data streaming application. The approach tries to accommodate
as many applications as possible simultaneously to make the best use of resources in
preconditions that requirements of each application can also be met. In this section,
the schedule issue is described in a formal way and performance metrics are defined.

2.1 Formal Representation

A resource pool R described in this work includes processors (P ), storage (S) and
network bandwidth (B) that have to be allocated to data streaming applications in



1196 W. Zhang, J. Cao, Y. Zhong, L. Liu, Ch. Wu

an integrated manner. Suppose n is the total number of processors P in the resource
pool and there are m applications (A) for data streaming and processing.

R = {P, S, B}

P = {pi|i = 1, 2, . . . , n}

A = {aj |j = 1, 2, . . . , m}

Let s and b be the total storage space S and network bandwidth B, respec-
tively. In general, the sum of processors, storage and bandwidth allocated to each
application cannot exceed the total available resources.

m
∑

j=1

nj ≤ n

m
∑

j=1

sj ≤ s

m
∑

j=1

bj ≤ b

For each application aj , there is a corresponding minimum requirement of re-
sources that has to be met for the application to be executed.

Rreq
j = {nreq

j , sreqj , breqj }

nreq
j ≤ nj ≤ n, j = 1, 2, . . . , m

sreqj ≤ sj ≤ s, j = 1, 2, . . . , m

breqj ≤ bj ≤ min(b, bmax
j ), j = 1, 2, . . . , m

All of the above constraints have to be met during resource scheduling and
allocation for data streaming applications. Note that the bandwidth allocated to
the application aj is constrained by both available bandwidths locally b and remotely
at the data source end bmax

j . The major challenge is that the three different types
of resources are correlated to each other inherently in deciding the performance of
a scheduling and allocation scheme. In the next section, major performance metrics
considered in this work are described.

2.2 Performance Metrics

There are many aspects of performance criteria when evaluating resource allocation
schemes. Specifically, for data streaming applications, data throughput, the amount
of data streamed and processed during a given period of time, is most important.
Other performance metrics that have to be considered simultaneously are resource
utilization and scheduling scalability.



Grid Resource Management and Scheduling for Data Streaming Applications 1197

Suppose an evaluation period includes l time units. A time unit t is a predefined
minimum time period, based on which all resource scheduling and allocation are
carried out. Let busgjk (j = 1, 2, . . .m; k = 1, 2, . . . l) be the bandwidth usage of the

application aj during the kth time unit and susgjk (j = 1, 2, . . .m; k = 1, 2, . . . l) be

the storage usage at the beginning of the kth time unit. Note that actual resource
usage of an application is usually different from corresponding resources allocated
to an application. We can calculate the total data throughput TP as follows:

TPjk = busgjk t+ susgjk − susgj(k+1) (j = 1, 2, . . . , m; k = 1, 2, . . . , l)

TPj =
l

∑

k=1

TPjk =
l

∑

k=1

busgjk t+ susgj1 − susgj(l+1) (j = 1, 2, . . . , m)

TP =
m
∑

j=1

TPj =
m
∑

j=1

l
∑

k=1

busgjk t+
m
∑

j=1

(

susgj1 − susgj(l+1)

)

.

The total data processing throughput is the difference of storage usage plus all
data streamed into the system during the given period. This is based on the as-
sumption that just-in-time data cleanup is enabled and all processed data is cleaned
up from storage at the end of each time unit. If the evaluation period covers all the
makespan of an application, it is obvious that susgj1 and susgj(l+1) are both zero and the
total data processing throughputs for a given application can be represented purely
via bandwidth usage. To simplify the problem, we assume that data throughputs of
each application TP j are comparable with each other, so that a sum up of all TP j

can be used to represent the overall data throughput. If this is not the case in a real
environment, some normalization has to be performed to weight data throughputs
of different applications in terms of data throughput.

Resource utilization is another concern when enabling data streaming applica-
tions. It is straightforward to calculate storage and bandwidth usage percents of the
kth time unit as follows:

USjk =
susgjk

s
(j = 1, 2, . . . , m; k = 1, 2, . . . , l)

USk =

∑m
j=1 s

usg
jk

s
≤ 1 (k = 1, 2, . . . , l)

US =

∑l
k=1

∑m
j=1 s

usg
jk

ls
≤ 1

UBjk =
busgjk

b
(j = 1, 2, . . . , m; k = 1, 2, . . . , l)

UBk =

∑m
j=1 b

usg
jk

b
≤ 1; k = 1, 2, . . . , l

UB =

∑l
k=1

∑m
j=1 b

usg
jk

lb
≤ 1.



1198 W. Zhang, J. Cao, Y. Zhong, L. Liu, Ch. Wu

The utilization of CPU cycles can be calculated indirectly via storage usage,
since for data streaming applications it can be assumed the allocated processor is
busy when there is available data in local storage, and idle when no data is available
locally. Suppose that Pjk is the set of processors that are allocated to the application
aj during the kth time unit. Let Mik be a 2D array to identify whether the processor
pi is busy or idle at the kth time unit.

Mik =

{

1 if ∀j pi ∈ Pjk and susgjk > 0
0 if ∃j pi /∈ Pjk or susgjk = 0

(i = 1, 2, . . . , n; k = 1, 2, . . . , l)

The processor usage percentage is calculated as follows:

UPi =

∑l
k=1Mik

l
≤ 1(i = 1, 2, . . . , n)

UP =

∑n
i=1

∑l
k=1 Mik

nl
≤ 1.

The resource management and scheduling issue for grid data streaming applica-
tions can be transformed into an optimization problem:

P

maxTP

maxUP

minUB

s.t.

UPi ≤ 1 (i = 1, 2, . . . , n)

USk ≤ 1 (k = 1, 2, . . . , l)

UBk ≤ 1 (k = 1, 2, . . . , l)

where first two goals are to process more data and match data processing and
streaming capability as much as possible while the third one is to utilize bandwidth
in an economic way to avoid congestion. These three goals conflict in nature, and
some tradeoffs have to be made. Currently, we focus more on the overall data
throughput. Algorithms provided in the next section are processing-, storage-, and
congestion-aware, so the last two goals can be maintained in most cases. Note
that storage usage is not included in optimization goals because storage usage does
not affect the ultimate throughput, but adequate storage will indeed increase the
robustness of data processing. Available processors, storage and bandwidth are
considered as constraints.



Grid Resource Management and Scheduling for Data Streaming Applications 1199

3 RESOURCE SCHEDULING AND ALLOCATION –

KEY ALGORITHMS

There are two steps for resource scheduling: admission control is performed to decide
whether a new application is started, according to its resource requirement and
current status of available resources in the computing pool; the GA is performed
periodically to improve resource utilization and to meet the requirements of active
applications in an evolving way. Resource allocation is performed iteratively together
with periodical scheduling of key parameters.

In this section, the key components of this resource management and scheduling
scheme are described in detail. Overall flow chart for such a scheduling process is
illustrated in Figure 1.

 

Applications Resource 
Allocation 

Resource Pool 

R 

Resource 
Schedulin

Admission 
Control 

Rreq 

Fig. 1. The flow chart of resource scheduling and allocation for data streaming applications

A coming application has to specify explicitly its requirements of resources, Rreq.
Available resources R in the resource pool are monitored in real time. Both Rreq

and R are input to the admission control module to decide whether or not the coming
application should be accepted and put to the active application set. Resource
scheduling only works on active application set periodically to produce scheduling
parameters. In this work, the GA is adopted as an evolving method to absorb
dynamically changing resource and application status. Resource allocation takes
scheduling parameters as inputs and generates final allocation schemes. Resource
allocation occurs iteratively with a much higher frequency than resource scheduling
to improve the overall system performance. These are described in details below.

3.1 Admission Control

It is obvious that the resource pool in general cannot support infinite applications
simultaneously, and too many applications will lead to fierce resource competition
which may decrease overall processing efficiency as a whole. The mechanism of
admission control plays an essential role in our system for resource management.

When a new task is submitted, the admission control decides to accept it in-
stantly or just to keep it in a waiting queue and resubmit it in future. This decision is
made according to the usage status of resources and application requirements. Each



1200 W. Zhang, J. Cao, Y. Zhong, L. Liu, Ch. Wu

task can specify its minimum requirement of resources, e.g. it needs some processors
of certain types, minimum bandwidth and storage. An XML schema is developed
for application requirement specification.

Applications can specify CPU type, bandwidth and storage requirement. The
system checks up current available resources. For example, an application compiled
on X86 64 cannot run on I386 processors, so not every processor is suitable for the
application. Suppose that the number of those available X86 64 processors is larger
than nreq

j , and unallocated storage and bandwidth are both larger than sreqj and breqj ,
respectively, the task can be immediately put to be active for execution. If any of
resources is not available, the task would just be kept in the waiting queue.

Applications in the queue are called new eligible applications (NEAs). NEAs can
have different priorities for resource scheduling and allocation. They are classified
into different groups according to different priorities, and in each group, the first-
come-first-serve (FCFS) strategy is applied.

3.2 Resource Scheduling

As CPU, bandwidth and storage are integrated as a whole in data streaming appli-
cations, there must be a so-called optimal operation point (OOP) to make balance
in resource usage. The OOP defines the expected bandwidth, computing power,
and granularity of data streaming (storage usage) which simultaneously maximizes
the uses of bandwidth and CPU power. Our scheduler benefits greatly from us-
ing an optimal combination of resources, instead of making independent scheduling
schemes for each type of resources.

Essentially, integrated scheduling of resources for applications is a NP-complete
problem, and in this work the GA is adopted to find satisfactory, not necessarily
optimal, solutions in a relatively short time. The GA is required to recalculate
scheduling parameters in each scheduling period, with updated status information
of resources and applications.

Using the GA, a single chromosome is composed of three parts of scheduling
parameters, leading to an allocation scheme of processors, storage and bandwidth,
respectively. The gth generation of chromosome can be represented as follows:

CHROMg = {pjg, sjg, αg, βg, ρg, µjg | j = 1, 2, . . . , m}.

Similar to definitions in Section 2.2, suppose that Pjg is the set of processors
that are allocated to the application aj during the g

th generation of GA evolving. To
simplify the problem, each application just needs one processor, so pjg is used above
instead of Pjg. For an application, it is expected to run on a fixed processor till it is
finished, or to put it another way, no migration from one processor to another occurs
during task execution. Only parts of pjg for new applications are involved in the GA
evolving and previously assigned processors are fixed to be allocated to its current
application. sjg represents the maximum storage allocated to the application aj . For
a certain application, its lower limit of storage has to be larger than sreqj and can be



Grid Resource Management and Scheduling for Data Streaming Applications 1201

set to be a proportion of sjg. Details are included in the next section on resource
allocation. Similarly, scheduling parameters above, α β, ρ and µj (j = 1, 2, . . . , m)
are corresponding to bandwidth allocation. How these parameters are associated
with a bandwidth allocation scheme is also described in details in the next section.
Three parts of a chromosome evolve independently with their own rules, decreasing
computational complexity and avoiding meaningless heuristic searches.

The evaluation index, or fitness, of each chromosome is set to be data through-
put, i.e., the amount of data processed in a scheduling interval. As mentioned
before, we consider all the data for different applications equally. In calculating its
throughput, information on applications and resources has to be updated and per-
formance prediction is enabled using historical information. Given a chromosome
with scheduling parameters, with historical performance information and some pri-
ority of resources and applications, data throughput in a scheduling interval can
be calculated using formulations in Section 2.2. In a scheduling period, scheduling
parameters are initiated from its direct foregoing period. During the evolution, two
chromosomes are crossed to generate two new ones for the next generation, and
genetic mutation happens in some chromosomes with a given probability. The chro-
mosome that leads to the highest data throughput value can be achieved and corre-
sponding scheduling parameters are used to generate a resource allocation scheme
in a scheduling period.

Although it is hard to find the global OOP since applications and resources are
varying constantly and it is not easy to define expected processors, bandwidth and
storage precisely, evolving searching capability of the GA guarantees a satisfactory
solution for each scheduling period. Allocation algorithms for processors, storage
and bandwidth are given below.

3.3 Resource Allocation

Given a set of correlated scheduling parameters generated by the GA described
above, resource allocation schemes can be achieved using the method given in this
section. While scheduling parameters are fixed within each scheduling period, re-
source allocation schemes can still change; for instance, bandwidth allocation is an
iterative process.

3.3.1 Processor Allocation

As mentioned above, processor assignment is a match making process. Both applica-
tions and resources can specify their own requirements. Processors can be classified
into several groups according to their architectures. Similar processors in the same
group may also have different frequencies that may lead to different data process-
ing performance. NEAs can also be organized into several groups with different
priorities. In each group, the selecting principle is FCFS.

Matchmaking is carried out to find appropriate processors for applications. The
processors whose characteristics do not conflict with the application requirements



1202 W. Zhang, J. Cao, Y. Zhong, L. Liu, Ch. Wu

form a candidate set. Then applications with higher priorities find their matched
processors first. In a CHROM, pj is the number of the assigned processor for each ap-
plication. In different generations of evolving in a given scheduling period, processor
assignments of chromosomes in successive generations are independent to guarantee
all possible assignments can be covered. As we have mentioned, no migration of
applications exist, so in each scheduling period, the algorithm is only required to
allocate processors for the NEAs.

3.3.2 Storage Allocation

The overall principle for storage allocation is to make full usage of storage to increase
robustness while getting ready for new coming applications. If there are only few
applications running in the resource pool, the storage allocated for each application
can be set to a high value. While the number of applications increases, allocated
storage for each application may be decreased. So quotas for each application can
be scalable accordingly, and there must be some margin of storage for potentially
new-coming applications.

Step 1: Initialization. As supposed, there are m applications in the pool, to gene-
rate m random numbers, rj ∈ (, 1), j = 1, 2, . . .m. Calculate each quota, qj as
follows:

qj =
rj

∑

rj
(j = 1, 2, . . . , m).

Step 2: If sj = qjs ≥ sreqj , reserve these numbers for initially allocated storage for
the application aj. Otherwise, repeat step 1 until sj ≥ sreqj (j = 1, 2, . . .m)
becomes true, where sreqj is the minimal required storage of application aj as
defined in Section 2.1.

Step 3: Repeat steps 1 and 2 until all the storage allocation schemes are set for
the chromosomes in a population, and these would be initial values for the first
generation.

Step 4: Chromosome crossing. Two chromosomes cross to generate new ones for
the next generation as follows:

εjgsjg + (1− εjg) sj′g = sj(g+1)

(1− εjg) sjg + εjgsj′g = sj′(g+1)

where 0 < εjg < 1 is a random number evenly distributed in (0, 1), and the other
chromosome, j ′, is selected at random.

Step 5: Repeat step 4 until all generations are covered.

A storage allocation scheme includes both the upper and lower limit values. As
mentioned in Section 3.2, the lower limit of storage has to be larger than sreqj and
can be set to be a proportion of sjg. Lower and upper limits are mainly used as
thresholds to control start and end times of data streaming: when data amount



Grid Resource Management and Scheduling for Data Streaming Applications 1203

scratches the lower limit, more data should be transferred until the amount reaches
the upper limit. Since there are also data cleanups involved, data amount keeps
changing and varies between lower and upper limits.

The upper limit for each application is used to guarantee that the overall amount
of data in local storage does not exceed available storage space. The lower limit is
used to guarantee that data processing can survive network collapse when no data
can be streamed from sources to local storage for a certain period of time, which
improves system robustness and increases CPU resource utilization.

3.3.3 Bandwidth Allocation

Bandwidth allocation plays an important role in the whole resource allocation
scheme, for appropriate bandwidth is indispensable to guarantee data streaming
for applications to make them run constantly. Different from traditional bandwidth
allocation, our scheme is storage aware, i.e., data streaming may be intermittent
rather than continuous to avoid data overflow, for allocated storage for each appli-
cation is limited. When the storage is full of data, streaming is halted for a while
until some data has been processed and cleaned up so that storage is released for
more data. At any moment, the amount of data in storage for each application is
determined by both data streaming and cleanup processes.

A utility function Uj(bj) is introduced when its data is streamed with allocated
bandwidth bj. Uj(bj) should be concave, continuous, bounded and increasing in the
interval [breqj , b]. Note that it is not necessary that identical utility functions are
chosen for all applications. We try to maximize the sum of the utilities of all the
applications, maintaining fairness among them.

Due to the usage status of storage and repertory policy with lower and upper
limits of storage allocation, there are two possible states for each application aj at
any time, i.e., active and inactive, which indicates whether a data streaming is on
or off. Let sjk and λsjk be the upper and lower limits of storage allocation. λ is
a predefined fixed proportion of storage allocation between 0 and 1. Let Ajk be the
state identity for the application aj at the k

th step. Ajk can be initiated as active (1)
and evolves as follows:

Aj(k+1) =



















1 if Ajk = 1 and susgjk < sjk
0 if susgjk ≥ sjk
0 if Ajk = 0 and susgjk > λsjk
1 if susgjk ≤ λsjk

An iterative optimization algorithm is proposed in [7] and its convergence is
analyzed, but it is required to be congestion-aware, which is hard to be satisfied
in the wide-area Internet. According to our situation, we make some modification



1204 W. Zhang, J. Cao, Y. Zhong, L. Liu, Ch. Wu

upon it as follows:

bj(k+1) =















[

bjk + αkU
′

(bjk)
]

j
if Ajk = 1 and

∑

Ajk=1 bjk ≤ ρkb

[βkbjk]j if Ajk = 1 and
∑

Ajk=1 bjk > ρkb

0 if Ajk = 0

Here, bjk is the bandwidth allocation for the application aj at the kth step of
iterations. Note that there are many small iterations during a scheduling period.
αk, βk and ρk are all positive sequences. ρk is the so-called safety coefficient to avoid
bandwidth excess, where ρk ∈ (0, 1), i.e., there is some margin from the full use of
total bandwidth for flexibility and robustness. For the sake of convenience, they are
usually substituted as a fixed value within multiple iterations of a scheduling period
and only evolve when GA is applied to generate new scheduling parameters when
a new scheduling period starts, as described in Section 3.2. [·]j denotes a projection
on the application aj and can be calculated as

[x]j = min
(

b, bmax
j ,max

(

breqj , x
))

.

U ′(.) is the sub gradient of

U (·) =
M
∑

j=1

Uj (bjk)

and

U
′

(bjk) =
∂U (·)

∂bjk
.

A popular utility function can be expressed as:

Uj (bjk) = µjk ln (1 + bjk) , j = 1, 2, . . .m

where µj stand for applications’ coefficient. As we can see, given allocation schemes
of processors and storage as mentioned above, with settled parameters such as α,
β, ρ and µj, a bandwidth allocation scheme can be obtained, and performance
metrics, e.g. data throughput and resource usage, can be calculated. For bandwidth
allocation, it is transformed to finding the optimal set of such parameters, which is
performed at the beginning of each scheduling period, as described in Section 3.2.

Essentially, the bandwidth allocation approach proposed in our work is a type of
additive increase multiplicative decrease (AIMD) algorithm that is usually used in
TCP congestion avoidance. Main feature of our approach is storage awareness, since
data streaming is stopped if allocated storage is nearly full such that data overflow
is avoided. The approach is also processing-aware, because the processing capacity
can be reflected via storage usage. Our bandwidth allocation leads to on-demand
data streaming, which is also congestion aware.



Grid Resource Management and Scheduling for Data Streaming Applications 1205

Bandwidth allocation is finally implemented in our system using GridFTP [8]
through controlling start and end times of data transfers and tuning parallelism for
each application. System implementation and experimental results are given below.

4 SYSTEM IMPLEMENTATION

AND PERFORMANCE EVALUATION

In order to verify our approach proposed above, a grid environment has been estab-
lished at Tsinghua University (Beijing, China). The Globus Toolkit 4.0.1 is deployed
to provide common grid services and a simple Certificate Authority is set up to sign
certificates for hosts and users which are used to establish a secure and transparent
environment for data streaming applications. Detailed information on our system
implementation and experimental results on our resource scheduling approach are
included in this section.

4.1 System Implementation

Key components in the architecture of our resource management and scheduling
system include a client tool for job submission, a management engine for admission
control, a scheduler, a dispatcher and application wrappers.

Client Tool. This tool is an interface for users to submit their applications with
requirement specification in XML format, including the executables, processor
number and architecture, minimum bandwidth and storage requirements, data
sources, etc. It is also capable of monitoring status of submitted applications
and resources, halting and canceling submitted jobs.

Management Engine. The management engine accepts users’ submissions and
puts them into the queue, which can be accessed by the scheduler. Its main
function is to provide grid supports for streaming applications, such as security,
resource discovery and management. The components of Globus toolkit used
here include GSI (Globus Security Infrastructure) and MDS (Monitoring and
Discovery Service). The management engine is responsible for admission control.

Scheduler. This is the core component in the whole architecture and its key algo-
rithms are discussed in detail in Section 3. It is responsible for generating the
scheduling parameters. Its instruction will be executed by the dispatcher.

Dispatcher. The dispatcher is in charge of resource allocation, sending executa-
bles with their description files to appropriate processors and invoking. This
component interacts with services provided by grid middleware, such as Globus
GRAM.

Application Wrappers. This component parses the description file according to
the XML schemas, initializes execution of executables, and starts data stream-
ing to specified storage with allocated bandwidth. Also, results are sent back
through the dispatcher.



1206 W. Zhang, J. Cao, Y. Zhong, L. Liu, Ch. Wu

Beside allocation of computational resources as most traditional grid resource
management and scheduling systems do, our system also deals with allocation of
bandwidth and storage to support real-time data transfer which is required by data
streaming applications. Management and scheduling of processors, bandwidth and
storage are carried out in an integrated rather than independent way.

4.2 Experiment Design

As shown in Figure 2, a case study for LIGO data analysis is taken as a typical
data streaming application. Two streams of data from two observatories (H1 and
L1), represented using two file lists, are inputs of the program, rmon. The program
calculates the r-Statistic of two data sets to measure signal similarity. A signal has
more possibility to be a gravitational wave candidate if it occurs at two observatories
simultaneously. Once the program rmon is launched, an option file is used to define
data stride and channels for each step of calculation. Data can be used in a streaming
way since data is organized in time series and becomes obsolete after being processed.
Note that this is a simplified example of LIGO data analysis since in a real world
scenario there are also pre- and post- steps and a complete data analysis is usually
carried out in a formal of pipelines.

/data/node10/frame/S3/L3/LHO/H-RDS_R_L3-751658016-16.gwf
/data/node11/frame/S3/L3/LHO/H-RDS_R_L3-751658032-16.gwf
/data/node12/frame/S3/L3/LHO/H-RDS_R_L3-751658048-16.gwf
/data/node13/frame/S3/L3/LHO/H-RDS_R_L3-751658064-16.gwf
/data/node14/frame/S3/L3/LHO/H-RDS_R_L3-751658080-16.gwf
/data/node15/frame/S3/L3/LHO/H-RDS_R_L3-751658096-16.gwf
/data/node16/frame/S3/L3/LHO/H-RDS_R_L3-751658112-16.gwf

/data/node10/frame/S3/L3/LLO/L-RDS_R_L3-751658016-16.gwf
/data/node11/frame/S3/L3/LLO/L-RDS_R_L3-751658032-16.gwf
/data/node12/frame/S3/L3/LLO/L-RDS_R_L3-751658048-16.gwf
/data/node13/frame/S3/L3/LLO/L-RDS_R_L3-751658064-16.gwf
/data/node14/frame/S3/L3/LLO/L-RDS_R_L3-751658080-16.gwf
/data/node15/frame/S3/L3/LLO/L-RDS_R_L3-751658096-16.gwf
/data/node16/frame/S3/L3/LLO/L-RDS_R_L3-751658112-16.gwf

rmon

filelist1.txt
filelist2.txt

multilist.txt

stride      16.0
channel_1   H1:LSC-AS_Q
channel_2   L1:LSC-AS_Q

opt 

filelist1.txt

filelist2.txt

[jcao@ldaspc1 rmon]$ export LD_LIBRARY_PATH=/opt/ls csoft/dol/lib
[jcao@ldaspc1 rmon]$ ./rmon -opt opt -inlists multilist.txt
Processing multi list file: multilist.txt

Number of lists added: 2 Total data streams: 2
Processing frame list file: /home/jcao/rmon/filelis t1.txt

Number of files added: 1188 Total frame files: 1188
Processing frame list file: /home/jcao/rmon/filelis t2.txt

Number of files added: 1188 Total frame files: 1188
channel[1]=H1:LSC-AS_Q channel[2]=L1:LSC-AS_Q
startgps=751658000 stride=16 r-statistic=-0.0025178 2
startgps=751658016 stride=16 r-statistic=-0.0122699
startgps=751658032 stride=16 r-statistic=0.0168868
……

standalone run of rmon DMT offline monitor

 

Fig. 2. Experiment design – LIGO data analysis case study

The grid environment established at the campus is connected to Internet with
limited bandwidth, and a network file system (NFS) is configured to which all data
streams are directed. Each application is given a unique number to identify its di-



Grid Resource Management and Scheduling for Data Streaming Applications 1207

rectory in the NFS where its data is streamed so that applications can access data
as if data were always available locally. In a local area network of the same campus,
NSF does not introduce heavy overhead for data access. Tasks are submitted at
moments complying with negative exponential distribution law, and their require-
ments of resources are also explicitly expressed. Experiments are carried out using
parameter values listed in Table 1.

Parameters Values

m 30

n 16(5 + 4 + 7)

s 140MB

b 30Mbps

n
req
j , j = 1, 2, . . . ,m 1

s
req
j , j = 1, 2, . . . ,m 8 9 40 10 8 5 5 6 10 6 9 6 10 7 6 6 8 7 7 9 8 8 10 6 9 9 7 8

5 5

b
req
j , j = 1, 2, . . . ,m 1 3 2 1 1 2 3 3 1 3 3 2 3 1 3 3 3 3 2 1 3 3 3 3 1 2 2 1 3 1

bmax
j , j = 1, 2, . . . ,m 7 7 6 5 4 6 6 5 7 7 6 4 4 5 7 4 6 7 5 5 5 7 6 4 5 5 6 6 7 4

µj, j=1,2, . . . , m 15

l 10 000

t 1 s

λ 0.8

Table 1. Experiment design – parameter values

Totally 30 applications are submitted to a grid node with 16 processors, 140MB
disk space, and 30Mbps bandwidth. Processors are divided into 3 groups, each
with a different architecture. Each application requires one processor with different
storage and bandwidth requirements. The experiment lasts for 10 000 seconds with
1 second per time unit. Resource scheduling is carried out once per 200 time units
with updated resource and application information.

4.3 Experimental Results

Figures 3–5 illustrate detailed resource usage information of the experiment. The
processors are divided into 3 groups. Each group has a separate resource schedul-
ing scenario. While utilization of processors cannot be 100% since processors can
become idle if no data is available for processing, these idle CPU times cannot be
reused by other applications once allocated. Different from processor usage, storage
and bandwidth usage can adapt to application requirements quickly.

4.4 Performance Evaluation

In the last section, raw data on resource usage of processors, storage and bandwidth
are visualized. In this section, our approach described in Section 3 is evaluated using
performance metrics described in Section 2.2.



1208 W. Zhang, J. Cao, Y. Zhong, L. Liu, Ch. Wu

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

4

7

9

11

13 15

20

21

23 27

29

time

processor 1

processor 2

processor 3

processor 4

processor 5

 
(a) Processor Usage in Group 1

0 1000 2000 3000 4000 5000 6000 7000 8000

1

5

6

8 12

14

16

19

25

28

time

processor 1

processor 2

processor 3

processor 4

 
(b) Processor Usage in Group 2

0 1000 2000 3000 4000 5000 6000

2

3

10

17

18

22

24

26

30

time

processor 1

processor 2

processor 3

processor 4

processor 5

processor 6

processor 7

 
(c) Processor Usage in Group 3

Fig. 3. Experiment results – processor usage



Grid Resource Management and Scheduling for Data Streaming Applications 1209

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

Time

S
to

ra
ge

 U
sa

ge
 (

M
B

)

 

 

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

 
Fig. 4. Experiment results – storage usage

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35

Time

B
an

dw
id

th
 U

sa
ge

 (
M

bp
s)

 

 

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

 
Fig. 5. Experiment results – bandwidth usage



1210 W. Zhang, J. Cao, Y. Zhong, L. Liu, Ch. Wu

4.4.1 Admission Control

In our experiment, as grid resources are limited compared with data streaming
application requirements, it can be inferred that too many applications accepted
by the grid without admission control would lead to low processing performance,
measured using data throughput in our case. This is verified by further experimental
results included in Figure 6.

As shown in Figure 6 c), higher data throughput is achieved in the scenario
with admission control than in that without admission control. Note that in the
latter scenario, since no admission control mechanism is applied, all applications
are started to run immediately once submitted and one processor may have to deal
with more than one application at the same time. Inadequate data provision for
each application and competition of computational power among applications lead
to lower data processing performance as a whole.

Figures 6 a) and 6 b) also provide an overall picture of application status in
both scenarios, where red bars with the character P stand for pending applications
and pink bars with the character R mean the corresponding application is running.
The makespan of 30 applications is different in the two scenarios. The numbers
of completed applications are 29 and 25, respectively. It is obvious that the total
makespan is longer in the situation when no admission control is applied.

4.4.2 Processor Utilization

As shown in Figure 3, processors are allocated to applications, one for a single
application exclusively. Groups 1 and 2 deal with more applications while they
include less processors than Group 3, so average workload of processors is higher
than that of Group 3. Because some applications may not be able to be executed on
the processors in Group 3, they cannot be transferred to Group 3 for load balancing.

Once an application is started to run on a certain processor, it does not mean
that the processor is busy all the time. Since all applications are dependent on
data streaming supports, the processor of an application could be idle if no data is
available at local storage. Higher processor utilization is always required for a better
system performance.

In this section, an additional experiment is carried out with a scheduling scheme
in which allocation of computing, bandwidth and storage resources is made inde-
pendently. As shown in Figure 7, compared with the integrated approach proposed
in this work, the independent scheme results in lower processor utilization for most
applications. Higher processor utilization is achieved using our integrated scheduling
scheme.

4.4.3 Storage Awareness

Another feature of our approach is that data streaming is storage-aware, i.e., data
transfers are controlled by the usage of allocated storage, rather than spontaneously.



Grid Resource Management and Scheduling for Data Streaming Applications 1211

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
R
R

R
R

R
R

R
R

R
R

P R
P R

P R
P R
P R

P R
P R

P R
P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

Time

A
pp

lic
at

io
n 

S
ta

tu
s

app 1
app 2
app 3

app 28
app 29
app 30

 
(a) With admission control

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
R

R
R

R
R

R
R

R
R

R
R

R
R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

Time

A
pp

lic
at

io
n 

S
ta

tu
s

app 1
app 2
app 3

app 28
app 29
app 30

 
(b) Without admission control

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

18
x 10

4

Time

T
P

 (
M

B
)

 

 
With admission control

Without admission control

 
(c) Comparison of data throughput

Fig. 6. Performance evaluation – admission control



1212 W. Zhang, J. Cao, Y. Zhong, L. Liu, Ch. Wu

Fig. 7. Performance Evaluation – Processor Utilization

The principle here is that just-enough is OK, not the-more-the-better. Data stream-
ing can be intermittent, not always continuous. In this way high volume of data
can be processed with reasonable storage usage, as shown in Figure 8(a). Storage
usage varies in a reasonable scope during the experiment. If data streaming is con-
tinuous and available storage space is large enough, storage usage can be of high
volume, as illustrated in Figure 8(b). Small storage can achieve high throughput
for data streaming applications with well-controlled data streaming and processing
scheme.

4.4.4 Iterative Bandwidth Allocation

Bandwidth is allocated to each running application to guarantee their data provision.
Parameters for bandwidth allocation are obtained using the GA (as described in
Section 3.2) and applied in each scheduling period. As described in Section 3.3.3,
bandwidth allocation is an iterative process that is adaptive to the total available
bandwidth and requirements of running applications.

To justify our iterative bandwidth allocation algorithm, additional experiments
are carried out using an even bandwidth allocation method, where bandwidth is
allocated to the running applications equally. As shown in Figure 9 a), since total
available bandwidth is relatively low (b = 30Mbps), with even bandwidth alloca-
tion, only 25 applications are finished in 10 000 time units. In Figure 9 b), available
bandwidth is increased to 40Mbps. In this case, each application can get enough
data with the even allocation scheme. These results can be compared with Fig-
ure 6 a). Using our iterative approach, a better performance can be achieved with
relatively low available bandwidth.



Grid Resource Management and Scheduling for Data Streaming Applications 1213

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

140

Time

U
S

 (
M

B
)

 
(a) Storage-Aware Data Streaming

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6
x 10

4

Time

U
S

 (
M

B
)

 
(b) Non-Storage-Aware Data Streaming

Fig. 8. Performance Evaluation – Storage Aware Data Streaming

Comparison of data throughput using iterative and even bandwidth allocation is
illustrated in Figure 9 c). It is obvious that higher data throughput can be achieved
using our iterative bandwidth allocation, though only relatively low available band-
width is available. This is because our approach is storage- and processing-aware.
Using the even allocation method, some applications may starve for data while oth-
ers may be allocated redundant bandwidth, which reduces data processing efficiency
and results in lower data throughput.



1214 W. Zhang, J. Cao, Y. Zhong, L. Liu, Ch. Wu

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
R

R
R
R

R
R

R
R

R
R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

Time

A
pp

lic
at

io
n 

S
ta

tu
s

app 1
app 2
app 3

app 28
app 29
app 30

 
(a) With Even Bandwidth Allocation (b = 30)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
R
R

R
R

R
R

R
R

R
R

P R
P R

P R
P R
P R

P R
P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

P R
P R

Time

A
pp

lic
at

io
n 

S
ta

tu
s

app 1
app 2
app 3

app 28
app 29
app 30

 
(b) With Even Bandwidth Allocation (b = 40)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

18
x 10

4

Time

T
P

 (
M

B
)

 

 
Iterative bandwidth allocation/30

Even bandwidth allocation/40

Even bandwidth allocation/30

 
(c) Comparison of Data Throughput

Fig. 9. Performance Evaluation – Bandwidth Allocation



Grid Resource Management and Scheduling for Data Streaming Applications 1215

5 RELATED WORK

Stream processing used to be the focus of database research [9, 10, 11, 12] in recent
years, and some tools and techniques have been developed to cope with efficient
handling of continuous queries on data streams, while our work focuses on scheduling
streaming applications on grid resources.

Grid scheduling has primarily focused on providing supports for batch-oriented
jobs [13]. Most resource management infrastructures available for grid computing,
such as Legion [14], Nimrod/G [15], Condor [16] and [17], are largely geared to
support batch-oriented applications rather than streaming ones. Attention has also
been paid to scheduling of interactive job in grid environments [18, 19, 20]. There are
several existing efforts that are focused on grid resource management and scheduling
for data streaming applications:

GATES. A middleware system, called GATES [21, 22, 23] (Grid-based AdapTive
Execution on Streams), is developed for applications involving high-volume data
streams and requiring distributed processing of data arising from a distributed
set of sources. A resource allocation algorithm based on minimal spanning tree
(MST) is developed, whose target is to create a deployment configuration, in-
cluding

1. the number of data sources and their location;

2. the destination, i.e. the node where the final results are needed;

3. the number of stages in the application;

4. the number of instances of each stage;

5. how the instances connect to each other and

6. the node at which each stage is assigned.

Given a streaming application composed of several stages, the first three com-
ponents of a deployment configuration are determined, and the emphasis of this
resource allocation algorithm is to decide the last three components to give the
applications the best chance to achieve best performance. Once a deployment
configuration is finished, the launcher program can be called to automatically
launch the application.

Streamline. Streamline [24, 25] as a scheduling heuristic is designed specially
to adapt to the dynamic nature of grid environment and varying demands of
a streaming application. It is expected to maximize throughput of the applica-
tion by assigning best resources to the neediest stage in terms of computation
and communication requirements, belonging to a general class of list schedul-
ing algorithms. Stages are prioritized according to their estimated computation
and communication costs, and the resources leading to minimal costs will be
assigned to the stages. In this algorithm, precise estimation of computation and
communication costs must be provided, which is not easy to be implemented.



1216 W. Zhang, J. Cao, Y. Zhong, L. Liu, Ch. Wu

Pegasus. Pegasus [26, 27] is aimed to address the problem of automatically gene-
rating job workflows for the grid, which helps map an abstract workflow defined
in terms of application-level components to the set of available grid resources. It
handles data transfers, job processing and data cleanups in a workflow manner,
not in an integrated and cooperative way. In our approach for grid data stream-
ing applications, data streaming, processing and cleanups have to be processed
simultaneously instead of in a workflow manner.

The above projects mainly focus on management and scheduling of computa-
tional and data resources for grid applications, where network resources are
not considered. The following two projects provide co-allocation of various grid
resources but they are not targeting data streaming applications.

EnLIGHTened. As best-effort networks always introduce bottleneck for high-end
applications, the EnLIGHTened computing [28] project is aimed to co-allocate
any type of Grid resource: computers, storage, instruments, and deterministic,
high-bandwidth network paths, including lightpaths, in advance or on-demand.
Then external networks, especially dedicated optical networks, can be used as
first class resources within grid environments, which will guarantee large data
transfers associated with executions on remote resources. Its idea is similar with
our integrated resource scheduling proposed in this paper, but we implement
more fine-grained resource allocation to cope with specific requirements for data
streaming applications, e.g. storage awareness.

G-lambda. G-lambda [29] project is to define a standard web service interface
(GNS-WSI) between a grid resource manager and a network resource service
from a network resource manager provided by commercial network operators.
One grid scheduling system is developed to co-allocate computing and network
resources with advance reservations through web service interfaces using the Grid
Resource Scheduler (GRS), the Network Resource Management System (NRM),
which is capable of GMPLS network resource management. This is a general
framework for resource co-allocation, which does not pay enough attention to
characteristics of data streaming applications, such as sustaining and controlled
data provision.

6 CONCLUSIONS AND FUTURE WORK

Data streaming applications bring new challenges to grid resource management and
scheduling, such as requiring real-time data provision and integrated resource alloca-
tion schemes. Different from existing resource management and scheduling schemes
that only focus on computational resources, the system proposed in this paper
takes computational, storage and network resources into account simultaneously
and makes integrated management and scheduling schemes, which are proved to be
feasible with improved performance and scalability.

The work described in this paper is mainly focused on resource utilization and
overall data throughput of the system. Future work will address quality of service



Grid Resource Management and Scheduling for Data Streaming Applications 1217

(QoS) issues required by data streaming applications. Scheduling for data streaming
pipelines will also be considered, which is more complicated with requirement of
balancing among multiple stages and appropriate data provision. Ongoing work
also includes scheduling data sharing among multiple data streaming applications
to further improve system performance.

Acknowledgement

This work is supported by National Science Foundation of China (grant
No. 60803017) and Ministry of Science and Technology of China under National 973
Basic Research Program (grants No. 2011CB302505 and No. 2011CB302805) and
National 863 High-tech R&D Program (grants No. 2008AA01Z118 and No. 2008-
BAH32B03).

Junwei Cao would like to express his gratitude to Professor Erik Katsavounidis
of LIGO (Laser Interferometer Gravitational-waveObservatory) Laboratory at Mas-
sachusetts Institute of Technology for his support on LIGO Scientific Collaboration.

REFERENCES

[1] Foster, I.—Kesselman, C.: The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, San Francisco 1998.

[2] Deelman, E.—Kesselman, C.—Mehta, G.—Meshkat, L.—Pearlman, L.—

Blackburn, K.—Ehrens, P.—Lazzarini, A.—Williams, R.—Koranda, S.:
GriPhyN and LIGO, Building a Virtual Data Grid for Gravitational Wave Scientists.
Proc. 11th IEEE Int. Symp. on High Performance Distributed Computing, 2002,
pp. 225–234.

[3] Cao, J.—Katsavounidis, E.—Zweizig, J.: Grid Enabled LIGO Data Monitoring.
Proc. IEEE/ACM Supercomputing Conf., Seattle, WA, USA, 2005.

[4] Pordes, R.: For the Open Science Grid Consortium. The Open Science Grid, Proc.
Computing in High Energy and Nuclear Physics Conf., Interlaken, Switzerland 2004.

[5] Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press 1975.

[6] Foster, I.—Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit.
Int. J. Supercomputer Applications, Vol. 11, 1997, No. 2, pp. 115–128.

[7] Kar, K.—Sarkar, S.—Tassiulas, L.: A Simple Rate Control Algorithm for
Maximizing Total User Utility. Proc INFOCOM 2001.

[8] Allcock, B.—Bester, J.—Bresnahan, J.—Chervenak, A. L.—Foster, I.—

Kesselman, C.—Meder, S.—Nefedova, V.—Quesnal, D.—Tuecke, S.:
Data Management and Transfer in High Performance Computational Grid Environ-
ments. Parallel Computing, Vol. 28, 2002, No. 5, pp. 749–771.

[9] Abadi, D.—Carney, D.—Cetintemel, U.—Cherniack, M.—Convey, C.—

Lee, S.—Stonebraker, M.—Tatbul, N.—Zdonik, S.: Aurora: A New Model



1218 W. Zhang, J. Cao, Y. Zhong, L. Liu, Ch. Wu

and Architecture for Data Stream Management. VLDB Journal, Vol. 12, 2003, No. 2,

pp. 120–139.

[10] Balazinska, M.—Balakrishnan, H.—Stonebraker, M.: Contract-based Load
Management in Federated Distributed Systems. Proc. 1st Symp. on Networked Sys-

tems Design and Implementation (NSDI), San Francisco, CA, March 2004.

[11] Chandrasekaran, S.—Cooper, O.—Deshpande, A.—Franklin, M. J.—

Hellerstein, J.M.—Hong, W.—Krishnamurthy, S.—Madden, S.R.—

Reiss, F.—Shah, M.A.: TelegraphCQ: Continuous Dataflow Processing. Proc.
ACM SIGMOD Int. Conf. on Management of Data (SIGMOD ’03), 2003.

[12] Cherniack, M.—Balakrishnan, H.—Balazinska, M.—Carney, D.—

Cetintemel, U.—Xing, Y.—Zdonik, S.: Scalable Distributed Stream Processing.

Proc. 1st Biennial Conf. on Innovative Data Systems Research (CIDR ’03), Asilomar,
CA, January 2003.

[13] Nabrzyski, J.—Schopf, J.M.—Weglarz, J.: Grid Resource Management:

State of the Art and Future Trends. Kluwer Academic Publishers, Sep. 2003.

[14] Chapin, S. J.—Katramatos, D.—Karpovich, J.—Grimshaw, A. S.: The Le-
gion Resource Management System. Job Scheduling Strategies for Parallel Processing,

Springer Verlag 1999, pp. 162–178.

[15] Buyya, R.—Abramson, D.—Giddy, J.: Nimrod/G: An Architecture for a Re-
source Management and Scheduling System in a Global Computational Grid. Proc.

High Performance Computing ASIA, 2000.

[16] Litzkow, M.—Livny, M.—Mutka, M.: Condor – A Hunter of Idle Workstations.
Proc. 8th Int. Conf. on Distributed Computing Systems, 1988, pp. 104–111.

[17] Cao, J.—Jarvis, S. A.—Saini, S.—Kerbyson, D. J.—Nudd, G. R.: ARMS:
An Agent-based Resource Management System for Grid Computing. Scientific Pro-
gramming, Special Issue on Grid Computing, Vol. 10, 2002, No. 2, pp. 135–148.

[18] Basu, S.—Talwar, V.—Agarwalla, B.—Kumar, R.: I-GASP: Interactive Grid
Environment Provided by Application Service Providers. Proc. 1st Int. Conf. on Web
Services (ICWS ’03), Las Vegas, USA 2003.

[19] Talwar, V.—Agarwalla, B.—Basu, S.—Kumar, R.: Architecture for Resource
Allocation Services Supporting Remote Desktop Sessions in Utility Grids. Proc. 2nd

Int. Workshop on Middleware for Grid Computing (MGC 2004), Toronto, Canada,

Oct. 2004.

[20] Cao, J.—Zimmermann, F.: Queue Scheduling and Advance Reservations with
COSY. Proc. 18th IEEE Int. Parallel&Distributed Processing Symp., Santa Fe, NM,
USA 2004, p. 63.

[21] Chen, L.—Reddy, K.—Agrawal, G.: GATES: A Grid Based Middleware for Pro-
cessing Distributed Data Streams. Proc. 13th IEEE Int’l. Sym. on High Performance
Distributed Computing (HPDC-13), Honolulu, Hawaii (USA), June 4–6, 2004.

[22] Chen, L.—Agrawal, G.: Resource Allocation in a Middleware for Streaming Data.
Proc. 2nd Workshop on Middleware for Grid Computing (MGC ’04), Toronto, Canada,
October 18, 2004.



Grid Resource Management and Scheduling for Data Streaming Applications 1219

[23] Chen, L.—Agrawal, G.: A Static Resource Allocation Framework for Grid-based

Streaming Applications. Concurrency and Computation: Practice and Experience,
Vol. 18, 2006, pp. 653–666.

[24] Agarwalla, B.—Ahmed, N.—Hilley, D.—Ramachandran, U.: Streamline:

A Scheduling Heuristic for Streaming Applications on the Grid. Proc. SPIE Multi-
media Computing and Networking, Vol. 6071, 2006.

[25] Agarwalla, B.—Ahmed, N.—Hilley, D.—Ramachandran, U.: Streamline:

Scheduling Streaming Applications in a Wide Area Environment. Multimedia Sys-
tems, Vol. 13, 2007, No. 1, pp. 69–85.

[26] Deelman, E.—Blythe, J.—Gil, Y.—Kesselman, C.—Mehta, G.—Vahi, K.

et al.: Mapping Abstract Complex Workflows onto Grid Environments. J. Grid Com-

puting, Vol. 1, 2003, No. 1, pp. 25–39.

[27] Ramakrishnan, A.—Singh, G.—Zhao, G.—Deelman, E.—Sakellariou,

R.—Vahi, K.—Blackburn, K.—Meyers, D.—Samidi, M.: Scheduling Data-

Intensive Workflow onto Storage-Constrained Distributed Resources. Proc. 7th IEEE
Int. Symp. on Cluster Computing and the Grid, Rio de Janeiro, Brazil 2007,
pp. 401–409.

[28] Battestilli, L. et al.: An Architecture for Co-allocating Network, Compute, and
other Grid Resources for High-End Applications. Proc. Int. Symp. on High Capacity
Optical Networks and Enabling Technologies, 2007, pp. 1–8.

[29] Takefusa, A. et al.: Coordination of a Grid Scheduler and Lambda Path Ser-
vice over GMPLS. Future Generation Computer Systems, Vol. 22, 2006, No. 8,
pp. 868–875.

Wen Zhang works in Chongqing Military Delegate Bureau,
General Armament Department of PLA. He received his Ph.D.
in control engineering and applications from Department of Au-
tomation, Tsinghua University, in 2010. His research is focused
on grid data streaming.

Junwei Cao is currently a Professor and Assistant Dean, Re-
search Institute of Information Technology, Tsinghua University,
China. He was a research scientist at MIT LIGO Laboratory and
NEC Laboratories Europe. He received the Ph.D. in computer
science from University of Warwick, UK, in 2001. He is a senior
member of the IEEE Computer Society and a member of the
ACM and CCF.



1220 W. Zhang, J. Cao, Y. Zhong, L. Liu, Ch. Wu

Yisheng Zhong is currently a Professor at Department of Au-

tomation, Tsinghua University, China. He received the Ph.D. in
electrical engineering from Hokkaido University (Japan) in 1988.
His research interests include control theory, complexity, etc.

Lianchen Liu is currently an Associate Professor at Depart-

ment of Automation, Tsinghua University, China. He received
the Ph.D. from NanKai University (China). His research in-
terests include large scale scientific resource sharing, distributed
computing, etc.

Cheng Wu is a Professor at Department of Automation,

Tsinghua University (China), Director of National CIMS En-
gineering Research Center, and member of Chinese Academy of
Engineering. He received his B. Sc. and M. Sc. from Department
of Automation, Tsinghua University in 1962 and 1966, respec-
tively. His research interests include complex manufacturing sys-
tem scheduling, grid/cloud applications, etc.


