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Abstract. Pareto efficiency is a seminal condition in the bargaining problem which
leads autonomous agents to a Nash-equilibrium. This paper investigates the problem
of the generating Pareto-optimal offers in bilateral multi-issues negotiation where
an agent has incomplete information and the other one has perfect information. To
this end, at first, the bilateral negotiation is modeled by split the pie game and
alternating-offer protocol. Then, the properties of the Pareto-optimal offers are in-
vestigated. Finally, based on properties of the Pareto-optimal offers, an algorithmic
solution for generating near-optimal offers with incomplete information is presented.
The agent with incomplete information generates near-optimal offers in O(n logn).
The results indicate that, in the early rounds of the negotiation, the agent with
incomplete information can generate near-optimal offers, but as time passes the
agent can learn its opponents preferences and generate Pareto-optimal offers. The
empirical analysis also indicates that the proposed algorithm outperform the smart
random trade-offs (SRT) algorithm.

Keywords: Bilateral negotiation, pareto-optimal offer, uncertain information, al-
gorithm
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1 INTRODUCTION

Pareto-efficiency is a seminal condition to form a Nash-equilibrium where self inter-
ested agents try to satisfy each other [22, 17]. In the non-cooperative multi-issues
bilateral negotiation, generating Pareto-optimal offers with incomplete information
is a computationally complex problem. With Pareto-optimal offer it is impossible
to make one agent better off without necessarily making the other agent worse off.

There are different sources of uncertainty in bilateral negotiation such as: infor-
mation about the opponent’s deadline, importance weights over negotiation issues
and outside options. This information is rarely available which makes automated
negotiation complicated. To generate Pareto-efficient offers, an agent needs infor-
mation about the opponent’s importance weights over negotiation issues. These
weights are used to form a greedy order (agenda) to generate offers by using sequen-
tial maximum trade-offs [10, 19, 14]. In fact, given the n negotiation issues, there
are n! sequences that can be used to generate offers, but only one of them makes
the Pareto-optimal offer (in a special case there may be multiple sequences). In
other words, if an agent has uncertain information about the opponent’s importance
weights then the problem of finding a Pareto-optimal offer will be computationally
intractable.

The following assumptions are considered to conduct this study. It is assumed
that agents bundle all the negotiation issues to generate offers. Moreover, it is
assumed that agents are computationally bounded rational, meaning that they have
limited time (and resources) to reach agreement.

In this study, the bilateral negotiation is modeled by alternating offer proto-
col [18] and negotiation over each single issue is like a split the pie game [1, 18, 2, 14].
In other words, the bilateral multi-issues negotiation is modeled by multiple split
the pie games.

This study investigates the properties of the Pareto-optimal offers. To this
end, the problem of generating Pareto-optimal offers with perfect information and
the maximum greedy trade-offs (MGT) algorithm is considered [14]. Then, these
properties are used to conduct a learning method to reveal the greedy order (agenda)
and generate the Pareto-optimal offer where one agent has uncertain information
and the other has perfect information.

The rest of the paper is organized as follows. Next section details related work in
bilateral automated negotiation. Section 3 describes the negotiation model used in
this study by introducing the negotiation protocol and some basic concepts. Then,
Section 4 describes the MGT algorithm and the properties of the Pareto-optimal
offers. It also presents an extension to MGT algorithm that generates near Pareto-
optimal offers with one-side incomplete information. Section 5 provides an experi-
mental analysis to evaluate the efficiency of the proposed method. Finally, Section 6
draws the conclusions and our plans for future studies.
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2 RELATED WORK

Automated negotiation has received wide attention in the fields of game theory
and artificial intelligence. In game theory, researchers study on negotiation mo-
dels, axioms and equilibrium solutions through some rigorous assumptions. These
assumptions are not necessarily realistic. On the other hand, researchers in AI
community try to develop software agents that negotiate on behalf of their owners
in realistic environments.

The amalgamation of game theory and AI can empower autonomous agents to
make deals in e-marketplaces by finding approximate solutions for the problems that
are computationally intractable. In bilateral negotiation, agents can find a compu-
tationally tractable solution if they have some information about their opponents,
such as: deadline, preferences and outside options. During the negotiation process,
an agent can make decisions about its aspiration-level based on the information
about outside options and the opponent’s deadline, while information about the
opponent’s importance weights is needed to find Pareto-optimal offers. Usually,
agents have incomplete information about their opponent which arises uncertainty
and makes automated negotiations an interesting area of research in AI field.

Bilateral negotiation is analogous to the well-known bargaining problem [2, 17].
This problem can be modeled by split the pie game [18]. Fatima et al. [10] have
modeled the multi-issues bargaining problem with the split the pie game. They
assumed that not only negotiation over each single issue is like split the pie game,
but also the total outcome of the negotiation is like a pie of size 1 and each agent
takes a share of the pie. In other words, an agent gains an amount of the pie if the
other agent loses the same amount. That is, in their study, bilateral negotiation is
a kind of zero-sum game. A real world bargaining is not necessarily a zero-sum game,
i.e., an agent may make a trade-off, while keeping its aspiration-level unchanged,
to increase the opponent’s payoff. However, in our study, multi-issues bilateral
negotiation is modeled by multiple split the pie games, and the whole negotiation is
not a zero-sum game.

In the last decade, an extensive body of research in bilateral negotiation has
demonstrated that uncertainty in opponent deadline [21, 7, 11, 10] and outside
options [12, 6] can affect the quality of the negotiation outcome. In addition to
these studies, there are some prominent works that try to generate near-optimal
offers with uncertain importance weights [3, 4, 9, 13, 23].

Although the idea of generating Pareto-optimal offer with perfect information
has been originally proposed by Raiffa in [19], the algorithmic solution is presented
in [14]. Jazayeriy et al. [14] presented the MGT (Maximum Greedy Trade-offs)
algorithm to generate Pareto-optimal offers with perfect information. In this paper,
an extension to MGT algorithm is presented to generate Pareto-optimal offers with
incomplete information.

Finding a near Pareto-optimal can also be ideal, if agents have incomplete infor-
mation about the opponent’s importance weights. Faratin et al. [9] present a fuzzy
similarity approach to select the most similar offer to the last received offer in a pool



1238 H. Jazayeriy, M. Azmi-Murad, N. Sulaiman, N. I. Udzir

of generated offers by random trade-offs. They showed that the quality of generated
offer is highly related to the accuracy of the importance weights and the number of
random offers. Ros and Sierra [20] presented an improvement on random trade-offs
algorithm. They proposed smart random trade-offs (SRT) algorithm to consider
priority over negotiation issues. Their random approach has high complexity. How-
ever, in this study, an agent can learn the greedy order very fast and generate near
optimal offers.

There are also some research works that try to learn the opponent’s importance
weights [20, 23, 13, 3, 4]. Learning the order of issues’ importance weights is studied
by Ros and Sierra [20]. They argued that issues with fewer changes considered as
more important than those with more changes during the negotiation process. They
used the order of importance weights to improve the random trade-offs algorithm.
However, our work differs in that it learns the greedy order of issues which is needed
to generate Pareto-optimal offers.

Although Bayesian learning is a popular approach to explore the opponent pre-
ferences [23, 13, 3], it needs a priori information about the probability distribution
of the negotiation likely outcome and updating the probability of all hypotheses
in each round of the negotiation. Kernel density estimation (KDE) is a statistical
method that can be used to find issues’ priorities [4]. This method needs an offline
process of previous negotiation encounters to estimate an initial probability density
function over the opponent’s importance weights. Then, new information can be
augmented by online learning from the ongoing negotiation. The main problem
related to Bayesian learning and KDE is that they work in supervised way, while
negotiation with incomplete information is unsupervised. Therefore, in these studies,
some assumptions about agents’ concession strategy are needed to update agents’
beliefs. In this respect, agents usually assumed to have a decreasing aspiration
level. However, our work differs in that it can generate (near) Pareto-optimal offers
without any assumption about agents’ concession strategy.

In the following sections we present a bilateral negotiation model and algorithms
to generate Pareto-optimal offers.

3 MULTI-ISSUE BILATERAL NEGOTIATION MODEL

This model is an extension to the ”split the pie” game [1, 18, 2] and the alternating
offer protocol [18] where two autonomous agents, a and b, negotiate over n issues
(such as x1 = price, x2 = delivery, x3 = warranty, . . . ) by sending and receiving
offers x = (x1, x2, . . . , xn). Each issue, i, is like a pie of size 1 that should be divided
between a and b by:

fa
i (xi) + f b

i (xi) = 1 (1)

where fa
i and f b

i are the shares of agents a and b, respectively. fi : Di → [0, 1]
is also called scoring function that evaluates the desirability of xi, where Di is the
domain that presents all possible values for xi.
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Having fa + f b = 1 implies that a single issue is like a zero-sum game where
taking a portion of benefit (pie) by the agent causes a loss (with same amount) for
the opponent, but multi-issues negotiation is not a zero-sum game because issues
have different worth for agents. For example, issue i may be very important for
agent a while it has low importance for agent b. In fact, agent a assigns importance
weight wa

i to issue i which may differ from the opponent importance weight, wb
i .

We assume that negotiation issues are independent and agents have normalized
importance weights:

n∑
i=1

wi = 1.

Given an offer x, agent’s utility is additive function over weighted issues [19].
The utility function u : S → [0, 1] can be formulated as:

u(x) =
n∑

i=1
wi.fi(xi) (2)

where S is the set of the all possible offers (||S|| = Πn
i=1||Di||).

Without loss of generality, assume that negotiation begins by sending an offer
from agent a at time t = 1 (starter can be selected randomly to remove the ad-
vantage/disadvantage of the first mover). Then the opponent, agent b, accepts the
received offer if ub(x) ≥ ub

min (where ub
min is the utility threshold for agent b) or

rejects the received offer and continues the negotiation by sending a counter-offer.
This process continues until one of the agents reaches its deadline (tmax).

Action(x, t) =


Agree u(x) ≥ umin
Withdraw t > tmax
Continue t ≤ tmax

(3)

To continue the negotiation, agent should generate an offer. To this end, agent
should make a decision about its aspiration-level θ (target utility). Usually, at the
beginning of the negotiation, agent’s aspiration-level is close to 1; however, when
time passes to tmax it becomes close to umin (tmax and umin are private information).
Aspiration-level depends on:

• current time, t
• agents’ deadline, tamax and tbmax

• negotiation history H (set of the sent and received offers)
• outside options (possible agreements if agent withdraws from the current nego-

tiation and communicates with other agents, or concurrent negotiations).

Negotiation history, H, shows the opponent behavior. In case an agent does not
have perfect information about its opponent, negotiation history can be used to
learn the opponent’s preferences.
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Outside options can affect the agent’s utility threshold (umin). In case there
are many opponents in e-marketplace to negotiate with, the agent may increase its
utility threshold because it has more chance to find another opponent and reach
a better agreement.

Agents may use time dependent or behavior dependent (or both) decision func-
tions to determine the aspiration level [8]. Choosing the best aspiration level is im-
portant in automated negotiation because it can lead agents to a Nash-equilibrium
solution [17]. But, unfortunately, agents have incomplete information about their
opponent’s deadline (tmax) and utility threshold (umin). Therefore, agents should
find a sequential equilibrium [15] by updating their beliefs during the negotiation
process.

It is important to note that generating Pareto-optimal offer needs information
about the opponent’s importance weights. On the other hand, having information
about deadlines and outside options guides agents to find an aspiration level that
can be used to find equilibrium solution.

4 GENERATING PARETO-OPTIMAL OFFER

Generating a near Pareto-optimal offer (x) at the given aspiration level (θ) is a chal-
lenging problem in automated negotiation. To generate the optimal offer, an agent
should fill its aspiration level, θ, with the most valuable issues which maximize the
opponent’s utility. This problem can be mathematically stated as:

• maximize
u′ =

n∑
i=1

w′i.f
′
i(xi)

• subject to
u = θ =

n∑
i=1

wi.fi(xi)

where u′, w′ and f ′ are the opponent’s utility, importance weight and scoring func-
tion, respectively.

The MGT algorithm generates Pareto-optimal offer with perfect information.
Agents with incomplete information can generate near-optimal offers by learning
their opponent’s preferences. Here, an extension to MGT algorithm is used to
generate near-optimal offers.

4.1 Maximum Greedy Trade-Offs (MGT) Algorithm

The problem of the generation Pareto-optimal offer at given aspiration level θ is
somehow similar to fractional knapsack problem [16, 5, 14].

To maximize the opponent’s utility, an agent must fill its aspiration level based
on the greedy order (agenda). An issue i is the best greedy choice if it has maximum
worth to the opponent while it has minimum occupation of the aspiration level.
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Definition 1. For any issue i call ri = wi/w
′
i its greedy ratio. A greedy choice k is

an issue which minimizes the greedy ratio, i.e. rk ≤ ri for all i’s.

Algorithm 1 shows the MGT algorithm which generates offer at given aspiration
level θ. Let us say A is the set of negotiation issues and D is the set of fixed issues
(that the agent has already decided about their utilities). In each iteration, the
agent selects the greedy choice (issue i) from (A−D) (line 6) and tries to maximize
the opponent’s utility (line 9).

Algorithm 1 Maximum Greedy Trade-off (MGT) [14]
1: A← {1, 2, . . . , n} /* set of issues */
2: D ← ∅ /* set of decided issues is initially empty */
3: Dw ← 1 /* summation of undecided issues’ weight */
4: Su ← 0 /* summation of decided issues’ utility */
5: while (θ − Su) > 0 do
6: i← Select the greedy choice from (A-D)
7: D ← D ∪ {i}
8: Dw ← Dw − wi

9: ui ← max(0, θ − Su −Dw) /* the lowest value for ui */
10: Su ← Su + ui

11: xi ← f−1
i (ui/wi) /* using the reverse function to generate issue value */

12: return (x1, x2, . . . , xn) as the generated offer

The loop continues until agent assigns values to all issues and generates the
output offer x = (x1, x2, . . . , xn) with utility θ.

The agent with perfect information needs O(n) to generate optimal offers by
MGT algorithm. The correctness of the MGT algorithm is shown in [14]. An agent
can generate Pareto-optimal offers if it selects the greedy choice in each iteration
(line 6). Given the number of the negotiation issues, n, there are n! orders that can
be used to generate offers.

Definition 2. The order, λ, is the sequence of the negotiation issues that can be
used to generate offer in MGT algorithm. The greedy order, λ∗, is the sequence that
an agent uses to generate a Pareto-optimal offer.

Two operators (→ and  ) are used to show the order. The expression λi→j

means that j is exactly after i in the order λ. The expression λi j means that j is
one of the issues that should be selected after i in the order λ.

As already discussed, in MGT algorithm, agent selects issues based on their
greedy ratio. In other words:

wi

w′i
≤ wj

w′j
=⇒ λ∗i j.
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Lemma 1. In bilateral negotiation, agents should have reverse greedy orders to
generate Pareto-optimal offers.

λ∗ = −λ′∗

where λ∗, λ′∗ are the greedy orders that the agent and its opponent use to generate
offers, respectively.

Proof. The agent uses the wi/w
′
i to rank the negotiation issues, while the opponent

uses the w′i/wi. It means that agents have reverse orders and the best greedy choice
for the agent is the worst greedy choice for the opponent and vice versa – λ′∗j i ⇐⇒
λ∗i j. �

Usually, the greedy order, λ∗, is unique and, therefore, the Pareto-optimal offer
at any aspiration level is also unique; but there is a special case that the agent can
generate more than one Pareto-optimal offer.

Corollary 1. The generated Pareto-optimal offer is not unique if there are two (or
more) issues, like i and j, with the same ratio:

ri = rj

or
wi

w′i
= wj

w′j
.

Proof. The number of generated offers at given aspiration-level depends on the
number of greedy orders. In other words, each order will produce a different offer.
If there exist two (or more) issues, like i, j, with the same ratio ri = rj then there
will be more than one greedy order that can be used to generate offers. Therefore,
the maximum greedy trade-offs can generate more than one Pareto-optimal offers
at given aspiration-level. �

The value for scoring functions depends on the aspiration-level that Pareto-
optimal offer should be generated at. The following theorem states that scoring
functions get the same ranks as the greedy order does.

Theorem 1. Given a Pareto-optimal offer, x, the following statement is always
true.

λ∗i j ⇐⇒ fi(xi) ≤ fj(xj)

Proof. Part I: At first, we prove that if issue i is preferred to issue j for making
trade-offs in MGT algorithm then issue i has lower scoring value:

λ∗i j =⇒ fi(xi) ≤ fj(xj).

Without loss of generality, assume that i and j are the first and second greedy
choices, respectively (λ1 = i, λ2 = j). Therefore, at first, the agent makes a max-
imum trade-off on issue i, and then it selects issue j. The following cases may
possibly happen:
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Case 1: (1− wi ≤ θ).
In this case 0 ≤ ui ≤ wi and uj = wj which means that 0 ≤ fi ≤ 1 and fj = 1.

Case 2: (1− wi − wj ≤ θ ≤ 1− wi).
In this case ui = 0 and 0 ≤ uj ≤ wj which means that fi = 0 and 0 ≤ fj ≤ 1.

Case 3: (θ ≤ 1− wi − wj).
In this case ui = 0 and uj = 0 which means that fi = fj = 0.

As can be seen, in all possible cases the implication (fi ≤ fj) is true. This deduction
can be continued by considering 2nd and 3rd greedy choices, and so on.

Part II: Now, we prove that a Pareto-optimal offer can reflect the greedy order.

fi(xi) ≤ fj(xj) =⇒ λ∗i j

Let issue j be selected before issue i, to generate a Pareto-optimal offer; then ac-
cording to Part I, we have fj(xj) ≤ fi(xi) which contradicts the initial assumption.
Therefore, the issue with smaller scoring function, i, should be selected before the
issue with higher scoring function, j. �

4.2 One-Side Incomplete Information

In this section we propose an algorithmic solution for the bargaining problem where
one agent has perfect information but the other one has incomplete information.
Specifically, we assume that one agent has incomplete information about the oppo-
nent’s importance weights.

The main idea that helps solve this problem comes from the Theorem 1 where
agent can partially/fully learn the order of the greedy ranks.

Let us say that the agent has incomplete information about the opponent impor-
tance weights while the opponent has perfect information. The following theorem
shows how the agent can learn the greedy order to generate a Pareto-optimal offer.

Theorem 2. If agent receives a Pareto-optimal offer, y, from the opponent with
perfect information, then the greedy order can be learned based on the agent’s
scoring functions.

fi(yi) < fj(yj) =⇒ λ∗i j

Proof. Here, the opponent has generated a Pareto-optimal offer, y; therefore based
on Theorem 1 we can write:

f ′i(yi) > f ′j(yj) =⇒ λ′∗j i

then according to the Lemma 1 we have (λ′∗ = −λ∗):

f ′i(yi) > f ′j(yj) =⇒ λ∗i j
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from the split the pie game we have f + f ′ = 1, then:

fi(yi) < fj(yj) =⇒ λ∗i j.

In other words, the greedy order can be detected based on the ascending order of
the scoring values. The best greedy choice is an issue which has the lowest scoring
value. �

Although Theorem 2 gives some clues to find the greedy order, the quality of
the learning depends on the opponent’s aspiration-level. The following example
illustrates that in the early rounds of the negotiation, the agent can just partially
learn the greedy order.

4.2.1 Example: Learning the Greedy Order

Consider two agents that negotiate to buy/sell a product. Agents negotiate over
three issues A = {price, delivery,warranty} with the following domains:

Dprice = [100, 250] $
Ddelivery = [1, 14] days
Dwarranty = [3, 24] months.

The importance weights of issues (price, delivery time,warranty duration) for the
seller agent w = 〈0.6, 0.15, 0.25〉 and for the opponent (the buyer) is w′ = 〈0.4, 0.3,
0.3〉. Moreover, the agent and its opponent have the following scoring functions:

fprice(x) = x− 100
150

fdelivery(x) = x− 1
13

fwarranty(x) = 24− x
21

f ′price(x) = 250− x
150

f ′delivery(x) = 14− x
13

f ′warranty(x) = x− 3
21 .

The agent does not know the opponent’s importance weights and receives some
offers. Here, we want to see how Theorem 2 helps learn the greedy order. Let us
say the opponent has used its greedy order λ′∗price→warranty→delivery to generate the
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following offers:

round 1 : θ′ = 0.95; y1 = (118 $, 1day, 24months)
round 2 : θ′ = 0.85; y2 = (156 $, 1day, 24months)
round 3 : θ′ = 0.75; y3 = (193 $, 1day, 24months)
round 4 : θ′ = 0.65; y4 = (231 $, 1day, 24months)
round 5 : θ′ = 0.55; y5 = (250 $, 1day, 21months).

According to Theorem 2, the agent can partially learn the greedy order based
on the scoring values of the received offers. Here, fp, fd and fw are used to show the
scoring functions for the price, delivery and warranty, respectively.

round 1 : fp(118) = 0.125;fd(1)= 0;fw(24) = 0 =⇒ λ∗?→?→price

round 2 : fp(156) = 0.375;fd(1)= 0;fw(24) = 0 =⇒ λ∗?→?→price

round 3 : fp(193) = 0.625;fd(1)= 0;fw(24) = 0 =⇒ λ∗?→?→price

round 4 : fp(231) = 0.875;fd(1)= 0;fw(24) = 0 =⇒ λ∗?→?→price

round 5 : fp(250) = 1.0 ;fd(1)= 0;fw(21) = 0.167 =⇒ λ∗delivery→warranty→price

As can be seen, in rounds 1-4, the agent can just detect price as the last/worst greedy
choice. However, it cannot recognize the rank of delivery and warranty because they
have equal scoring value (fd(1) = fw(24) = 0).

In fifth round, finally, the agent can determine the greedy order from the non-
equal scoring values. Thus, from fifth round on, the agent can generate Pareto-
optimal offers according the learned greedy order. In this example, as long as the
opponent keeps its aspiration-level higher than 0.60 and generates Pareto-optimal
offers, the agent cannot reveal the greedy order.

This example shows that in the early rounds of the negotiation, agent with
incomplete information can just partially learn the greedy order.

Now, let the opponent replace the first offer with a near-optimal offer like (113,
1, 23). Although this offer is based on the greedy order, the opponent has not
applied the maximum trade-offs to generate this offer. Then, the agent can detect
the following scoring values:

round 1 : fp(113) = 0.09; fd(1) = 0; fw(23) = 0.047 =⇒ λ∗delivery→warranty→price.

Actually, (118, 1, 24) and (113, 1, 23) have same utility (θ′ = 0.95) for the sender
but they have different advantages for the receiver. The former one has higher
utility for the receiver (Pareto-optimal) and the latter one has non-equal scoring
values that can be used by receiver to reveal the exact greedy order. This example
addresses the problem of having uncertain greedy order.
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4.2.2 Learning the Greedy Order

According to Theorem 2, the greedy order can be learned by sorting the scoring
values. Let F be a vector that contains issues’ cumulative scoring values which is
initialized by zeros at the beginning of the negotiation:

Fi =
m∑

k=1
fi(yk,i)

where m is the number of the received offers and yk,i is the ith issue of the kth

received offer.
If vector F has elements with unique values, then it can reflect the exact greedy

order. In this case, the agent with incomplete information can generate a Pareto-
optimal offer. Otherwise, the agent should find a near Pareto-optimal offer.

Algorithm 2 presents a solution to the problem of generating offer with incom-
plete information (uncertain greedy order). The first part of the algorithm (lines 1–8)
is related to learning the greedy order. Then, in the second part (lines 9–17), it ge-
nerates a near optimal offer. The second part is almost similar to algorithm 1, but
some changes in algorithm 1 are made to adapt it with incomplete information.

At first, the agent updates the cumulative scoring values based on the last
received offer, y. Then, issues’ position in the greedy order can be revealed if they
have non-zero cumulative scoring values. Therefore, the agent can make a maximum
trade-off to assign a value to the issue; but it may happen that some issues (like
delivery and warranty in Section 4.2.1) have zero cumulative scoring value (Fi = 0).
In this case, issues have uncertain positions in the greedy order and will be collected
in the set Ae (line 7).

In line 8 of algorithm 2, agent ascendingly sorts the issues based on their cumu-
lative scoring value to form the sequence λ. Since the first issues in the sequence λ
may have uncertain position, the agent starts making trade-offs from the last issue
in the sequence down to the first issue (line 11). In this vein, the agent assigns the
highest possible utility to the selected issue in the sequence.

Having a set of issues with the same scoring values (Ae), the agent assigns equal
scoring value to these issues (line 14) by using the following formula:

f = remained utility
total weights of issues in Ae

= θ − Su
Swe

(4)

where Swe is the summation of the importance weights for issues with uncertain
position in the greedy order.

It is worth mentioning that Algorithm 2 can generate Pareto-optimal offers if the
agent learns the greedy order. Otherwise, Algorithm 2 generates near Pareto-optimal
offers. Moreover, the learning method presented in this algorithm is embedded in
offer-generating algorithm. Therefore, this learning method cannot be applied in
other offer-generating algorithms.
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Algorithm 2 Generating offer with learning the order of greedy choices
Given:
Ae: set of the issues with uncertain position in greedy order
Swe: summation of the importance weights for issues in Ae

F : a vector that contains the cumulative scoring values for the received offers

1: Ae ← ∅
2: Swe ← 0
3: for i = 1 to n do
4: Fi ← Fi + fi(yi)
5: if Fi == 0 then
6: Swe ← Swe + wi

7: Ae ← Ae + {i}
8: λ← Sort issues based on Fi

9: Su← 0
10: for k = n downto 1 do
11: i← λn /* select the last/worst greedy choice */
12: ui ← min(wi, θ − Su) /* the highest possible utility */
13: if i ∈ Ae then
14: ui ← (θ − Su).(wi/Swe)
15: else
16: Su← Su+ ui

17: xi ← f−1
i (ui/wi)

18: return (x1, x2, . . . , xn)

Algorithm 2 can generate a near Pareto-optimal offer with uncertain information
in O(n log n). In fact, an agent should update the greedy order (line 8) in each round
of the negotiation that needs O(n log n).

5 EXPERIMENT

In the following experiments, two agents (a buyer and a seller) are considered, one
with perfect information and the other with incomplete information. The agent
with perfect information uses MGT algorithm to generate Pareto-optimal offers.
The other agent uses algorithm 2 (MGT with learning), and smart random trade-
offs (SRT) [20] to generate offers under uncertainty.

Distance form the Pareto-optimal curve can show the quality of the genera-
ted offers. Offers which are closer to Pareto-frontier curve are preferred. Ex-
periments are based on the negotiation setting in Section 4.2.1 where the impor-
tance weights of issues (price, delivery time, warranty duration) for the seller agent
wseller = 〈0.6, 0.15, 0.25〉 and for the buyer is wbuyer = 〈0.4, 0.3, 0.3〉.

Figures 1 and 2 show the results from Algorithm 2 where the agent with incom-
plete information can learn the greedy sequence and generate near Pareto-optimal
offers. The outcome can be compared to SRT algorithm.
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Fig. 1. Generating offers with one-side incomplete information. The seller has perfect
information and moves over Pareto-frontier curve while the buyer has incomplete
information. a) the buyer uses algorithm 2 to generate offers, b) the buyer uses SRT
algorithm to generate offers.
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Fig. 2. Generating offers with one-side incomplete information. The buyer has perfect
information and moves over Pareto-frontier curve while the seller has incomplete
information. a) the seller uses algorithm 2 to generate offers, b) the seller uses SRT
algorithm to generate offers
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In the first experiment (Figure 1), the seller had perfect information and genera-
ted Pareto-optimal offers (by using MGT algorithm). On the other hand, the buyer
had incomplete information and generated offers by using Algorithm 2 (graph a))
and SRT (graph b)). It can be seen that offers generated by algorithm 2 are closer
to Pareto-frontier curve than those generated by SRT algorithm.

In the next experiment (Figure 2), it was assumed that the buyer has perfect
information and the seller has incomplete information. In this experiment the buyer
uses the MGT algorithm to generate Pareto-optimal offers. In graph a), the seller
uses Algorithm 2 to learn the greedy sequence and generate near Pareto-optimal
offers. In graph b), the seller uses SRT algorithm and generate near Pareto-optimal
offers. Again, it can be seen that offers generated by algorithm 2 are closer to
Pareto-frontier curve than those generated by SRT algorithm.

According to the results shown in Figures 1 and 2 learning the greedy sequence
and generating offers by using Algorithm 2 is more effective than using SRT algo-
rithm (learning the order of the opponent’s importance weights).

6 CONCLUSIONS

This paper studies the problem of generating Pareto-optimal offer in bilateral multi-
issue negotiation with one-side uncertain information about the opponent impor-
tance weights. The problem is modeled by multiple split the pie games and alter-
nating offer protocol as a non-zero-sum game.

In this study, at first, the properties of Pareto-optimal offers are investigated.
Then, an extension to MGT algorithm is presented to generate near Pareto-optimal
offers. It has been proved that agents should have reverse greedy sequences (agendas)
to generate Pareto-optimal offers. Moreover, the greedy sequence can be revealed
from received offers by sorting cumulative scoring values. The agent with uncertain
information can use these findings to learn the greedy sequence and generate the
(near) Pareto-optimal offer. The empirical analysis indicates that the proposed
learning method can effectively improve the quality of the generated offers.

Similar to game theoretic models, in this study, negotiation issues are considered
to be continuous variables. Although continuous negotiation issues are widely used
in game theory to model the negotiation, in real world marketplaces negotiation
issues are mostly discrete. Therefore, generating offer with discrete issues can be
studied in the future. Moreover, generating Pareto-optimal offers with both side
incomplete information is still a challenging problem to be studied.
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