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Abstract. In this paper, a novel algorithm for feature extraction, named supervised
kernel locally principle component analysis (SKLPCA), is proposed. The SKLPCA
is a non-linear and supervised subspace learning method, which maps the data into
a potentially much higher dimension feature space by kernel trick and preserves the
geometric structure of data according to prior class-label information. SKLPCA
can discover the nonlinear structure of face images and enhance local within-class
relations. Experimental results on ORL, Yale, CAS-PEAL and CMU PIE databases
demonstrate that SKLPCA outperforms EigenFaces, LPCA and KPCA.
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1 INTRODUCTION

For face recognition task, feature extraction is a crucial step which is used to reduce
dimensionality of data and to enhance the discriminatory information. Principal
component analysis (PCA) is a well-known feature extraction method and aims to
find a low-dimension space that captures the directions of maximizing variance in
the data. EigenFaces [1] is a famous face recognition method which used PCA to
reduce the dimensionality of sample data. PCA is one of linear feature extraction
methods. Linear feature extraction methods often are inadequate to describe com-
plex nonlinear variations of face images because of illumination, pose, and facial
expression changes. To address this problem, kernel based techniques are often used
to discover the nonlinear structure of the face images [2, 3, 4, 5, 6, 7]. Kernel Prin-
cipal Component Analysis (KPCA) [8], which combines kernel trick with PCA, is
a nonlinear extension of PCA. The main idea of KPCA is to first map the input
space into a high-dimension feature space using a nonlinear mapping, then the prin-
cipal components are computed in a feature space. KPCA has already shown to
provide better recognition performance than PCA for face recognition task [9].

PCA and KPCA seek to find the global structure information of data. Recent
researches show that the local structure information plays important role in face
recognition task [10, 11, 12, 13, 14, 15]. Motivated by the idea of LPP [16], Yang
et al. [17] proposed locally principal component analysis (LPCA) technique which
seeks to discover the local structure information of data by the nearest neighbors.
However, LPCA may result in the overlap of different class samples in feature space,
because the nearest neighbors may belong to different class due to the influence of
lighting, expression, pose and viewpoint.

KPCA and LPCA are unsupervised learning algorithms which do not take label
information into consideration. For recognition task, the prior class-label informa-
tion is generally important. In this paper, we present a supervised nonlinear feature
extraction method, named supervised kernel locally principal component analysis
(SKLPCA). Firstly, nonlinear kernel mapping is used to map the data into a fea-
ture space. Then a linear transformation is obtained in feature space; the linear
transformation preserves the within-class geometric structures of original data by
embedding within-class neighbor graph. Thus, our method can not only present
complex nonlinear variations of real face images but also enhance local within-class
relations.

The rest of this paper is arranged as follows: LPCA is reviewed in Section 2.
SKLPCA is presented in Section 3. Experiment results are reported in Section 4,
and conclusions are given in Section 5.

2 LOCALLY PRINCIPAL COMPONENT ANALYSIS

Given a set of M training samples A = {x1, x2, . . . , xM} in Rn, LPCA aims to seek
a transformation matrix W = [w1, w2, . . . , wd] to map these samples to a set of



Supervised Kernel Locally Principle Component Analysis for Face Recognition 1467

points {y1, y2, . . . , yM} in Rd(d� n) by maximizing the local covariance matrix:
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where Hij is an adjacency matrix which is defined as follows:

Hij =

{
1, if xj is among the K-nearest of xi

0, otherwise.

The optimal transformation matrix W is composed of the orthonormal eigenvec-
tors w1, w2, . . . , wd of SL corresponding to the first d largest eigenvalues, i.e. W =
[w1, w2, . . . , wd].

3 SUPERVISED KERNEL LOCALITY PRINCIPAL COMPONENT
ANALYSIS (SKLPCA)

3.1 Principle

The nonlinear mapping Φ is used to map the input data x ∈ R into a feature
space F. For a given set of M training samples x1, x2, . . . , xM in input space, the
mapped data in feature F are Φ(x1),Φ(x2), . . . ,Φ(xM). The local covariance matrix
in feature space is defined as follows:

S̃L =
1

2MK

M∑
i=1

M∑
j=1

Hij(Φ(xi)− Φ(xj))(Φ(xi)− Φ(xj))
T

=
1

MK
QLQT (2)

where Q = [Φ(x1),Φ(x2), . . . ,Φ(xM)]. Different from LPCA, in our proposed me-
thod, the adjacency matrix Hij is defined as follows:

Hij =


e−
‖xi−xj‖2

t , if xi and xj belong to the same class and xj

is among the k-nearest of xj

0, otherwise.
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Due to using prior class label information, our proposed SKLPCA is a supervised
learning algorithm. Comparing to unsupervised methods (such as LPCA), our algo-
rithm can make efficient use of label information of samples. Therefore, our method
can better describe the geometrical structure in the data.

SKLPCA aims to find a projection axis where variance of mapped vectors in
feature space is maximum, i.e.

J(w̃)= w̃T S̃Lw̃

= w̃T

[
1

2MK
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where yi and yj are projected vectors of Φ(xi) and Φ(xj), respectively. With our
choice of the adjacency matrix Hij, if xi and xj are closer then Hij is greater, which

ensures that yi and yj have a greater contribution to J((̃w)). In this sense, SKLPCA
preserves the within-class geometric structures of original data.

According to the theory of producing kernel [18], any w̃ can be expressed by
a line combination of Φ(x1),Φ(x2), . . . ,Φ(xM):

w̃ =
M∑
i=1

ziΦ(xi) = Qz (4)

wherez = (z1, z2, . . . , zM)T . Combining with (4), J((̃w)) can be written as:

J(w̃) = w̃T S̃Lw̃

=
1

MK
(Qz)TQLQT (Qz)

=
1

MK
zT (QTQ)L(QTQ)z. (5)

Matrix R = QTQ is an M ×M Gram matrix whose elements are determined by
Equation (6):

Rij = Φ(xi)
TΦ(xj) = (Φ(xi) • Φ(xj)) = k(xi, xj) (6)
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Thus, Equation (5) can be rewritten as:

J(z) =
1

MK
zTRLRz = zT C̃z (7)

where C̃ = 1
MK

RLR. z = [Z1, Z2, . . . , zd] can be obtained by solving the eigenvalue
problem:

λizi = C̃zi, i = 1, 2, . . . , d (8)

where λ1 ≥ λ2 ≥ . . . ≥ λd is the first d largest eigenvalues of C̃ and zi is the
corresponding eigrnvectors.

3.2 Feature Extraction

For a given sample x ∈ Rn, its feature vector can be obtained by projecting its
mapped vector Φ(x) into transformation matrix W̃ = [w̃1, w̃2, . . . , w̃d]:

y = [w̃1, w̃2, . . . , w̃d]
TΦ(x)

= [z̃1, z̃2, . . . , z̃d]
TQTΦ(x)

= ZT [k(x1, x), k(x2, x), . . . , k(xM , x)]. (9)

3.3 Algorithm

Based on the above descriptions, the algorithmic procedure of SKLPCA can be given
as follows:

Step 1: Construct the adjacency matrix. Let H denote an adjacency matrix whose
elements are defined as follows:

Hij =


e−
‖xi−xj‖2

t , if xi and xj belong to the same class

and xj k-nearest of xj

0, otherwise.

Step 2: Compute diagonal matrix D (diagonal elements Dii =
∑M

i=1Hij) and
Laplacian matrix L = D −H.

Step 3: Compute Gram matrix R = QTQ, where Q = [Φ(x1),Φ(X2), . . . ,Φ(xM)],
and matrix C̃ = 1

MK
RLR.

Step 4: Obtain matrix Z = [z1, z2, . . . , zd] by solving eigenvalue problem: λizi =
C̃zi, i = 1, 2, . . . , d

Step 5: For an input sample x, compute its feature vector: y = ZT [k(x1, x),
k(x2, x), . . . , k(xM , x)].



1470 Y. Qi, J. Zhang

4 EXPERIMENT RESULTS

In this section, our algorithm is evaluated and compared with PCA, KPCA, LPCA,
and FisherFaces [19] methods on four face databases: ORL, Yale, CAS-PEAL and
CMU PIE. The ORL database is used to evaluate the performance under the con-
ditions where both sample size and pose are varied. The Yale database is used
to examine the performance when both facial expressions and lighting are varied.
CMU PIE database is used to check the performance under conditions where light-
ings are varied. The CAS-PERL is used to value the performance under conditions
where there are variations in facial expressions. In all the experiments, the nearest
neighbor classifier (Euclidean distance) is used for classification purposes.

4.1 Experimental Results on ORL Face Database

The ORL database (http://www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html) contains 400 images from 40 individuals and each has 10 differ-
ent images. For some individuals, the images are varied in lighting, facial expressions
(open/closed eyes, smiling/not smiling) and facial details (glasses/no glasses). The
size of each image is 112× 92 pixels, with 256 grey levels per pixel. Figure 1 shows
samples of one person on ORL database.

Fig. 1. Sample images of one person on ORL database

Firstly, we test the effect of different kernel functions on the recognition perfor-
mance. First five images per person are selected as training set and the remaining
images for test. Here, polynomial kernel function and Gaussian kernel function are
taken into consideration. Polynomial kernel function and Gaussian kernel function
are given in Equations (10) and (11), respectively:

k(x, y) = (x • y + 1)d (10)

k(x, y) = exp
(
−‖x− y‖2

)
/σ (11)

where parameter σ is set as t × n (n is the dimension of image vector). In this
experiment, parameters t and d vary form 0.1 to 10. Figures 2 and 3 show recognition
rates of SKLPCA when kernel functions are polynomial kernel function and Gaussian
kernel function, respectively.

We can see from Figure 2 that the recognition rates drop slowly with increasing
parameter d of polynomial kernel function. We also find that the recognition rates
are very poor when parameter t of Gaussian kernel function is smaller than 0.3
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Fig. 2. Effect of kernel function on recognition performance of SKLPCA with polynomial
kernel

from Figure 3, but the recognition rates are significantly improved when t is larger
than 0.3.

We also compare SKLPCA with KPCA when kernel functions are Gaussian
kernel and polynomial kernel, respectively. Table 1 presents the top recognition
rates (%) of SKLPCA and KPCA with various parameters t or d; the values in
parentheses denote the corresponding dimension of feature vector. We can see that
the selection of kernel functions and different parameter values affect the recognition
performances. Due to taking the prior class-label information into consideration,
SKLPCA outperforms KPCA in term of recognition performance.

Secondly, we evaluate the recognition performance of SKLPCA and compare it
with other methods: PCA, KPCA, LPCA, and FisherFaces when the number of
training samples is varied. We construct five training sets by randomly selecting 2,
3, 4, 5 and 6 images of each person. The remaining images are used for test. The
recognition procedure is repeated 10 times by randomly choosing different training
and testing sets. Table 2 lists the top average recognition rates and standard devia-
tion of five methods. The values in parentheses denote the corresponding dimension
of feature vectors. Polynomial kernel function (parameter d = 0.5) is adopted for
SKLPCA and KPCA. We can see from Table 2 that the nonlinear methods (KPCA
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Fig. 3. Effect of kernel function on recognition performance of SKLPCA with Gaussian
kernel

Methods Polynomial Kernel Gaussian Kernel
d = 0.1 d = 0.5 d = 1.0 d = 1.5 t = 0.1 t = 0.5 t = 1.0 t = 1.5

SKLPCA 91.00 91.00 91.50 92.50 45.00 90.50 92.50 93.00
(57) (51) (50) (49) (19) (60) (50) (51)

KPCA 89.50 91.00 90.00 88.00 12.50 89.00 89.00 89.50
(92) (75) (73) (89) (40) (66) (61) (75)

Table 1. Result comparison on comparison of SKLPCA and KPCA with different kernel
function on ORL database

and SKLPCA) outperform linear methods (PCA, LPCA, FisherFacces); the main
cause is the nonlinear methods can better model variations of poses which results
in nonlinear distribution of face images. Moreover, our SKLPCA method also pre-
serves within-class geometric structures of original data by embedding within-class
nearest neighbors, which explains the reason why our method is better than KPCA.
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Methods Number of training samples
2 3 4 5 6

SKLPCA 81.88± 2.79 89.79± 2.69 93.50± 2.05 95.80± 1.17 97.37± 1.12
(38) (40) (46) (39) (55)

KPCA 79.00± 3.59 86.36± 1.66 92.00± 1.43 94.30± 1.35 95.00± 0.77
(42) (46) (55) (46) (41)

LPCA 79.50± 6.36 85.40± 2.01 90.11± 1.67 92.25± 1.31 94.25± 2.69
(35) (38) (41) (37) (38)

PCA 79.81± 1.26 87.07± 1.79 90.50± 1.60 93.40± 1.35 94.50± 1.28
(58) (56) (57) (59) (57)

FisherFaces 79.34± 2.26 87.75± 1.52 91.42± 1.91 93.30± 1.89 94.17± 1.78
(26) (39) (38) (39) (39)

Table 2. The top average recognition rates (%) and standard deviation of five methods
under varying number of training samples on ORL database

4.2 Experimental Results on Yale Database

Yale database (http://cvc.yale.edu/projects/yalefaces/yalefaces.html)
contains 165 images from 15 individuals, each has 11 images with varying facial
expression or lighting. The size of each image is 320 × 243 pixels, with 256 grey
levels per pixel. In our experiment, the images are manually cropped and resized to
64×64 pixels and no other preprocessing is conducted. We considered this database
in order to evaluate the performance of algorithms under the condition where facial
expression and lighting conditions are varied. Sample images of one person are given
in Figure 4.

Fig. 4. Sample images of one person on Yale database

Firstly, we check the performance of the proposed SKLPCA under noise condi-
tions. First five images per person are selected for training and the remaining images
for test. All images in the test set are added with Gaussian noise (meanµ = 0 and
stand deviation σ = 0.1 ), salt & pepper noise (the noise density ρ = 0.1 ) and multi-
plicative noise, respectively. Thus, we have three test sample sets with various noises.
The multiplicative noise is added to the image using the equation y = x + n ∗ x,
where x denotes the clean image and n is uniformly distributed random noise with
mean 0 and variance V. Polynomial kernel function (parameter d = 0.5) is adopted
for SKLPCA and KPCA. Table 3 lists the top recognition rates of five methods
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under three noise conditions and clean condition. The values in parentheses denote
the corresponding dimension of feature vectors. We can find from Table 3 that
SKLPCA outperforms other methods.

Methods Without noise Gaussian noise salt & pepper noise multiplicative noise

σ = 0.1 ρ = 0.1 V = 0.3

SKLPCA 86.67 (36) 78.89 (45) 84.44 (41) 83.33 (36)
KPCA 81.11 (17) 70.00 (18) 75.56 (19) 80.00 (18)
LPCA 77.78 (29) 72.22 (36) 75.56 (47) 74.44 (31)
PCA 81.11 (17) 70.00 (16) 75.56 (17) 73.33 (18)
FisherFaces 83.33 (13) 76.67 (14) 81.11 (14) 81.11 (14)

Table 3. Comparison of recognition performance under noise conditions on Yale database

Secondly, we test the recognition performance of five methods under varying
number of training samples. We construct five training sets by randomly selecting 2,
3, 4, 5 and 6 images of each person. The remaining images are used for test. As
mentioned previously, we repeated each experiment 10 times. Table 4 shows the
top average recognition accuracy and correspondence to standard deviation. Table
4 reveals that supervised learning algorithms (SKLPCA and FisherFaces) methods
outperform unsupervised methods (PCA, LPCA and KPCA). We can see that our
proposed SKLPCA method is comparable to FisherFaces under conditions which
both lighting and facial expressions varied.

Methods Number of training samples
2 3 4 5 6

SKLPCA 56.56± 2.76 74.83± 2.67 78.95± 1.93 83.89± 3.68 86.67± 4.26
(15) (29) (42) (55) (65)

KPCA 57.63± 2.96 59.58± 5.93 64.11± 2.90 65.56± 2.43 68.53± 4.8
(25) (38) (50) (66) (72)

LPCA 55.40± 5.54 61.33± 3.02 65.05± 2.56 66.11± 4.39 68.13± 4.55
(25) (39) (59) (83) (90)

PCA 56.44± 0.73 61.25± 1.87 64.00± 1.02 65.67± 1.21 67.87± 2.06
(30) (45) (58) (72) (82)

FisherFaces 57.93± 3.63 73.08± 3.14 80.57± 3.76 82.79± 3.41 85.93± 3.64
(13) (14) (14) (14) (14)

Table 4. Comparison of recognition performance under varying number of training samples
on Yale database
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4.3 Experiment Results on CUM PIE Face Database

The CMU pose, illumination and expression (PIE) database [20] contains 41 386
images of 68 individuals. The images were acquired under different pose and variable
illumination conditions and with different facial expression. In this experiment, we
choose only the frontal face images (C27) under varying illumination conditions
(without expression variations); each person has 45 images. The images are cropped
and resized to 64 × 64 pixels. Some sample images of one person are shown in Fi-
gure 5. We consider this database in order to evaluate the performance of algorithms
under the conditions where lighting is varied.

Fig. 5. some samples of one person on CMU PIE database

We randomly selected 25 images per person for training and the rest for test.
The polynomial kernel function is selected for SKLPCA and KPCA, where d = 0.5.
For each algorithm, the process is repeated 20 times and the average recognition rate
curves with varying dimension of feature vectors are plotted in Figure 6. We can see
from Figure 6 that supervised algorithms (SKLPCA and FisherFaces) outerperform
unsupervised algorithms (KPCA, LPCA and PCA) under conditions where lightings
are varied. We can also find that our proposed SKLPCA outperforms the Fisher-
Faces method. In particular, the SKLPCA method achieves 99.1 percent correct
face recognition accuracy when the dimension of feature vector is 88.

4.4 Experimental Result on CAS-PEAL Face Database

CAS-PEAL face database (http://www.jdl.ac.cn/peal/index.html) [21] con-
tains 99 594 images of 1 040 individuals with varying pose, expression, accessories,
and lighting. In this experiment, we choose the frontal faces with varying expressions
and lightings to form a subset. This subset contains 910 images from 65 individuals;
each has five various expression images and nine different lighting images. Samples
of one individual are shown in Figure 7.

Firstly, we check the recognition performance of our proposed SKLPCA under
conditions where facial expression are varied. We select the first two expression im-
ages per person for training and the remaining three expression images are used as
test samples. Table 5 lists the top recognition accuracies of five methods with corre-
sponding dimensions of feature vectors. The result indicates SKLPCA outperforms
other methods under conditions where facial expressions are varied.

Secondly, we test the recognition performance of five algorithms on the full
subset. We randomly select 3, 4, 5, 6, 7 samples to construct five training sets, and
the remaining samples are used as test sets. The recognition procedure is repeated
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Fig. 6. Comparison of recognition rate of five methods under varying dimension on CMU
PIE

Fig. 7. Samples of one person on CAS-PEAL: the first row shows images with varying
expressions; the second row shows images with varying lighting conditions

Methods SKLPCA KPCA LPCA PCA FisherFaces

The top recogni-
tion rate (%)

94.87 (65) 92.82 (59) 90.26 (36) 91.79 (45) 94.36 (51)

Table 5. The top recognition rates (%) of five methods under varying facial expressions
on CAS-PEAL database
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10 times by randomly choosing different training and testing sets. Table 6 gives the
top average recognition rates (%) and standard deviation of five methods. The values
in parentheses denote the corresponding dimension of feature vectors. We can find
from Table 6 that the supervised methods (SKLPCA and FisherFaces) outperform
unsupervised methods (KPCA, LPCA and PCA). And SKLPCA is comparable to
FisherFaces in term of recognition performance.

Methods Number of training samples
3 4 5 6 7

SKLPCA 70.32± 3.38 76.92± 1.33 82.57± 2.01 85.62± 1.53 89.63± 1.79
(94) (96) (96) (96) (97)

KPCA 45.96± 1.67 52.78± 1.32 58.36± 1.27 61.58± 2.51 65.00± 1.87
(96) (97) (96) (99) (100)

LPCA 44.34± 1.70 50.31± 1.78 57.67± 2.49 60.31± 3.46 64.88± 1.83
(96) (98) (90) (96) (95)

PCA 44.20± 1.24 51.50± 2.06 59.32± 1.89 61.23± 2.01 64.00± 2.37
(95) (96) (96) (95) (92)

FisherFaces 68.56± 2.23 76.98± 1.62 82.02± 1.30 85.46± 1.15 88.88± 2.01
(63) (64) (64) (63) (64)

Table 6. The top average recognition rates (%) and standard deviation of five methods
under varying number of training samples on CAS-PEAL database

5 CONCLUSION

In this paper, a novel feature extraction method called SKLPCA is proposed. First,
the face images are mapped into high dimension feature space by kernel trick. Then
a linear transformation is obtained in feature space. The transformation preserves
within-class geometric structures of the original data by embedding within-class
neighbor graph. The proposed SKLPCA is a supervised nonlinear feature extrac-
tion method which can efficiently discover the nonlinear structure of face images.
Experimental results on ORL, Yale, CMU PIE and CAS-PEAL databases show the
effectiveness of our method.
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