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Abstract. As the original rough set model is quite sensitive to noisy data, Ziarko
proposed the variable precision rough set (VPRS) model to deal with noisy data
and uncertain information. This model allowed for some degree of uncertainty and
misclassification in the mining process. In this paper, the variable precision rough
set model for an incomplete information system is proposed by combining the VPRS
model and incomplete information system, and the β-lower and β-upper approxi-
mations are defined. Considering that classical VPRS model lacks a feasible method
to determine the precision parameter β when calculating the β-reducts, we present
an approach to determine the parameter β. Then, by calculating discernibility ma-
trix and discernibility functions based on β-lower approximation, the β-reducts and
the generalized decision rules are obtained. Finally, a concrete example is given to
explain the validity and practicability of β-reducts which is proposed in this paper.
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1 INTRODUCTION

Rough set theory (RST) was proposed by Pawlak in 1982 [11]. It is an excellent
mathematical tool for dealing with vague, uncertain, imprecise and incomplete in-
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formation. With more than twenty years development, RST has been successfully
applied in artificial intelligence, cognitive sciences, machine learning, knowledge ac-
quisition, decision analysis, knowledge discovery from databases, and so on [3, 10,
12]. The equivalence relation is the mathematical basis for RST. The set of all equi-
valence objects is called equivalence class, and the family of equivalence classes forms
a partition of the universe. A rough set is the approximation of a vague concept
by a pair of precise concepts which are known as lower and upper approximations.
The lower approximation is a definition of the domain objects which are known as
absolutly belonging to the concept of interest (set X), while the upper approxima-
tion is the set of those objects which possibly belong to the concept of interest. The
boundary region or region of uncertainty is the difference between the lower and
upper approximations. By using the concept of lower and upper approximations in
RST, knowledge hidden in information systems may be revealed and expressed in
the form of decision rules.

However, the original rough set model is quite sensitive to noisy data. Thus,
Ziarko [20] proposed the VPRS model to deal with noisy data and uncertain informa-
tion. VPRS model is an extension of the classical RST as a tool for classification of
objects. VPRS deals with partial classification by introducing a probability value β.
The β represents a bound on the conditional probability of a proportion of objects
in a condition class which are classified into the same decision class. Ziarko [20, 21]
considered β as a classification error, defined to be in the interval [0, 0.5) and his
model degenerates into the classical rough set model if β = 0. However, An et al. [1]
used the symbol β to denote the proportion of correct classification, in which case
the appropriate range is (0.5, 1] and their model degenerates into classical rough set
model if β = 1. For VPRS models, some researchers have studied it and got some
meaningful results [2, 9, 14].

A basic concept related to RST is information system (attribute-value system).
Most applications based on RST can fall into the attribute-value representation
model [18]. Information systems can be classified into two categories: complete and
incomplete. A complete information system is a system in which the values of all
the attributes are given. An incomplete information system means a system where
the values of some of the attributes are not known, i.e., missing or partially known.
Missing attribute values commonly exist in real world data sets. They may come
from the data collecting process or redundant diagnose tests, unknown data and
so on. Mining a database with incomplete data, the patterns of missing data as
well as the potential implication of these missing data constitute valuable know-
ledge [16]. The basic idea of RST is knowledge acquisition in the sense of unraveling
a set of decision rules from an information system via an objective knowledge reduc-
tion process for decision making. Various approaches using RST and VPRS have
been proposed to induce decision rules from data sets taking the form of complete
information systems [3, 5, 9, 11, 12, 18, 19, 20].

Due to the existence of incomplete information systems in real life, many au-
thors have extended rough set model into incomplete information systems [4, 6, 7,
15, 16, 17]. Especially, in [15], the VPRS approaches for dealing with incomplete
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information system have been discussed, and a cumulative variable precision rough
set model was established in order to overcome no monotonic property of the lower
approximation. The purpose of this paper is to combine the VPRS model and in-
complete information system, propose VPRS model for an incomplete information
system different from [15]. At the same time, we present an approach to determine
the parameter β which is a classification error. Then, by calculating discernibility
matrix based on β-lower approximation, the β-reducts and the generalized decision
rules are obtained.

To facilitate our discussion, we first present basic notions of VPRS model and
incomplete information system in Section 2. The β-lower and β-upper approxima-
tions for incomplete information system are then defined in Section 3. Discernibility
matrix and discernibility functions for incomplete decision table are given in Sec-
tion 4. An illustrative example is analyzed in Section 5 to show the feasibility of the
proposed approach. Results and comparison are summarized in Section 6.

2 PRELIMINARIES

In original rough set model, let U be a non-empty and finite set called the universe,
R be an equivalence relation on U . The pair (U,R) is called the approximation space
(it is also called Pawlak approximation space). The quotient set of U by the relation
R is denoted by U/R, and U/R = {E1, E2, · · · , Em}, where Ei(i ∈ {1, 2, . . . ,m})
is equivalence class of R. Elements in the same equivalence class are said to be
indistinguishable, and the equivalence classes of R are called elementary sets.

The original rough set model is quite sensitive to noisy data. When noisy
data exists, the lower and the upper approximations cannot normally be formed.
Ziarko [20] thus modified the original rough set model and proposed the VPRS
model to solve this problem. VPRS model was aimed at handling uncertain and
noisy information and was directly derived from the original rough set model with-
out any additional assumptions allowing for some degree of misclassification in the
mining process.

Let two sets X and Y be non-empty subsets of the universe U . The relative
degree of misclassification of the set X with respect to set Y is defined as

c(X, Y ) =

{
1− |X∩Y ||X| , |X| > 0

0, |X| = 0

where |X| is the cardinality of X. It is clear that 0 ≤ c(X, Y ) ≤ 1.

Based on the relative degree of misclassification, Ziarko generalized the lower
and upper approximations of the original rough set model with a majority inclusion
threshold β.

Definition 1 ([20]). Let (U,R) be an approximation space. For any X ⊆ U and
the parameter β (0 ≤ β < 0.5), the β-lower and the β-upper approximations of X
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with respect to R are defined as follows:

RβX =
⋃
{E ∈ U/R|c(E,X) ≤ β} ;

RβX =
⋃
{E ∈ U/R|c(E,X) < 1− β} .

The β-lower approximation ofX is also called the β-positive region ofX, denoted
as POSβ(X).

In addition, the β-boundary and the β-negative region of X with respect to R
are defined as follows:

BNRβX =
⋃
{E ∈ U/R|β < c(E,X) < 1− β};

NEGRβX =
⋃
{E ∈ U/R|c(E,X) ≥ 1− β}.

Example 1. Let (U,R) be an approximation space, U = {x1, x2, · · · , x20} and

U/R = {E1, E2, E3, E4, E5, E6},

where

E1 = {x1, x2, x3, x4, x5},
E2 = {x6, x7, x8},
E3 = {x9, x10, x11, x12},
E4 = {x13, x14},
E5 = {x15, x16, x17, x18},
E6 = {x19, x20}.

For X = {x4, x5, x8, x14, x16, x17, x18, x19, x20}, we suppose that β = 0.25, then
we have

c(E1, X) = 1− |E1 ∩X|
|E1|

= 1− 2

5
= 0.6 < 1− β;

c(E2, X) = 1− |E2 ∩X|
|E2|

= 1− 1

3
= 0.67 < 1− β;

c(E3, X) = 1− |E3 ∩X|
|E3|

= 1− 0

4
= 1 > 1− β;

c(E4, X) = 1− |E4 ∩X|
|E4|

= 1− 1

2
= 0.5 < 1− β;

c(E5, X) = 1− |E5 ∩X|
|E5|

= 1− 3

4
= 0.25 = β;

c(E6, X) = 1− |E6 ∩X|
|E6|

= 1− 2

2
= 0 ≤ β.
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Therefore,

RβX = E5 ∪ E6 = {x15, x16, x17, x18, x19, x20};
RβX = E1 ∪ E2 ∪ E4 ∪ E5 ∪ E6

= {x1, x2, x3, x4, x5, x6, x7, x8, x13, x14, x15, x16, x17, x18, x19, x20};
BNRβX = E1 ∪ E2 ∪ E4 = {x1, x2, x3, x4, x5, x6, x7, x8, x13, x14};

NEGRβX = E3 = {x9, x10, x11, x12}.

The classical rough set approach, based on complete information systems, cannot
be directly applied in information systems with missing attribute values; so an ex-
tension of rough sets that can deal with incomplete data presented by Kryszkiewicz
is given in [7].

Definition 2 ([7]). Information system is an ordered quadruple 〈U,Q, V, f〉, U is
a non-empty finite set of objects called the universe, Q is a non-empty finite set of
attributes, V is the union of attribute domains, i.e., V = ∪a∈QVa, where Va denotes
the domain of the attribute a. f : U × Q → V is an information function which
associates an unique value of each attribute with each object belonging to U , i.e.,
for any a ∈ Q and x ∈ U , f(x, a) ∈ Va.

It may happen that some attribute values for an object are missing. To indicate
such a situation, a distinguished value, so-called null value, is usually assigned to
those attributes. If Va contains null value for at least one attribute a ∈ Q, then
the information system is called an incomplete information system. Otherwise it is
a complete information system. In this paper, we will denote null value by ′∗′.

Definition 3 ([7]). Let 〈U,Q, V, f〉 be an incomplete information system. For at-
tribute subset A ⊆ Q, the tolerance relation RA is defined as

RA =
⋂
a∈A
{(x, y) ∈ U × U |a(x) = a(y) or a(x) = ∗ or a(y) = ∗} .

SA(x) = {y ∈ U |(x, y) ∈ RA}, SA(x) is a greatest set whose objects are possibly
indiscernible with x.

SA(x) is also called the tolerance class of x and

U/RA = {SA(x1), SA(x2), · · · , SA(xn)}

(xi ∈ U) denotes the set containing the tolerance classes. Tolerance classes in U/RA

do not constitute a partition of U in general. They may be subsets/supersets of
each other or may overlap. Of course, ∪x∈USA(x) = U .

Example 2. An incomplete information system about descriptions of several cars
is given in Table 1.

From Table 1, we have U = {x1, x2, · · · , x6}, Q = {P,M, S,X}, where P,M, S,X
stand for Price, Mileage, Size, Max-Speed, respectively.
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Car Price Mileage Size Max-Speed

x1 High High Full Low
x2 Low * Full Low
x3 * * Compact High
x4 High * Full High
x5 * * Full High
x6 Low High Full *

Table 1. An incomplete information system

We note that

U/SIM(Q) = {SQ(x1), SQ(x2), SQ(x3), SQ(x4), SQ(x5), SQ(x6)},

where SQ(x1) = {x1}, SQ(x2) = {x2, x6}, SQ(x3) = {x3}, SQ(x4) = {x4, x5},
SQ(x5) = {x4, x5, x6}, SQ(x6) = {x2, x5, x6}.

It can be also observed easily that

U/SIM({P, S,X}) = U/SIM(Q),

but
U/SIM({S,X}) 6= U/SIM(Q).

In fact,

U/SIM({S,X}) = {SA(x1), SA(x2), SA(x3), SA(x4), SA(x5), SA(x6)},

where A = {S,X}, SA(x1) = SA(x2) = {x1, x2, x6}, SA(x3) = {x3}, SA(x4) =
SA(x5) = {x4, x5, x6}, SA(x6) = {x1, x2, x4, x5, x6}.

Formally, a set A ⊆ Q is a reduct of information system iff U/SIM(A) =
U/SIM(Q) and for any B ⊆ A, U/SIM(B) 6= U/SIM(Q).

That is, for the incomplete information system given by Table 1, we can find
out that {P, S,X} is its reduct.

3 THE β-LOWER AND β-UPPER APPROXIMATIONS
FOR INCOMPLETE INFORMATION SYSTEM

In this section, we propose the concepts of the β-lower and β-upper approximations
for incomplete information system, and discuss the β-dependency degree of VPRS
model for incomplete information system and the β-reducts.

Definition 4. Let 〈U,Q, V, f〉 be an incomplete information system. For X ⊆ U
and A ⊆ Q, the β-lower and the β-upper approximations of X with respect to A
are defined as follows:

AβX = {x ∈ U |c(SA(x), X) ≤ β},
AβX = {x ∈ U |c(SA(x), X) < 1− β}.



VPRS Model for Incomplete Information Systems and Its β-Reducts 1391

In addition, the β-boundary and the β-negative region of X with respect to A
are defined as follows:

BNAβX = {x ∈ U |β < c(SA(x), X) < 1− β} ,
NEGAβX = {x ∈ U |c(SA(x), X) ≥ 1− β} .

If AβX = AβX, i.e., BNAβX = ∅, then X is called β-discernible with respect to
A. Otherwise, X is called β-indiscernible.

Remark 1. If 〈U,Q, V, f〉 is a complete information system, then the β-lower and
the β-upper approximations of X in Definition 4 would degenerate into the β-lower
and the β-upper approximations in [20].

Theorem 1. Let 〈U,Q, V, f〉 be an incomplete information system. For X ⊆ U
and A ⊆ Q. With respect to A, if X is β-discernible at level 0 ≤ β < 0.5, then it is
γ-discernible at any level γ > β.

Proof. With respect to A, if X is β-discernible at level 0 ≤ β < 0.5, then AβX =
AβX, i.e.,

{x ∈ U |c(SA(x), X) ≤ β} = {x ∈ U |c(SA(x), X) < 1− β}.

That is, there does not exist an x ∈ U , such that x ∈ AβX or x ∈ AβX when
β < c(SA(x), X) < 1− β.

Since for any γ > β, β < γ < c(SA(x), X) < 1 − γ < 1 − β, there does not
exist an x ∈ U , such that x ∈ AγX or x ∈ AγX. Therefore, AγX = AγX, i.e., X is
γ-discernible at level γ. 2

Theorem 2. Let 〈U,Q, V, f〉 be an incomplete information system. For X ⊆ U
and A ⊆ Q. With respect to A, if X is β-indiscernible at level 0 ≤ β < 0.5, then it
is γ-indiscernible at any level γ < β.

Proof. It follows from Theorem 1 directly. 2

Definition 5. Let 〈U,C∪D, V, f〉 be an incomplete information system. C is the set
of condition attributes, D is a decision attribute. A ⊆ C. Then the β-dependency
degree between A and D is defined as:

γ(A,D, β) =
|POS(A,D, β)|

|U |
. (1)

where POS(A,D, β) = {x|x ∈ U, c(SA(x), E) ≤ β}, E ∈ U/D.

Ziarko [20] also states that if X(X ⊆ U) is β-indiscernible at every level β, then
X will be called absolutely rough. Otherwise, X will be called relatively rough. For
every relatively rough set X, there exists a classification error level β at least such
that X is β-discernible at this level. The minimum of these β is called the discernible
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threshold. In fact, we usually need the ranges of β where X can be discerned rather
than a specific β, a central idea of this paper. While by Theorem 1 we know that
if we want to get the ranges of β which X can be discerned, we only need get the
discernible threshold.

In the following part, we attempt to determine the discernible threshold β.
Let 〈U,C ∪D, V, f〉 be an incomplete information system, U = {x1, x2, · · · , xn},

C be the set of condition attributes, D be a decision attribute. For any A ⊆ C,
S∗ = {SA(x1), SA(x2), . . . , SA(xn)} denotes the tolerance classes. Then with respect
to A, the discernible threshold β can be calculated as follows:

β = ξ(A,X) = max(m1,m2), (2)

where

m1 = 1−min{c(SA(x), X)|c(SA(x), X) > 0.5},
m2 = max{c(SA(x), X)|c(SA(x), X) < 0.5}.

Furthermore, the β-reducts and the generalized decision rules for an incomplete
information system can be obtained according to the steps below:

Step 1. For each condition attribute A(A ⊆ C), according to (1), calculate the
dependency degree between A and D.

Step 2. Removes redundant attributes. A condition attribute subset A ⊆ C is
called a β-reduct if and only if it satisfies γ(A,D, β) = γ(C,D, β) and there does
not exist a condition attribute subset B ⊆ A such that γ(B,D, β) = γ(C,D, β).

Step 3. Generalized decision rules are obtained according to the final β-reducts.
(Generalized decision rules can be expressed as rij : des(Xi) → des(Yj), where
Xi expresses the description of objects in universe according to β-reducts, Yj ex-
presses the description of objects in universe according to decision attributes D.
Formally, generalized decision rules can be expressed as ∧(c, v)→ ∨(d, w), where
c is condition attribute and v is condition attribute value, d is decision attribute
and w is decision attribute value.)

4 INCOMPLETE DECISION TABLE, DISCERNIBILITY MATRIX
AND DISCERNIBILITY FUNCTIONS

The discernibility matrix was developed by Skowron and Rauszer [13]. An element
of the matrix is the set of all attributes that distinguish the corresponding object
pairs, namely, the set consists of all attributes on which the corresponding two
objects have distinct values. One can construct a Boolean discernibility function
from a discernibility relation, with attributes as Boolean variables. Skowron and
Rauszer showed that the set of attribute reducts is in fact the set of prime implicants
of the reduced disjunctive form of the discernibility function. This provides a logic
foundation for the study of reducts.
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In this section, we will present the discernibility matrix and discernibility func-
tions based on the incomplete information system.

Incomplete decision table is an incomplete information system 〈U,C ∪ d, V, f〉,
where the elements of C are called condition attributes, d 6∈ C and ∗ 6∈ Vd, is
a distinguished attribute called decision attribute.

Define function ∂A(x) : U → P (Vd), A ⊆ Q, as follows:

∂A(x) = {i|i = d(y), y ∈ SA(x)}.

It is also said to be a generalized decision function in incomplete decision table.

Definition 6 ([8]). Let 〈U,Q, V, f〉 be an incomplete information system. For any
x, y ∈ U , a ∈ Q, the discernibility function δQ(x, y) between x and y is defined as
follows:

δQ(x, y) = {a ∈ Q|a(x) 6= a(y) ∧ a(x) 6= ∗ ∧ a(y) 6= ∗} = {a ∈ Q|(x, y) 6∈ Ra}.

∆ is a discernibility function for incomplete information system iff

∆ =
∏

(x,y)∈U×U

∑
δQ(x, y).

∆(x) is a discernibility function for object x in incomplete information system iff

∆(x) =
∏
y∈U

∑
δQ(x, y).

∆∗ is a discernibility function for incomplete decision table iff

∆∗ =
∏

(x,y)∈U×{z∈U |d(z)6∈∂C(x)}

∑
δC(x, y).

∆∗(x) is a discernibility function for object x in incomplete decision table iff

∆∗(x) =
∏

y∈{z∈U |d(z)6∈∂C(x)}

∑
δC(x, y).

(Where
∏

and
∑

express conjunction and disjunction, respectively.)

Discernibility matrix can be used to find the minimal subset(s) of attributes,
which leads to the same partition of the data as the whole set of attributes Q. To do
this, first we have to construct discernibility function. This is a Boolean function.
The core is the set of all the single element in the discernibility matrix, defined as
follows:

core(Q) = {a ∈ Q|δQ(x, y) = {a}}

where x, y ∈ U.



1394 Z.T. Gong, Z.H. Shi, H.Y. Yao

5 A CASE STUDY

In this section, an example is given to show the validity and practicability of β-
reducts which is proposed in this paper.

Example 3. Given descriptions of several cars as in Table 2 [8]. Let us try to
classify them according to the chosen subsets of attributes. From Table 2, U =
{1, 2, 3, 4, 5, 6}. Q = {P,M, S,X}, where P, M, S, X stands for Price, Mileage, Size,
Max-Speed, respectively.

Car Price Mileage Size Max-Speed D

1 High High Full Low Good
2 Low * Full Low Good
3 * * Compact High Poor
4 High * Full High Good
5 * * Full High Excel
6 Low High Full * Good

Table 2. An incomplete information system

1. Tolerance classes and decision classes.

Tolerance classes can be calculated as follows:

U/RQ = {SQ(1), SQ(2), SQ(3), SQ(4), SQ(5), SQ(6)}

where SQ(1) = {1}, SQ(2) = {2, 6}, SQ(3) = {3}, SQ(4) = {4, 5}, SQ(5) =
{4, 5, 6}, SQ(6) = {2, 5, 6}.
Decision classes can also be obtained as follows: U/D = {DGood , DPoor , DExcel},
DGood = {1, 2, 4, 6}, DPoor = {3}, DExcel = {5}.

2. Determine the precision parameter β

By the formula (2),

ξ(Q,D) = max(m1,m2).

m1 = 1−min{c(SQ(x), E)|c(SQ(x), E) > 0.5},
m2 = max{c(SQ(x), E)|c(SQ(x), E) < 0.5}.

where E denotes the equivalence classes based on decision attribute D, and

U/D = {DGood, DPoor, DExcel}.

Since

c(SQ(1), DGood) = 1− 1

1
= 0,
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c(SQ(1), DPoor) = 1− 0

1
= 1,

c(SQ(1), DExcel) = 1− 0

1
= 1,

c(SQ(2), DGood) = 1− 2

2
= 0,

c(SQ(2), DPoor) = 1− 0

1
= 1,

c(SQ(2), DExcel) = 1− 0

1
= 1,

c(SQ(3), DGood) = 1− 0

1
= 1,

c(SQ(3), DPoor) = 1− 1

1
= 0,

c(SQ(3), DExcel) = 1− 0

1
= 1,

c(SQ(4), DGood) = 1− 1

2
=

1

2
,

c(SQ(4), DPoor) = 1− 0

1
= 1,

c(SQ(4), DExcel) = 1− 1

2
=

1

2
,

c(SQ(5), DGood) = 1− 2

3
=

1

3
,

c(SQ(5), DPoor) = 1− 0

1
= 1,

c(SQ(5), DExcel) = 1− 1

3
=

2

3
,

c(SQ(6), DGood) = 1− 2

3
=

1

3
,

c(SQ(6), DPoor) = 1− 0

1
= 1,

c(SQ(6), DExcel) = 1− 1

3
=

2

3
.

Therefore,

m1 = 1−min
(

1,
2

3

)
=

1

3
,m2 = max

(
0,

1

3

)
=

1

3
.

Thus,

ξ(Q,D) = max (m1,m2) =
1

3
.

That is, we have the precision parameter β = 1
3
.

3. The set of the β-reducts

For β = 1
3
, Q

β
(DGood) = {1, 2, 5, 6}, Q

β
(DPoor) = {3}, Q

β
(DExcel) = {∅}.
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1 2 3 5 6

1 - - S, X X -
2 - - S, X X -
3 S, X S, X - S S
5 - - S - -
6 - - S - -

Table 3. The discernibility matrix for incomplete decision table

The discernibility functions ∆∗ are given as follows:

∆∗β(1) = (S ∨X) ∧X = X,

∆∗β(2) = (S ∨X) ∧X = X,

∆∗β(3) = (S ∨X) ∧ S = S,

∆∗β(5) = S,

∆∗β(6) = S,

∆∗β(D1) = ∆∗β(1) ∗∆∗β(2) ∗∆∗β(5) ∗∆∗β(6) = X ∧X ∧ S ∧ S = X ∧ S,
∆∗β(D2) = ∆∗β(3) = S,

∆∗β(D) = ∆∗β(D1) ∗∆∗β(D2) = X ∧ S ∧ S = X ∧ S.

So {X, S} is the β-reducts for incomplete decision table, the incomplete decision
table for β-reducts {X, S} is presented in Table 4.

Car Size Max-Speed D

1 Full Low Good
2 Full Low Good
3 Compact High Poor
5 Full High Excel
6 Full * Good

Table 4. The incomplete decision table for β-reducts

We are interested in decision rules for β-reducts. Thus, Table 5 presents the
incomplete discernibility matrix for the β-reducts {X, S}.

1 2 3 5 6

1 - - S, X X -
2 - - S, X X -
3 S, X S, X - S S
5 - - S - -
6 - - S - -

Table 5. The incomplete discernibility matrix for the β-reducts
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The relative discernibility function is given as follows:

∆∗(1) = (S ∨X) ∧X = X,

∆∗(2) = (S ∨X) ∧X = X,

∆∗(3) = (S ∨X) ∧ S = S,

∆∗(5) = S,

∆∗(6) = S.

4. Generalized decision rules

Car Size Max-Speed D

1 - Low Good
2 - Low Good
3 Compact - Poor
5 Full - Excel
6 Full - Good

Table 6. The final version in the subset {S,X} of incomplete decision table

According to Table 6, the generalized decision rules can be obtained as follows:

r1 : (X,Low)→ (D,Good);

r2 : (S,Full)→ (D,Good) ∨ (D,Excel);

r3 : (S,Compact)→ (D,Poor);

6 CONCLUSIONS

The study of reducts is fundamental in rough set theory. The concept of a discerni-
bility matrix enables us to establish a logical and theoretical foundation for reducts
of an information table. In this paper, we combine the variable precision rough
set (VPRS) model and incomplete information system, the variable precision rough
set model for an incomplete information system is proposed. At the same time, we
present an approach to determine the parameter β and obtained the β-reducts using
the discernibility matrix. We compared our method with the approach in [8], and
find the decision rules which we obtained is the same as the conclusion in [8]; but we
use classification error β = 1

3
, such that the lower and upper approximations of X

are increased, then it has adaptive faculty for noise data. On the other hand, we
use discernibility function and discernibility matrix to obtain the β-reducts, which
simplified the process of calculate.
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