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Abstract. A set of n×n Boolean matrices along with the Boolean matrix multipli-
cation operation form a semigroup. For each matrix A it is possible to find index µ
and period λ, such that Aµ = Aµ+λ, and µ, λ are the smallest positive integers
with this property. We are concerned with a question: How many n × n Boolean
matrices have the given index, and period? A new algorithm is presented that was
used to compute index and period statistics of all square Boolean matrices up to
n = 8. Computed statistics are presented in the appendix of the paper.
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1 INTRODUCTION

A Boolean matrix is a matrix with only {0, 1}-entries viewed as elements of Boolean
algebra. We can define multiplication of such matrices similar to a classical matrix
multiplication using logical OR as addition, and logical AND as multiplication,
respectively. We can also intuitively define powers of (square) Boolean matrices,
i.e., An is n-times multiplied matrix A with itself.

Boolean matrices and Boolean matrix multiplication have a wide range of ap-
plications. In general, they can represent binary relations on finite sets, and the
Boolean matrix product is used to compute the composition of relations. (Simple)
graphs can be represented by Boolean adjacency matrices, where the element aij
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is 1 iff there is an (oriented) edge between vertices vi, and vj, respectively. More-
over, powers of adjacency matrix are related to powers of graphs, more specifically,
Boolean power B = Ai of adjacency matrix A has bjk = 1 iff there exists a path
with the length exactly i between vertices vj, vk.

It is known that when we compute successive powers of some Boolean matrix,
the sequence starts to repeat itself at some point, i.e., we will get Am = Am+l for
some m, l. That is, the minimal m is called the index, and l the period of matrix A.
It is not difficult to compute index and period of a single Boolean matrix, and the
bounds on these numbers were given already by Schwarz [5, 6]. However, it is not
known, how many n× n matrices there are with index m, and period l.

Our research was inspired by the recently proposed matrix test for random-
ness [1]. One of the tests is based on the distribution of indexes and periods of
Boolean matrices. A tested (pseudo)random sequences is mapped to a set of Boolean
matrices. For each matrix the index and period are computed. The statistics of the
set formed by the sequence are compared by the (specific) χ-square test with the
statistics of the whole set of Boolean matrices. If the test fails at some level α, the
sequence is rejected.

The main problem of the test is that it is difficult to compute the required
(complete) statistics of the whole set of matrices (this set contains 2n

2
matrices).

Grošek et al. in [1] provide statistics for n (size of the matrix) up 5. We have later
extended these results to cases n = 6, 7 [3, 4]. In this paper, we focus on the problem
of computing these statistics for n = 8. In some cases the value n = 8 is optimal
for the implementation of the test, because most of the computers today are byte
oriented. Moreover, a single 8 × 8 Boolean matrix can be packed completely into
one 64-bit word.

To compute the desired statistics by the classical method, we should compute 264

indexes and periods of 8×8 Boolean matrices. Although it is a feasible computational
effort, it is still too costly. However, we have been able to find a more effective
enumeration algorithm, which reduces the complexity of the effort to approximately
256.1 We have implemented this algorithm, and executed in a grid environment.
The results of the computation are summarized in Appendix A.

The paper is organized as follows. In Section 2, we summarize more precisely
the basic facts about Boolean matrices. Our enumeration algorithm is described
in Section 3. We provide the details of the implementation in Section 4. Section 5
contains summary of the results, and the details of the computational effort involved.
Finally, Section 6 contains our conclusions, remarks, and open questions.

2 PRELIMINARIES

Let B = ({0, 1},∨,∧) be a standard Boolean algebra (∨ denotes logical OR, and
∧ denotes logical AND). LetMn = B(n×n) denote a set of all n×n Boolean matrices.

1 For readers with interest in cryptography, we remark that this effort is similar to
breaking DES by the brute force attack.
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Let � denote a Boolean matrix multiplication, i.e., if A,B ∈Mn, then C = A�B ∈
Mn, and ci,j =

∨n
j=1 ai,k ∧ bk,j. To simplify notation, we omit the symbol � when

writing products of different matrices from Mn.
For the convenience of the reader, we summarize basic mathematical facts about

the operation � from [1, 5, 6]. Algebra (Mn,�) is a finite semigroup, i.e., the
operation � is closed on Mn and associative. Let I be an identity matrix (with
ones on diagonal). Let A0 = I, and let Ai = A � Ai−1 for i > 0 integer, i.e., Ai is
a usual i-th power of matrix under � multiplication. As the number of elements of
Mn is finite, surely Aj = Ai for some j > i.

Definition 1. Let A ∈ Mn. Let µ(A), λ(A) be the smallest positive integers such
that Aµ(A) = Aµ(A)+k for any k > 1. We call µ(A) an index of A, and λ(A) a period
of A.

According to the Euler-Fermat Theorem for Finite Semigroups [5], there exist
two numbers M,Λ, such that for each A ∈Mn : xM+Λ = xM , with

M = max{µ(A);A ∈Mn},

Λ = lcm{λ(A);A ∈Mn}.

We call M,Λ universal exponents of Mn (i.e., the universal index and period,
respectively). For the semigroup of Boolean matrices, we can use the following two
theorems to compute the universal exponents.

Theorem 1. [6] For the semigroup Mn of n × n Boolean matrices, the universal
index M = (n− 1)2 + 1.

Theorem 2. [6] Let n = n1 + n2 + . . . + nk be a partition of n. Then Λ =
lcm{lcm{n1, n2, . . . , nk}}, where the outer least common multiplier is taken across
all possible partitions of the integer n.

However, in our research we are not interested directly in the value Λ. Instead,
we only want to know the maximum period that can be achieved. This value is then

λmax = max{lcm{n1, n2, . . . , nk}},

where the maximum is again taken across all possible partitions of n. Relevant
possible exponents for small n’s are summarized in Table 1.

n M Λ λmax

6 26 60 6
7 37 420 12
8 50 840 15

Table 1. Universal exponents for the semigroup of Boolean matrices (selected n’s)
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3 ENUMERATION OF MATRICES WITH A GIVEN INDEX
AND PERIOD

Let A ⊂ Mn be a set of n × n Boolean matrices. Let νA(m, l) denote the num-
ber of Boolean matrices from the set A with given index m, and period l, i.e.,
νA(m, l) = |{A ∈ A;µ(A) = m,λ(A) = l}|. We are interested in the question of ef-
fective computation of νMn for a given (small) n. For simplicity, we will use νn in
place of νMn . The number of possible indexes and periods is limited (and small).
Thus it is possible to use the following enumeration algorithm to compute νn:

1. For m = 0, . . . ,M , l = 0, . . . , λmax: initialize counters C[m, l]← 0;

2. For each matrix A ∈Mn: compute µ(A), λ(A), and increment C[µ(A), λ(A)];

3. Output: νn(m, l) = C[m, l].

The complexity of the basic algorithm is 2n
2

computations. Grošek et al. [1]
were able to use this algorithm for n up to 5. Using internal bit parallelism [4] we
were able to compute the values up to n = 7, with the estimate for n = 8 on 23 000
CPU years [3]. In this section we show the advanced enumeration algorithm with a
lower computational complexity (with the same memory requirements).

It is well known that two square matrices, say A,B, are equivalent if there exists
a permutation matrix2 P such that PAP T = B. If A and B are adjacency matrices
of graphs GA, GB, then these graphs are isomorphic iff A and B are equivalent. The
outline of our algorithm is based on the following two lemmas drawn from graph
theory.

Lemma 1. Let A ∈Mn be an n×n Boolean matrix. Let P be an n×n permutation
matrix. Then µ(PAP T ) = µ(A), and λ(PAP T ) = λ(A).

Lemma 1 could be used to simplify the enumeration algorithm. Suppose we
compute µ(A), λ(A). Then it is not necessary to compute µ, λ again for each
of the matrices PAP T , we can add to counter C[µ(A), λ(A)] the cardinality of
{PAP T}. However, this number can be different for different matrices, and can be
lower than the number of possible permutation matrices, n! (e.g., when A = I).
The most difficult problem is to provide a sequence of matrices 〈Ai〉, such that
Ai+1 6∈

⋃i
j=1{PAjP T}. This problem is equivalent to enumerating all directed graphs

(with loops) up to isomorphism.

Lemma 2. Let A ⊂ Mn be a set of n × n Boolean matrices. Let P be an n × n
permutation matrix, then |PAP T | = |A|.

Corollary 1. Let A ⊂Mn be a set of n× n Boolean matrices. Let P be an n× n
permutation matrix and let B = PAP T , then for each (m, l): |{B ∈ B : µ(B) =
m,λ(B) = l}| = |{A ∈ A : µ(A) = m,λ(A) = l}|, i.e., the index and period
statistics of A,B are the same.

2 A permutation matrix has exactly one 1 in each row and column.
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Let P denote a set of permutation matrices, and let A ⊂Mn. Let P⊗A denote
a set {B = PAP T ;P ∈ P , A ∈ A}. Let PA denote a special set of permutation
matrices such that sets PAP T are all pairwise disjoint. Using Corollary 1, we can
see that in this special case νPA⊗A = |PA| · νA. That is, we can compute the index
and period statistics of the set PA ⊗A (which is at least as large as A, but usually
much larger) just by computing the index and period statistics of the set A.

In our algorithm, we partition the set Mn into disjoint sets PAi ⊗ Ai. Each
set Ai is formed in such a way that it is easy to enumerate its elements, and to
compute |PAi |, respectively. Instead of computing νn by computing the index and
period of each matrix in Mn, we only compute indexes and periods of matrices in⋃Ai, and then compute

νn =
∑
i

|PAi | · νAi .

The partition in our algorithm is based on the signatures of matrices.

Definition 2. Let A ∈ Mn be an n × n Boolean matrix that can be written in
a block form as (

A1 R
L A2

)
,

where A1 is (n− k)× (n− k) matrix, A2 is k× k matrix, and LT , R are (n− k)× k
matrices. We will call (n− k)× 2k matrix

Sk =
(
LT R

)
,

a k-signature of A.

Definition 3. We will call a k-signature Sk of A an ordered k-signature, if the rows
of Sk are lexicographically ordered.

Example 1. Let

A =


0 1 1 0
1 0 0 1
1 1 1 1
0 0 1 0

 .
Its 1-signature is the matrix:  0 0

0 1
1 1

 ,
which is an ordered signature. Its 2-signature is the matrix(

1 0 1 0
1 0 0 1

)
,

which is not ordered (in lexicographic order).
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Lemma 3. Let A be a set of n × n Boolean matrices with the same k-signature
Sk. Let Ok be a matrix obtained from Sk by ordering its rows lexicographically. Let
P1 be a (n − k) × (n − k) permutation matrix such that Ok = P1Sk, and let P be
a n× n permutation matrix

P =

(
P1 0
0 I

)
.

Then B = PAP T is a set of n× n Boolean matrices with the same k-signature Ok.

Proof. Let A ∈Mn have signature Sk =
(
LT R

)
. We can see that

PAP T =

(
P1 0
0 I

)(
A1 R
L A2

)(
P T

1 0
0 I

)
=

(
P1A1P

T
1 P1R

LP T
1 A2

)
.

Signature of PAP T is then(
P1L

T P1R
)

= P1

(
LT R

)
= P1Sk = Ok.

2

A signature splits a matrix in two parts in a special way. If we apply operation
PAP T , we are in fact swapping rows and columns in the same way. For example,
if PA has exchanged rows 1 and 3 (compared to A), then AP T has exchanged
columns 1 and 3. If we change only rows (and columns) from the upper-left part of
the matrix (first n−k rows/columns), we do not “destroy” the k-signature of A, we
only exchange its rows. For each matrix A we can always find a permutation matrix
operating on first n − k rows/columns only, such that the signature of PAP T is
ordered. The set of all matrices can be split into distinct sets according to a common
signature up to the order of rows. These subsets can be further split into distinct
classes corresponding to different permutations of the signature rows. Each of these
classes can be obtained from the set of matrices with an ordered signature and
a corresponding permutation matrix. This is exactly the division of the space Mn

required for our algorithm.
Our algorithm works as follows:

1. Initialize counters C[m, l]← 0;

2. For each ordered signature

Sk =
(
LT R

)
:

(a) For m = 0, . . . ,M , l = 0, . . . , λmax: initialize counters Cs[m, l]← 0;

(b) For each matrix

A =

(
A1 R
L A2

)
,

where A1 ∈Mn−k, A2 ∈Mk:
compute µ(A), λ(A), and increment Cs[µ(A), λ(A)];
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(c) Compute N , the number of distinct row permutations of Sk.

(d) For each m, l: C[m, l]→ C[m, l] +N · Cs[m, l].

3. Output νn(m, l) = C[m, l].

N.B. For given n, k an optimal choice is detailed in the following section.

3.1 Complexity of the Enumeration

The number of possible ordered k-signatures (for a given n) is a number of (n− k)
combinations of possible 22k elements with repetitions, that is(

22k + (n− k)− 1
n− k

)
.

For each ordered k-signature we must check all possible values of the bits of A1, A2,
that is (n− k)2 + k2 bits. Thus we must compute the indexes and periods of

N = 2(n−k)2+k2
(

22k + (n− k)− 1
n− k

)

matrices. Numeric values for the cases n = 7, 8 are presented in Table 2. The case
k = 0 corresponds to a basic enumeration of all matrices directly. The optimal
choice of k depends on n, but for both n = 7, 8 the optimal value is k = 2.

n = 7 N/225 log2N

k = 0 16 777 216 49.0
k = 1 344 064 43.4
k = 2 248 064 42.9
k = 3 766 480 44.5

n = 8 N/232 log2N

k = 0 4 294 967 296 64.0
k = 1 31 457 280 56.9
k = 2 13 891 584 55.7
k = 3 41 696 512 57.3
k = 4 183 181 376 59.4

Table 2. The number of matrices that must be enumerated for n = 7, 8

4 IMPLEMENTATION DETAILS

The problem of computing the indexes and periods for the whole set of matrices can
be distributed in a straightforward way. In our research we used two parallelization
types, namely, internal and external.
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In the case of external parallelization, we partition the set of matrices into (suit-
able) disjunct sets. We then compute statistics for each set separately in parallel
computing nodes. Incidentally, during the statistics computation step, no commu-
nication is required between nodes. Finally, we need a short post-processing phase
to add the results from each node. If the subsets are sufficiently large, the commu-
nication and post-processing cost is negligible.

The problem of computing µ, λ for the whole set can also be transformed into
a SIMD-type (Single Instruction Multiple Data) of computation. We store the whole
set (or a suitable subset) of matrices into a SIMD storage. We execute steps of the
matrix multiplication algorithm in parallel. In each step, if we detect a collision
between the actually computed and stored matrices, we mark the detected µ and λ
in the k-th computing node (further collisions should be ignored). At the end of the
computation we collect statistics from the nodes. The algorithm executes max{µk}+
max{λk} matrix multiplications (and the corresponding number of comparisons),
even if some of the nodes have finished earlier. However, if the size of the subsets is
correctly chosen, the reduction in performance can be acceptable in some scenarios
(e.g., when computing on GPUs or when using internal bit parallelization).

4.1 Internal Parallelization

For the core of the computation, we have used a slightly modified version of the
program from [4]. For the sake of completeness, we summarize the description of
the algorithm also in this section. Our implementation uses so called SWAR (SIMD
Within A Register) principle, also known as a bit-slicing technique. To implement
the operation �, we need bit operations AND and OR to work with individual
bits of the matrix. However, a typical instruction AND, OR (in contemporary
processors) works with the whole vector of 32-bits or 64-bits at once (depending on
the architecture of the processor). Moreover, it is possible to utilize SSE2 (Streaming
SIMD Extension 2) registers and operations, so we can even work with operations
processing 128-bit vectors in one tact of the processor.

A bit-sliced implementation stores b Boolean n×n matrices in n×n b-bit words.
Bits of the first matrix are stored in the LSB (Least Significant Bit) of each word.
The second matrix is stored in the second bits, and so on. We say that we pack b
n× n matrices into n× n b-bit words. The opposite operation is called unpacking.

The implementation of the operation �, which processes b packed matrices is
then straightforward. We use a classical algorithm with the matrix multiplication
replaced by the vector AND operation, and the addition replaced by the vector OR
operation. A more complicated situation arises when we want to compare individual
matrices. We cannot use vector comparison as each of n2 vectors contains bits from
b different matrices. We could unpack matrices after each multiplication, but this
is quite costly, both computationally and memory-wise.

Next, let us introduce some notation to clearly illustrate the implementation.
Let x[i, j] = (Ar1[i, j], . . . , Arb[i, j]) and y[i, j] = (As1[i, j], . . . , Asb[i, j]). We can com-
pare individual bits of matrices Ar1, . . . , A

r
b and As1, . . . , A

s
b by the vector operation
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x[i, j] XOR y[i, j]. In the resulting vector only bits where Ark[i, j] 6= Ask[i, j] are set.
Finally, to compare whole matrices we must compute

z =
∨
∀i,j

(x[i, j] XOR y[i, j]) ,

where
∨

denotes the sum using the vector OR operation. Bits in vector z are set
to 0 if and only if the corresponding matrices are equal. We thus need only 2n2

operations to compare b matrices instead of just one.

To finalize the bit-sliced implementation, we store a bit mask, with 0’s corre-
sponding to matrices with already computed index and period (it is initialized to all
1’s). After each comparison, we compute the number of new hits (repeated matrices,
indicating the cycle) with c = wH (m AND NOT z) (we add c to global statistics).
Here wH is a Hamming weight which can be computed in log2 b steps (some proces-
sors even have dedicated instructions for this task). Finally, we update the mask
with operation m := m AND z. The algorithm is finished (over the set of packed
matrices) when m = (0, 0, . . . , 0).

4.2 External Parallelization

The computation was split into three phases. The initial phase involves pre-compu-
tation: A set of ordered matrix signatures is generated (for the specified parameters
n, k). Signatures are stored in the task file. Each signature denotes a unique identi-
fier for a discrete computational task (TASKID). The signatures are stored in human
readable format as hexadecimal numbers.

The main phase of the computation is run in parallel on the cluster. Each of the
parallel tasks is assigned its TASKID (by the scheduler). Each node then computes
the statistics of the set of matrices corresponding to this TASKID. In summary when
n = 8, k = 2 (the chosen parameters of the computation) the single task computes
all matrices of the form:

C0 C1 C2 C3 C4 C5 T2 T3

C6 x x x x x T6 T7

x x x x x x T10 T11

x x x x x x T14 T15

x x x x x x T18 T19

x x x x x x T22 T23

T1 T5 T9 T13 T17 T21 x x

T0 T4 T8 T12 T16 T20 x x

Here, the individual symbols denote:

C0 — C6: 7 bits used by the internal parallelization (bit-slicing). The total of 128
matrices is packed for a single SIMD-type computation of indexes of periods.
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T0 — T19: 24 bits of the (ordered) signature (TASKID, LSB is T0),

x: 33 bits, the elements of matrix enumerated in the cycle. Each task processes 233

bitsliced operations (computations of indexes and periods).

Each task computes the statistics of the assigned set of matrices and encodes
it into a prescribed output file. A common storage space was used for the results.
MPI was used to manage the tasks and the repository of the results. Partial results
were processed in the final phase of the computation and the final statistics were
computed. More technical details are available in [2].

5 COMPUTATIONAL RESULTS

In the previous research [4], the computing time for n = 7 was reduced from the ori-
ginally estimated 125 years to the 3.33 years using bit-sliced implementation (64-bit)
or to 600 days using SSE2-enabled implementation (128-bit). An implementation of
the brute-force search was executed on the parallel cluster at the GRID laboratory
at FIIT STU in Bratislava using 50 computing nodes. The whole task for n = 7 took
125 hours (real time). The estimate for the brute-force search for the case n = 8 in
the same configuration was 460 years3 [3].

The new algorithm was run with parameters n = 8, k = 7 on NorGrid at the
University of Bergen. The grid consists of 5 500 AMD Opteron 285 (E6) 2.6 GHz
cores. The tasks were merged into blocks for 32-tuples of processors. The whole
computation thus consisted of 1 696 blocks, with 32 tasks in each block. The average
time to compute one block of tasks was approximately 12 hours. The total cost of
the computation was 661 642.41 CPU-hours, 65 days in the real time (with average
allocated load of 10 blocks or 320 processors). If it were possible to utilize the whole
grid at 100 % just for our computation it would take less than 5 days. On one
processor, the task would require approximately 75 years.

In comparison with the brute-force algorithm: one task for n = 8 takes 19 hours
on the processors used in [3]. The whole effort with the new algorithm would take
approx. 2.25 years, instead of 460 years predicted for the brute-force algorithm.
That is, we were able to compute the statistics 200-times faster than with the brute
force approach4. The final statistics are summarized in Appendix A.

6 CONCLUSIONS

Using our new algorithm we were able to compute the index and period statistics
for the whole set of square Boolean matrices with the dimension up to n = 8. The
whole effort took approximately 75 CPU years. To scale the computation to n = 9

3 Equivalently, to compute the statistics in one month, 275 000 nodes was needed.
4 The estimate from [3] does not take into account scaling of the matrix multiplication

complexity, when changing dimension from n = 7 to n = 8. If we take this into account,
the speedup is closer to the theoretical value of 28.3 (see Table 2).
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(again with the optimal choice of k = 2), it is necessary to compute statistics of
the set of 270.4 Boolean 9 × 9 matrices. This is 26 616-times more matrices than
for n = 8. If we take into account the O(n3) complexity of the algorithmic step
(computing index and period, respectively), we estimate the required processing
power to 93/83 · 26 616 · 75 CPU years, i.e., 2.8 million CPU years. This effort is
clearly too costly, so without new algorithms it seems infeasible to compute statistics
for larger n’s. It is an open question, whether the values of cn can be computed
analytically for any given n, λ, µ. We hope that the provided datasets can help
further research in this area.
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A STATISTICS OF THE SET OF MATRICES

This appendix summarizes computed statistics for the dimensions n = 6, 7, 8. Statis-
tics for the smaller dimensions are taken from [1].

µ\λ 1 2

1 11 1
2 4 0

Table 3. Index and period statistics of the set of 2× 2 Boolean matrices

µ\λ 1 2 3

1 123 33 2
2 252 12 0
3 66 0 0
4 18 0 0
5 6 0 0

Table 4. Index and period statistics of the set of 3× 3 Boolean matrices
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µ\λ 1 2 3 4

1 2 360 1 042 156 6
2 25 096 2 616 48 0
3 24 036 480 48 0
4 7 164 72 0 0
5 2 004 0 0 0
6 360 0 0 0
7 0 0 0 0
8 0 0 0 0
9 24 0 0 0

10 24 0 0 0

Table 5. Index and period statistics of the set of 4× 4 Boolean matrices

µ\λ 1 2 3 4 5 6

1 73 023 43 125 9 230 1 080 24 60
2 6 471 160 604 780 26 780 360 0 680
3 16 980 510 305 580 18 720 240 0 840
4 7 190 310 72 180 2 760 240 0 480
5 1 384 530 12 060 240 0 0 240
6 297 960 960 0 0 0 240
7 28 320 0 0 0 0 0
8 8 160 0 0 0 0 0
9 9 120 0 0 0 0 0

10 9 000 0 0 0 0 0
11 720 0 0 0 0 0
12 240 0 0 0 0 0
13 120 0 0 0 0 0
14 120 0 0 0 0 0
15 0 0 0 0 0 0
16 120 0 0 0 0 0
17 120 0 0 0 0 0

Table 6. Index and period statistics of the set of 5× 5 Boolean matrices
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µ\λ 1 2 3 4 5 6

1 3 494 057 2 505 841 585 120 130 350 9 864 20 940
2 6 899 015 014 276 634 710 12 953 700 443 160 2 880 683 640
3 38 728 955 040 357 346 620 15 374 280 284 040 2 880 1 131 720
4 18 226 493 280 111 682 620 3 581 640 225 360 1 440 513 360
5 3 483 235 920 24 613 020 675 360 22 320 1 440 226 800
6 475 306 200 4 104 360 52 560 1 440 0 190 800
7 62 632 080 115 200 5 760 0 0 12 960
8 12 044 160 14 400 1 440 0 0 0
9 6 897 360 184 680 0 0 0 0

10 5 527 920 184 680 0 0 0 0
11 680 400 0 0 0 0 0
12 224 640 0 0 0 0 0
13 145 080 0 0 0 0 0
14 102 600 0 0 0 0 0
15 3 600 0 0 0 0 0
16 93 240 0 0 0 0 0
17 99 720 0 0 0 0 0
18 3 600 0 0 0 0 0
19 0 0 0 0 0 0
29 0 0 0 0 0 0
21 0 0 0 0 0 0
22 0 0 0 0 0 0
23 0 0 0 0 0 0
24 0 0 0 0 0 0
25 720 0 0 0 0 0
26 720 0 0 0 0 0

Table 7. Index and period statistics of the set of 6× 6 Boolean matrices
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µ
\
λ

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
2
5
1
0
9
8
1
7
2

2
0
3
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0
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5
5
6

4
6
4
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5
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1
4
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0
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0

0
0

1
5
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2

0
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2
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0

2
4
0
2
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5
7
7
9
0
3
0
2
2
4

3
3
3
3
0
4
6
3
5
3
5
6

1
2
7
1
7
3
6
0
4
6
0

4
6
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