Computing and Informatics, Vol. 31, 2012, 1279-1293

SCRIPT LANGUAGE FOR IMAGE PROCESSING

Jiff ZUzANAK, Pavel ZEMCIK

Faculty of Information Technology

Brno University of Technology

Bozetéchova 2

612 66 Brno, Czech Republic

e-mail: zuzanakjiri@gmail.com, zemcik@fit.vutbr.cz

Communicated by Dieter Kranzmiiller

Abstract. This paper proposes a design and structure of script language which is
intended for easy description and prototyping of high-level image processing opera-
tions. The image operations are meant to be composed from basic building blocks
represented by either C/C++ functions or appropriate block connections in FPGA
(Field-Programmable Gate Array) circuits. The proposed language is designed for
use in systems for rapid prototyping and testing of image processing applications as
well as for final implementations of the applications. The integration of language
into such systems is discussed as well as explanations of parts of the image process-
ing system as seen through the interface of the proposed scripting language. The
paper targets structures and syntax of the language, parallelization of high-level im-
age operations and communication between the multiple instances of interpreters
of the scripts.

Keywords: Script language, interpreter, image processing, embedded systems, im-
age operations, image processing pipeline, parallel computation

Mathematics Subject Classification 2010: 68U10, 68N15, 97P40

1 INTRODUCTION

Research in computer vision and image processing resulted in many standalone al-
gorithms targeted to specific tasks. The algorithms can be categorized into several

1280 J. Zuzandk, P. Zemdik

classes. As an example of such classes, the edge detection algorithms, feature extrac-
tion algorithms, segmentation algorithms, object detection algorithms, etc. can be
mentioned. The algorithms from these classes can be combined in order to achieve
complete high-level image operation. This approach is also known as image pro-
cessing chains (IPC). An example of simple IPC, namely the following chain can be
introduced: grayscale transformation — LBP (local binary patterns) extraction —
sparse histogram computation. This chain represents simple feature extractor based
on LBP.

Most of the experimental tasks or computer vision (intended for testing of new
algorithms) can be constructed by combination of such basic building blocks. Let
us assume that we have available a library of such algorithms represented using
C/C++ functions or equivalent FPGA blocks. Then we can use some high-level
tool for description of their connections and possibly their parameter setting to get
the desired functionality.

Short design time of application prototype (experimental framework, or com-
puter vision application) is one of the essential requirements on implementation
tools. Further requirements to be complied by the proposed system include: easy
use, transparency to the parallelism and the optimization policy, efficiency (perfor-
mance gain in most common image processing operations), portability, robustness
(provided computation should be insensitive to variations of input data, and should
provide correct results), completeness (it should not be necessary for user to use
packages not related to the designed system). The proposed Script Language for
Image Processing (SLIP) should perform the above mentioned task through descrip-
tion of high-level image operation stream. During the application creation process,
the stream is described through definition of its node operations and by description
of their connections. The stream is then preprocessed in order to recognize parallel
computations, which can be exploited for faster execution of operations during the
script execution.

This paper is organized as follows. In Section 2, a motivation for design and
implementation of the proposed language — yet another scripting language — is de-
scribed, in this case, the language for description of image operations. Section 3
describes the proposed script language in more detail and discusses its role in image
processing system. Section 4 introduces classes used in SLIP designed especially for
description of image processing operations and description of usage of these classes
for description of particular operations. In Section 5, data stores designed for com-
munication between scripts as well as other components of image processing system
are described in detail. Finally, Section 6, concluding the paper, contains description
of the achieved results and proposed ideas for further work.

1.1 Related Work
Description of Image Processing Chain (IPC) for digital still cameras is nicely done

in [4] by A. Gentile, S. Vitabile, L. Verdoscia, and F. Sorbello. This work studies
the TPC concept used for processing of data retrieved from digital still cameras.

Script Language for Image Processing 1281

The described IPC concept is enhanced for execution in SIMD Pixel Processor
(SIMPil) architecture. The architecture is designed for image and video process-
ing applications. Image processor based on SIMPil architecture is designed to meet
real-time requirements in image and video processing. Direct coupling between 1/0
and processing elements allows computations performed on pixels, as data arrives
in a stream-like fashion, rather than having data transported over centralized image
buffer. TPC approach based on streamed data processing accelerated in hardware
architecture is similar to that presented in this paper.

In [5] Rin-ichiro Taniguchi, Naoyuki Tsuruta, Shigeru Kusakabe and Makoto
Amamiya describe, a functional language V that is designed to be independent from
target architecture and to provide a framework to programmers to easily describe
wide variety of parallel algorithms. Though language V is described as a general
purpose language, its major application is identified as image processing, computer
vision and multi-media processing. Parallelization in V is achieved by creating in-
stances of agents from so called agent templates. If agent instances have no depen-
dency among them, they are executed concurrently. As in the approach presented
in this paper, the functionality connecting functional block is hidden under user
friendly interface of the language.

In [9] Jon A. Webb introduces the Adapt language. Adapt is architecture in-
dependent language based on split and merge image processing model. The im-
age is divided into portions and each image portion is processed independently.
Separated results from computations performed on these portions are combined
in final step of computation. The paper further examines the split and merge
model and state that is capable of computing any image operation that can be
computed in forward or reverse order over image data structure. The image is
partitioned by rows; finer partitioning is useless, split and merge model does not
make enough parallelism available. Capabilities of parallel execution of the code
described in Adapt language is presented on rich set of examples of image pro-
cessing operations. The approach presented in this paper has common image pro-
cessing execution model, which is based on parallel processing of rows of input
images.

The concepts of an active, self-configuring image processing chain represented
by directed graph are introduces in [6] by Manfred Prantl and Axel Pinz. The
proposed structure has a form of a directed graph (DAGs) whose paths define chains
of image processing modules. The parameters of image processing chains are adapted
automatically. The work represents an outline of integration of vision modules into
a network of interconnected modules. Automatic graph adaptation is restricted to
setting of parameters of image operations; thus, graph structure must be set up by
a human expert. System function is demonstrated on an example of construction
of image processing chain for extraction of optic disc from set of scanning laser
ophthalmoscope images. Production of image processing chain represented by graph
is also within the scope of this paper.

Part of work [3] introduced by Simon J. Del Fabbro concerns development of
a dataflow visual programming language VPL. The VPL language allows users to de-

1282 J. Zuzandk, P. Zemdik

velop programs out of chains of image operators. These programs (image processing
chains) are then executed by Java Advanced Imaging platform. The VPL language
allows user to develop graphical representation of a dataflow program, which can be
executed directly. The structure of visual programs is described by directed acyclic
graphs (DAG). The execution is dataflow driven. Function blocks called nodes are
executed (fired) when all incoming arguments become available on incoming DAG
arcs. When a function is fired, it consumes incoming data and produces a single
data object on the outgoing arc. The described dataflow approach is similar to that
presented in this paper.

Paper [7] outlines near-term future of parallel computing, dominated by medium-
grain distributed memory machines in which is each processing node represented
by desktop workstation. The paper also describes design and implementation of
Parallel Image Processing Toolkit (PIPT) library. The proposed library is easily
extensible, and hides parallelism from the user. Message-passing model of a pa-
rallelism is designed around the Message Passing Interface (MPI) standard. Clus-
ter based parallelism and mainly data distribution are discussed in detail. Win-
dow based operations are assigned on per pixel basis to every used processor.
PIPT library uses manager/worker scheme in which a manager process reads image
file, partitions it into equally sized slices, and sends the pieces to worker proces-
Sors.

2 MOTIVATION FOR YET ANOTHER SCRIPT LANGUAGE

Real-time image processing applications often exploit hardware accelerated units in
order to reduce the time complexity of the selected image processing operations.
This approach has one important disadvantage, namely the time required for de-
velopment and testing of such hardware units. The time required for design and
testing of software unit performing the same functionality is much shorter.

The main motivation for design and implementation of the proposed script lan-
guage is the solution of the above-mentioned problem or at least reduction of its
impact. Similarly to pure software solutions, the (SLIP) language enables design
of image processing applications through description of the interconnection of the
building blocks representing basic image functions.

This approach enables rapid prototyping and testing of image processing opera-
tions that can be moved into the hardware accelerated units after their debugging (at
the level of hardware FPGA connections equivalent to the C/C++ functions used
in the script). The SLIP language was designed with the need for implementation
of its interpreter for embedded processor in mind (e.g. DSP). The reason for using
embedded processors is the need for control of the attached FPGA circuits, their
(re)configuration, and data exchange.

Despite the fact that the SLIP language was designed mainly for image pro-
cessing applications, it is also possible to use it as general purpose programming
language.

Script Language for Image Processing 1283
3 SCRIPT LANGUAGE FOR IMAGE PROCESSING

The proposed SLIP language processing system is intended as a part of image pro-
cessing applications. An application typically consists of the following components:
Control application designed for communication with users, interpreter of SLIP
scripts running in a PC or in embedded processor — DSP, data stores designed
for sharing data and images among the system parts, and optionally an FPGA ar-
ray containing selected of operation blocks. The structure of the described system
is depicted in Figure 1.

Control application PC or DSP, SLIP interpreter

Data stores C/C++ functions, FPGA blocks

o ||| CH HOH
B H

Script 0 Script 1 Script 2

Data 1

Fig. 1. Structure of image processing system

The above-mentioned control application contains graphical user interface GUI,
tool for script editing and a component for manipulation with script data stores.
Setting of the system enables execution of selected scripts on given data (images)
through interaction with GUI of the control application. The default script execution
mode of image operations uses C/C++ functions implementing the basic building
blocks, which can be replaced by the blocks defined in FPGA, etc. In this system,
data stores serve as communication channels between the system components (for
data handling and transfers).

This paper aims at description of the SLIP language itself and its specific features
for image processing. The rest of the system, such as image processing blocks, is
not covered in detail.

3.1 Basic Syntax of the Language

The basic syntax (syntax describing the program flow, data types, classes, and
construction of objects) of the SLIP language is derived from the well known general
purpose programming language Java.

1284 J. Zuzandk, P. Zemdik

The script language is designed as a dynamically typed language enabling dy-
namic change of variable types at run-time. Every language element must form
a part of some superior class that serves as an access point (from global point of
view) to the element. The SLIP language was designed as strongly object oriented.
This approach simplifies the interpretation process but the main gain from this ap-
proach is significant simplification of image processing operation graph description.
All language objects are derived from some object class; even built in data types
(integer numbers, floating point numbers, strings, etc.) are represented by objects.
As mentioned above, the SLIP language can be used as a general programing lan-
guage with the syntax subsystem that is designed for description of image processing
operations.

The scripts are identified in other modules of the image processing system
through the name of the first defined class (root class).

4 IMAGE PROCESSING AND DATA STRUCTURES

As mentioned above, the SLIP language was designed mainly as a tool allowing
description of image processing operations composed from basic building blocks. In
this section, how this task can be done and examples of how such operations are
implemented will be described in detail.

The following list shows classes describing the objects designed for description
of image processing operations. (Basic data types of the SLIP language are not in-
troduced because of their irrelevance to description of image processing operations.)

Image — class of objects designed for description and manipulation with structures
representing image data. Class structure design enables sharing of image data
among more images and creation of images with interleaved pixel formats.

Video — class of objects designed to mediate access to open video files and video
devices of the host system. Devices represented by objects derived from this
class can be used as input or output nodes of image processing operation.

IONode — objects derived from this class form elements of image operation graphs.
Constructors of these objects accept the following as parameters: identifier of
requested operation, references on outputs of previously defined nodes, and pa-
rameters modifying selected operation.

IOStream — object of this type is constructed from set of IONode type objects.
Object state and content are determined by graph structure described by con-
nection of each node to previous nodes through output-input mapping. In the
process of I0OStream object construction CPU multi-threaded image operation
or reconfigured FPGA image operation representation is created.

4.1 Image Representation

In vast majority of image processing applications, images are represented by two-
dimensional arrays, regardless of their nature and acquisition method through which

Script Language for Image Processing 1285

they were obtained. This image representation method is also adopted in image pro-
cessing system, which includes the proposed language. Images with 8-bit grayscale,
32-bit grayscale, and 24-bit BGR (Blue Green Red) pixel formats are supported.
The structures designed and used for image representation allow sharing the image
data among more images, thus allowing creation of images referring to sub-rectangles
or even selected channels of multi channel images. The details of the structure used
for image representation are shown in Figure 2.

Image
Image data

<Pixel format>
<wWidth>
<Height>

<X position>
<Y position>
<Pixel offset>
<Pixel step>

<Bytes per line>
<Reference counter>
<Data pointer>

Image

<Pixel format> || Shared data buffer
<wWwidth>]
<Height>

<X position>
<Y position>
<Pixel offset>
<Pixel step>

Fig. 2. The structure used for image representation

Building blocks (functions) that are used to build image processing operations
work with the above-described structure of images. All of the input and output
image data must be mediated through this structure. For example, the data from
camera must be packed into this structure before further processing. In most cases,
the mediating process is fully automatic.

4.2 Parallel Image Processing

The basic elements of which the graph of image processing operations consists are
formed by objects derived from the IONode class. The following code illustrates the
possibilities of creating such objects using their built-in constructors.

// - creation of new function node -

<identifier>= I0Node () ;

// - creation with setting of node function -

<identifier>= I0ONode (<function>, [<parameters>]);

// - creation with binding of node inputs -

<identifier>= I0Node (<function>,[<node_inputs>], [<parameters>]);
// - change of node function -

<identifier>.function(<function>, [<parameters>]);

// - rebind of input nodes -

<identifier>.inputs ([<nodes>]);

1286 J. Zuzandk, P. Zemdik

The operation performed by an IONode class object is determined by its function
identifier. The function of a node determines the count of its input and output
channels that must be connected before construction of an operation stream. The
output channels of the nodes are referred to by the node name and integer index
of the requested output. Examples of node construction and input-output channels
building are given below.

Parallelism of image operation is achieved by parallel execution of functional
nodes which serve as producer of the output data based on the data consumed from
its input channels. Synchronization is done through data-flow. When no input data
is consumed, the functional unit is suspended and waits for input from the data
producers.

The internal representation of node operations is based on data buffering —
shared data buffers represent input/output node connections. Actual implementa-
tion of messages sent from producer nodes to consumer nodes is based on interprocess
communication of the target architecture.

A simple example illustrating the construction of image operation nodes and
connection of these nodes through image data channel is shown below.

// - creation of source node (no input channels, one parameter - image) -

source= I0Node (I0Node.IMAGE_SOURCE,[],[Image ("image.bmp")]);

// - color operation (one input channel - source[0], two parameters - color <
operation and BGR color) -

sat_add= I0Node (IONode.COLOR_OP, [source [0]],[I0Node.0OP_SAT_ADD,[100,0,011);

Built-in functionality performed by image operation nodes can be subdivided
into separated classes by criteria of expected input data and produced results.

Point operations — in input stream receive image data, and produce statistical
information; for example maximum, minimum and average values of image pi-
xels.

Image Arithmetic — input is represented by two streamed images, on whose pi-
xels selected operation is performed; for example image data copy, adding, pro-
duct evaluation, and masking.

Geometric operations — streamed image object and matrix defining requested
image operation are taken as input. The matrix content is described by array,
which is given as node parameter. The given matrix defines translation, rotation,
or scaling.

Convolutions operations — similarly as in previous case, except that the given
matrix describes convolution kernel instead of transformation matrix (convolu-
tion matrix can also be described by second input image stream).

Histogram operations — perform histogram based analysis on input image stre-
am. Result of operations from this class can be either integer data stream, or
image stream (image containing depicted histogram).

Script Language for Image Processing 1287

Differential operations — take one image as input, and perform differential ope-
rations (Hessian, Gradient, Laplacian). The result is represented by output
image stream.

4.3 Hardware Implementation

The operations described in the above text can be performed not only in soft-
ware, but also in specialized hardware units. For experimental purposes, Field Pro-
grammable Gate Arrays (FPGAs) present one of the most suitable solutions as it can
be programmed according to the application needs and possibly also reprogrammed
dynamically as the program execution requires.

The functional units that perform the required operations can be interconnected
through a configurable network intended for transfer of the data from and to the
execution units. The main purpose of the interconnection network and existence of
several execution units is motivated by the fact that execution of multiple operations
in hardware is more efficient than execution of just a single operation, mainly due
to the price of data transfers from the FPGA to the CPU. Therefore, the more ope-
rations are performed in hardware simultaneously, the better for the performance.

Block diagram of the FPGA based system is shown in Figure 3. As shown, the
functional units can have one or several inputs — they can perform unary, binary, or
n-ary operations, mostly with single results. The main limitation of the approach is
that the data is sent to the units serially and to reduce complexity of the functional
units, they cannot have too large internal memory and so the operations should be
performed synchronously on the data stream.

Bus B .
———>» DSP interface

"invert" "sat_add"

FPGA function blocks

Fig. 3. Block diagram of FPGA based system

Configuration of the functional units and interconnection network is done in
different time slots than the execution itself. The whole process can be subdivided
into several stages:

e Detection of the expressions to be performed in FPGA (the compiler can mark
the sections either implicitly or explicitly),

1288 J. Zuzandk, P. Zemdik

e preparation of the interconnection network and functional units according to the
data extracted by the compiler (in runtime, based on data structures created by
the compiler); this step is performed every time before execution of certain part
of the script

e start of the data transfer from the CPU to the FPGA and result transfer from
the FPGA into the CPU (performed typically by initiation of DMA transfers
synchronized by hardware),

e passive waiting for the transfer end (during this time, CPU can execute different
threads, some synchronization mechanisms are needed),

e upon end of the transfer, release of the functional unit (in many cases, this
actually means no further action).

The applications can benefit from exploitation of the combined CPU and FPGA
execution only in some carefully selected cases where CPU and FPGA can be used
simultaneously, where the data transfers are not too expensive given the complexity
of the task done in the FPGA, and also given the suitable data structures. How-
ever, in cases where the execution is suitable for FPGA and CPU combination, the
applications can significantly benefit from both performance and price/performance
points of view.

4.4 Examples of Image Operations

The following examples illustrate two different image processing operations. The
examples consist from SLIP code and the intermediate images in individual image
operation steps.

// - access to data store by name -

store= Store("store_name");

// - obtain image object from store -

img_obj= store.obtain("image_name");

// - create target (blank) image object -

out_img= Image () ;

// - create source node from store image object -

source= I0Node (I0Node.IMAGE_SOURCE,[],[img_obj.get ()1);

// - split BGR image to three separated grayscale images -

split= I0Node (IONode.SPLIT_CHANNELS , [source [0]1]1,[1);

// - invert first channel of image pixels format -

invert= I0Node (I0ONode.INVERT, [split [0]],[1);

// - add constant value to grayscale image of original green channel -
sat_add= I0Node (I0Node .COLOR_OP , [split[1]],[I0Node.OP_SAT_ADD,[10011);
// - create BGR image by joining of selected channels -

join= I0Node (I0Node . JOIN_CHANNELS , [invert [0],sat_add [0],split [2]],[1);
// - save stream in target image -

target= I0Node (I0Node.IMAGE_TARGET ,[join[0]], [out_imgl);

// - create operation stream

stream= target.create_stream();

// - run opertion stream -

stream.run_wait ();

// - set image object in data store -

img_obj.set (out_img) ;

Script Language for Image Processing 1289

The first block of code describes simple image operation over image loaded from
data store. The result of the depicted operation is stored into the same object of
data store from which it was originally loaded.

The following code describes image processing operation introducing simple edge
detector based on Sobel filter. The results of horizontal filter are combined with
those of vertical filter. The input frames are loaded from video file which forms one
(initial) node of image operation graph.

// - create target (blank) image object -

out_img= new Image();

// - as source of images use video file -

source= new I0Node(IONode.VIDEO_FILE,[],["video.avi"]);

// - convert source image to grayscale 8bit format -

source_8U= new IONode(IONode.CONVERT,[source[0]],[Image.PIXEL_FORMAT_8U]);
// - detect edges by Sobel filter from left to right -

1lr_sobel= new IONode(IONode.SOBEL,[source_8U[0]],[I0ONode.OP_LEFT_RIGHT]);

// - compute difference of resulted grayscale value from 127 -

1lr_sobel_diff= new IONode(IONode.COLOR_OP,[1lr_sobel[0]],[I0ONode.OP_DIFF,[127]]);
// - same operations for Sobel filter from top to down -

td_sobel= new I0ONode (IONode.SOBEL,[source_8U[0]],[I0ONode.OP_TOP_DOWN]);

// - compute difference of resulted grayscale value from 127 -

td_sobel_diff= new IONode(IONode.COLOR_OP,[td_sobel[0]],[I0ONode.OP_DIFF,[127]]);
// - sum sobel values (left to right + top to down)

sum_sobel= new I0ONode (IONode.OPERATOR,[lr_sobel_diff [0],td_sobel_diff [0]], [«
I0Node.OP_SAT_ADD]);

// - normalize resulted sobel values -
sum_norm= new I0ONode(IONode.NORMALIZE,[sum_sobel [0]],([1]1);
// - convert values to target image format -

target_3x8U= new IONode (IONode.CONVERT,[sum_norm[0]],[Image.PIXEL_FORMAT_3x8U]);
// - store values to target image -
target= new IONode(IONode.IMAGE_TARGET, [target_3x8U[0]],[out_imgl);
// - create image operation stream -
stream= target.create_stream();
// - run operation on first 100 frames -
idx= 0;
do {
stream.run_wait ();
} while (++idx < 100);

The image processing operations depicted in the above examples illustrate the
possibilities of the proposed SLIP language, specifically easy parallelization and
rapid prototyping of image processing operations.

The image operation stream (chain) constructed from a graph is a parallel opera-
tion exploiting the possibilities of today’s multi-core CPU’s. The function executing
the image processing node task is running in its own processing thread working with
its assigned CPU core.

5 DATA STORES AND COMMUNICATION BETWEEN SCRIPTS

This section discusses the possibilities of data exchange between individual parts of
the image processing system. The data communication is based on data stores, the
wide system structure that is accessible from every part of image processing system.
Description of the SLIP language basic class designed for manipulation with data
stores follows.

1290 J. Zuzandk, P. Zemdik

Ir_sobel_diff td_sobel_diff

-
sat_add

invert

sum_sobel

of

sum_norm

join

Fig. 4. Intermediate results in nodes of example image processing operations; a) Simple
operation with image pixels, b) Example of image operation over data from video

Store — objects of this class mediate access to image processing system data stores.
These data stores were created to enable communication among running scripts,
control application, and other parts of the image processing system.

A store object is created by calling constructor of Store class with the name of
the desired store given as a parameter. The method will either create and register
new store by using system dependent interprocess communication, or get a reference
to already existing registered store with the same name as that of the desired store.
The newly created data store will exist as long as there is at least one reference to it.

The values shared among the scripts are accessed through a reference to data
store members which mediates access to the stored data. Each of the data store
objects can work with the stored variables without any restriction; for example,
it can backup them or synchronize them with a database. The data stores were
designed mainly for manipulation with processed images and they are implemented
through shared memory of the host system. Basic syntax of data store operations
follows.

// - creation of new or access to existing data store -

<store_id>= Store("store name");

// - cretion of new store object or retrieve reference to existing one -
<object_id>= <store_id>.obtain("object name");

// - retrieve object from store -

<identifier >= <object_id>.get();

// - set mnew value to object in store -

<object_id>.set (<expression>);

Script Language for Image Processing 1291

A simple example of manipulation with image through data store is shown below.
When this code is executed in two separate interpreters, the process which first
accesses the shared variable loads image from file and stores it to shared variable of
the data store. The second process of interpreter receives image through data stores
and saves it to output file.

// - access to data store by name -

store= Store("store");

// - obtain image object from store -

img_obj= store.obtain("image");

// - lock store object to avoid its change -
img_obj.lock();

// - if object type is image save it to output file -
if (type img_obj.get() == type Image) {

img_obj.get () .save_to_file("copy.jpg");
// - unlock store object -
img_obj.unlock ();

}
// - else load image from file and save it to store -
else {
img_obj.set (Image ("image. jpg"));
// - unlock store object -
img_obj.unlock ();
// - wait moment, keeping store and value active -
System.msleep (10000) ;
}

6 CONCLUSIONS AND FUTURE WORK

This paper introduces a language that enables description and consequent execu-
tion of high-level image processing operations. Image processing operations are
composed from basic building blocks. Each operation is represented as directed
graph, whose edges represent interconnection of image processing blocks. Blocks
(representing vertices of mentioned graph) are represented by C/C++ function or
by FPGA blocks.

The image processing operation construction was shown along with description
of data stores used for data handling among parts of image processing system.
Examples of description of image processing operation by proposed language were
shown, and feasibility of the whole approach was demonstrated.

Future work will be aimed at more expressive description of per pixel image
operations, enabling description of image processing block in more specific details.
This step will allow user to exploit algorithms defined apart from C/C++ or FPGA
block library. Attention will also be paid to efficient implementation of the inter-
connection framework.

Acknowledgements

This work has been supported by the European Regional Development Fund in
the “IT4Innovations” Centre of Excellence project (CZ.1.05/1.1.00/02.0070).

1292 J. Zuzandk, P. Zemdik

REFERENCES

[1] Ao, A.V.—SETHI, R.—ULLMAN, J.D.: Compilers, Principles, Techniques, and
Tools. In Reading MA, Addison-Wesley, ISBN: 0321486811, 2007, pp. 1-1038.

[2] DEPIERO, F.: Siptool: The ‘Signal and Image Processing Tool’ — An Engaging
Learning Environment. Frontiers in Education, Annual, Vol. 3, 2001, pp. 1-5.

[3] Hawick, K.—CoDDINGTON, P.: Developing a Distributed Image Processing and
Management Framework. Technical report, November 20, 2000.

[4] GENTILE, A.—SORBELLO, F.: Image Processing Chain for Digital Still Cameras
Based on the Simpil Architecture. In Proceedings of the 2005 International Conference
on Parallel Processing Workshops, IEEE Computer Society, Washington, DC, USA,
ISSN: 15302016, ISBN: 0769523811, 2005, pp. 215-222.

[6] TanicucHl, R.I1.—TSURUTA, N.—KUSAKABE, S.—AMAMIYA, M.: A Massively
Parallel Programming Language and Its Application to Image Processing and Com-
puter Vision. In Proceedings of the 9 Scandinavian Conference on Image Analysis,
Vol. 2, June 1995, pp. 857-866.

[6] PRANTL, M.—P1iNZ, A.: A Concept for an Active, Self-Configuring Image Processing
Graph. In proceedings of the 19" OAGM and 1st SDRV Workshop, Maribor, Vol. 81
of Schriftenreihe der OCG, 1995, pp. 249-256.

[7] SQUYRES, J.M.—LUMSDAINE, A.—McCANDLESS, B.C.—STEVENSON, R.L.:

Parallel and Distributed Algorithms for High Speed Image Processing. Technical re-

port, Rome Laboratory, Air Force Research Laboratory, Information Directorate,

Rome Research Site, 2000.

TAKASHINA, T.—ACKERMANN, H.: R-Based Environment for Image Processing Al-

gorithm Design. Working paper at DSC (Distributed Statistical Computing), March,

2003.

8

[9] WEBB, J.A.: Adapt: Global Image Processing with the Split and Merge Model.
Technical report, School of Computer Science, Carnegie Mellon University, July 02,
1991.

Jifi ZuzANAK is Ph. D. student at the Department of Computer
Graphics and Multimedia, Faculty of Information Technology,
Brno University of Technology. His professional interests include
graph grammar systems, image processing, computer vision and
related research areas.

Script Language for Image Processing 1293

Pavel ZEMCIK is Associated Professor at Department of Com-
puter Graphics, supervisor of Jiti Zuzanak, and Vice-Dean for
External Relations of Faculty of Information Technology, Brno
University of Technology. His professional interests include com-
puter graphics, image processing and computer vision, applica-
tions, and related research areas.

