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Abstract. The distributed control system of the Large Hadron Collider (LHC)
presents many challenges due to its inherent heterogeneity and highly dynamic na-
ture. One critical challenge is providing access control guarantees within the mid-
dleware. Role-based access control (RBAC) is a good candidate to provide access
control. However, in an equipment control system transactions are often dependent
on user context and device context. Unfortunately, classic RBAC cannot be used
to handle the above requirements. In this paper we present an extended role-based
access control model called CMW-RBAC. This new model incorporates the advan-
tages of role-based permission administration together with a fine-grained control
of dynamic context attributes. We also propose a new technique called dynamic
authorization that allows phased introduction of access control in large distributed
systems. This paper also describes motivation of the project, requirements, and
overview of its main components: authentication and authorization.
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1 INTRODUCTION

The Large Hadron Collider was built by the European Organization for Nuclear
Research (CERN) with the intention of testing various predictions of high-energy
physics, including the existence of the hypothesized Higgs boson and of the large
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family of new particles predicted by supersymmetry. The unprecedented energy it
achieves may even reveal some unexpected results that no one has ever thought
of [1].

The LHC is the world’s largest and highest-energy particle accelerator. The
collider is contained in a circular tunnel, with a circumference of 27 kilometers, at
a depth ranging from 50 to 175 meters underground [2]. The LHC uses some of
the most powerful dipoles and radio-frequency cavities in existence. The size of the
tunnel, magnets, cavities and other essential elements of the machine, represent the
main constraints that determine the design energy of 7 TeV per proton beam [3].

The energy stored in the LHC magnets and beam is enormous, and their po-
tential for crippling the machine is a serious concern. That is why European Orga-
nization for Nuclear Research has developed a multi-pronged approach for machine
safety [4]:

Hardware Protection
LHC Beam Interlock System
Powering Interlock System

Software Interlock System

AN A

Access Control.

As part of the preparation to operate the LHC it has been requested that an ac-
cess control is implemented for the existing Controls Middleware (CMW). The CMW
design reflects the Accelerator Device Model in which devices, named entities in the
control system, can be controlled via properties. Each device belongs to a Device
Class and it is the Device Class, which defines the properties which can be used to
access the device. CMW implements this model in a distributed environment with
devices residing in servers that can run anywhere in the controls network. It provides
a location-independent and reliable access to the devices from control programs. By
invoking the device access methods, clients can read, write and subscribe to device
property values [5].

From the point of view of the CMW, each accelerator device is a device server.
Control applications maintaining communication with accelerator devices are viewed
as CMW clients. Figure 1 shows the architecture of CMW.

Given the significant dangers of the LHC operations, protection against unau-
thorized or accidental access to the accelerator controls system is required at the
level of CMW. There is a need to define among the machine operation and equip-
ment groups, who can do what and when. Access control is a preventative and
therefore inexpensive way to protect the accelerator equipment. It keeps users from
making wrong settings. Other machine protection systems such as interlocks are
reactive and once triggered it is expensive to recover operations.

It is important to mention that access control is not a security system against
hackers; it is designed only to prevent well meaning people from making wrong
setting, and unauthorized users who have no credentials from running control ap-
plications.
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Fig. 1. Controls middleware architecture

2 ACCESS CONTROL REQUIREMENTS

The access control requirements of the distributed middleware system are characte-
rized by four concepts. Firstly, the granting of access rights should be determined by
the operation to be performed on the equipment. The CMW architecture imposes
a specific device model structure that must be followed also for access control. Se-
condly, the access control mechanism must be aware of the user and device context.
Thirdly, the access control mechanism should support separation of duty policies
that may be required for management of critical settings. Finally, a dynamic autho-
rization algorithm is needed to allow phased introduction and flexibility in operation.
Each of these requirements is now discussed in more detail.

2.1 Device Model for Access Control

The device model structure of the controls middleware must be taken into account
for access control. An access control implementation should allow defining access
privileges for the following operations on each device property: read, monitor, and
write. In practice, it is the write operation and exceptionally the monitor operation
which will be restricted. Access to equipment must be restricted according to access
rules defined jointly by the equipment and operation groups.
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2.2 Context Information

Access decisions must include other factors that characterize both the user and
the device to be accessed. The specific values of those factors form a context that
must be taken into account while performing authorization checks. The term “dy-
namic security attributes” is used in contrast to traditional “static” attributes. Dy-
namic attribute values must be obtained at the time when an access decision is
required while static attribute values are usually obtained when a session is estab-
lished.

For example, consider a user accessing a device server from outside the CERN. In
this case the user’s access privileges depend on his location. His privileges will change
as his context changes, for example, if he moves from an unauthorized location to
an authorized one.

2.3 Separation of Duty

Separation of duty is a security principle used to formulate multi-person control
policies. In essence it requires that two or more different people are responsible for
the completion of a business process. It would thus, in principle, discourage fraud
by requiring a conspiracy, thereby increasing the risk to the potential perpetrators.
In order to protect the most sensitive equipment users must have only one critical
role at a specific point in time.

2.4 Dynamic Authorization

The equipment has several modes of operation. While a device is working in the
test mode it is often necessary to allow access for a wider range of users than during
normal operation. In such cases an expansion of the access rules is not always
desirable and appropriate. Firstly, it may loosen up on the system security, and
secondly it requires significant administrative costs. We believe the introduction of
different working modes of authorization assists to problem solving. In this case the
authorization algorithm will take into account not only access rules, but also the
current working mode of the equipment.

CERN has a lot of exposed equipments due to the size of the LHC, which
contains hundreds of thousands of different devices with dozens of properties each.
Thus it takes a lot of time to design access rules for all devices. As we cannot
force equipment specialists to define these rules in a single day, we have to propose
a flexible solution for regulating access to non-protected equipments. This will allow
us to deploy the access control system step-by-step, without breaking the existing

infrastructure. This is a crucial requirement for the LHC access control system at
CERN.
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3 THE CMW-RBAC MATHEMATICAL MODEL
3.1 Role-Based Access Control

One of the most challenging problems in managing large networks is the complexity
of security administration. Role based access control (RBAC), as formalized in 1992
by David Ferraiolo and Rick Kuhn [6], has become the predominant model for ad-
vanced access control because it reduces this cost. In 2000, the Ferraiolo-Kuhn model
was integrated with the framework of Sandhu et al. [7] to create a unified model for
RBAC, published as the NIST RBAC model [8] and adopted as an ANSI/INCITS
standard in 2004. Today, most information technology vendors have incorporated
RBAC into their product lines, and the technology is finding applications in are-
as ranging from health care to defense, in addition to the mainstream commerce
systems for which it was designed [9].

Role-based access control is an approach to restrict system access to authorized
users. Within an organization, roles are created for various job functions. The
permissions to perform certain operations are assigned to specific roles. Members
of staff (or other system users) are assigned to particular roles, and through those
role assignments acquire the permissions to perform particular system functions.
The use of RBAC to manage user privileges within a single system or application is
widely accepted as a best practice. Systems including Microsoft Active Directory,
Microsoft SQL Server, FreeBSD, Solaris, Oracle DBMS, PostgreSQL 8.1, SAP R/3
and many others effectively implement some form of RBAC [9].

3.2 Related Work

The notion of roles helps simplify controlling access to objects, but it has to be used
in conjunction with other information, such as device context, client location and
so on [10]. Access decisions must include other factors, in particular, relationships
between entities, such as the user and the object to be accessed. The term “dynamic
security attributes” is used in contrast to traditional static attributes [11]. Values
of dynamic attributes must be obtained at the authorization time while values of
static attributes are usually obtained when a session is established.

In [12], Wang et al. present a number of considerations for access control in
general middleware systems. Their paper also discusses the need to be placed within
a continuum from totally secure, accountable systems, to systems with efficient
broadcasting and routing of events largely powered by a lack of need for security-
related accounting.

A similar introduction is presented in [13]. Miklos devotes significant attention
to specifying maximum and minimum security restrictions by assuming an ordering
of events. We feel this approach is too restrictive, and unnecessarily prescriptive.
Another problem with his work is the apparent lack of implementation details. Our
approach provides a more expressive policy language with which to control security.
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3.3 Proposed Model for CMW-RBAC

Role-based access control is a good candidate to provide access control. However, in
an equipment control system transactions are often dependent on user context and
device context. Unfortunately, classic RBAC cannot be used to handle the above
requirements. We propose a new model of RBAC for the distributed control system
which we will refer to as CMW-RBAC. This concept is based on the standard model
and preserves the advantages of scalable security administration that RBAC-style
models offer. Moreover it significantly extends the standard RBAC model accord-
ing to specific requirements and yet offers the flexibility to specify complex access
restrictions based on the dynamic security attributes. The new CMW-RBAC model
is quite general and flexible and could be used in many other areas for equipment
access control. Below we give a formal mathematical description of the model in
terms of sets and relations. Our model can be virtually divided into three subsets:

1. RBAC - contains elements of the standard RBAC model
2. CMW - extension of RBAC with middleware Device Model components

3. Context — user context and device context information.

3.3.1 RBAC Subset

e U — a set of users, {w;|i € N}. The user is either a human user or a computer
program.

e R — aset of roles, {r;|i € N}. Role is a job function or title which defines an
authority level.

e P — a set of permissions, {p;|i € N}. Permission (access rule) is an approval of
a mode of access to a resource.

e UA — user assignment: operation which assigns concrete roles to the users.

UACU x R. (1)

PA — permission assignment: R — 2P — function, defining a set of access rules
for each role. This condition must be met at that:

Vpe P,are R:pe PA(r). (2)

As shown in Figure 2, a user may have many roles, as well as a role may belong
to many users; a role may have several permissions, and a permission may belong to
many roles. There are also sets of administrative roles ADR and permissions ADP
that are used to restrict access to administrative operations within CMW-RBAC.
Administrative roles are not used for equipment access, as well as regular roles are
not used for administration.
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e AUA - administrative user assignment: operation which assigns concrete ad-
ministrative roles to the users.

AUA C U x ADR.
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Fig. 2. Mathematical model of CMW-RBAC

(3)

e S — a set of sessions, {s;]i € N}. Session (subject) is mapping of one user
to possibly many roles, i.e., a user establishes a session during which the user
activates some subset of roles that he or she is a member of. The double-
headed arrow from the session to R in Figure 2 indicates that multiple roles are
simultaneously activated. The permissions available to the user are the union of
permissions from all roles activated in that session. Each session is associated
with a single user, as indicated by the single-headed arrow from the session to
U in Figure 2. This association remains constant for the life of a session.

user(s;): S = U

(4)
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e AR — a set of the subject’s active roles (which can change with time). For each
subject, the active role is the one that the subject is currently using.

AR(s;) : S — 2RUADE (5)
AR(s;) C {r € R|(user(s;),r) e UAU AU A} (6)

Sessions are under the control of individual users. As far as the model is con-
cerned, a user can create a session and choose to activate some subset of the user’s
roles. Roles active in a session can be changed at the user’s discretion. The session
terminates at the user’s initiative. A system may also terminate a session if it is
inactive for too long.

3.3.2 CMW Subset

Within the model device is a named entity in the control system. A device can
be controlled via its properties. Each property has a name and value. The set of
properties specific for the group of homogenous devices forms a device class. The
model also defines operation types for work with all environments in the system.
These are the get, set and monitor types, which allow to read a value from a device,
write a value to a device and monitor a device property.

e T — a set of operation types, {get, set, monitor}.

e PR — a set of device properties, {pr;|i € N}.

e C — a set of device classes, {¢;|i € N}.

Function defining a set of properties for each device class:
props(c;) : C — 2FR. (7)
e D — aset of devices (equipments), {d;|i € N}.

Now we give a function that for every device from the set D defines the associated
device class:
class(d;) : D — C. ()

The set of properties for a concrete device is defined as:
APR(d;) = {pr € PR|(class(d;),pr) € props(class(d;))}. 9)

Hereby one device class may have many properties, and many devices may belong
to the same device class. The set of transactions 7', which can be executed by user
working within the control system:

T = {(ot,pr,d)|ot € OT,pr € APR(d),d € D}. (10)

This implies that the interaction of a user with the control system comes to the
execution of operations from the OT set over the properties of some devices. The
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function defining a set of transactions for each permission hereafter referred to as
transaction assignment T'A is:

TA(p:): P— 2", (11)

Now we define a predicate indicating whether a transaction is protected by access
rules:
Vit € T, (protected(t) =1 < Ip € P:t € TA(p)); (12)

that is a transaction is considered to be protected if there is at least one access rule
which restricts access to it.

e C'P — aset of checking policies implementing a dynamic authorization algorithm,
{no_check, lenient, strict}. Later we will show how checking policies impact
authorization.

3.3.3 Context Subset

In an equipment control system transactions are often dependent on user context
and device context. Unfortunately, classic RBAC cannot be used to handle the
above requirements. Therefore the RBAC model needs to be extended with context
information. In our model capabilities and privileges of a subject not only depend
on its identity but also on its current context and context of the target device.

e L — aset of user locations, {l;|i € N}.

e A — aset of client applications, {a;|i € N}.

Elements of these two sets form a Session Context set SC':

SC=LxA (13)
loc(sc;) : SC — L (14)
app(sc;) : SC — A. (15)

Each session and permission has its own session context.
sc(s;) : S — SC (16)
se(p;) : P — SC (17)

e M — a set of operational modes, {operational, non — operational}.

o DC — a set of device contexts, {dc;|i € N}. Each device context has its own
operational mode:
mode(dc;) : DC — M. (18)
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Each device and permission has its own device context.
de(d;) : D — DC (19)

de(p;) : P— DC (20)

Now we define a special predicate context which determines whether the transaction
is potentially executable for the given session:

Vs e S,t €T, context(s,t) = 1< 3IpeP:
(loc(p) = 0) v (loc(p) = loc(sc(5)))) A
((app(p) = 0)V (app(p) = app(sc(s)))) A
((mode(p) = 0)V (mode(p) = mode(dc(d)))). (21)

3.4 Dynamic Separation of Duty

According to the described model, the system allows to create sessions and choose
a concrete set of active roles for each session. In the standard model this concept is
called dynamic separation of duty [14, 15]. This approach puts additional restrictions
on the set of active roles. In particular there are mutually exclusive roles. The
same user can be assigned to at most one role in a mutually exclusive set. In
the implementation of the CMW-RBAC we define the set of critical roles, which
represents one set of all mutually exclusive roles. Critical roles are used to protect the
most sensitive equipment. In order to perform an operation permitted for a critical
role, the user has to provide an additional certificate.

3.5 Dynamic Authorization Mechanism

Authorization is the function of specifying access rights to resources or services [16].
In our case the object of authorization is the set of transactions T, which a user
can execute working within the control system. Dynamic authorization is the algo-
rithm of authorization that takes into account not only access rules, but also the
checking policy of the authorization subject. Within CMW-RBAC we developed
3 different checking policies. Each of them represents an authorization algorithm.
A checking policy is defined at the level of every device and can be changed at
runtime. The checking policy reflects the internal state of the device in terms of
authorization.
The function mapping each device from the set D to the associated checking
policy is as follows:
policy(d;) : D — CP (22)

We define the predicate exec which is true if a subject can execute a transaction at
the current time, otherwise it is false. Now we specify the authorization algorithm
behavior for each checking policy.
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No-check policy grants access for each transaction without any verification. Typi-
cally this policy is used at the design stage, when the device interface is not fixed
and there are no access rules yet. This policy is also used during the testing
phase if needed to permit equipment access for some additional users for a short
period of time. This mode could be useful for system debugging or for other
activities when it is required to disable CMW-RBAC authorization checks.

Vs € S,t €T, exec(no_check, s, t) = {1 protected(t) =1
1 protected(t) =0
Lenient checking policy implements relaxed authorization. For the protected trans-
actions algorithm access is granted only if the corresponding access rule permits
so. That is, in order to deal with protected transactions the user must be au-
thenticated in the system. For unprotected transactions access is not restricted.
Typically this policy is used at the testing stage, when access rules exist only
for the most critical settings of the equipment. Some of the devices work in
this mode permanently, because sometimes it is desirable to restrict access only
to some critical settings while keeping others unprotected. This checking policy
provides good protection. Switching from no-check to lenient policy is considered
as the step towards better security, and all equipment specialists are encouraged
to do so. This is an intermediate stage between no-check and strict policy, which
allows us to propagate CMW-RBAC in successive steps.

exec(lenient, s, 1) = {t € TA(PA(AR(s))) A (context(s,t)) protected(t) =1
1 protected(t) = 0
Strict checking policy is the most detailed authorization algorithm. It always re-
quires users to be authenticated in the system; otherwise user’s requests will
be blocked. Access to the protected transactions is granted only if there is an
associated access rule. For unprotected transactions access is permitted only for
operations of reading and monitoring. Setting new values with an unprotected
transaction is not allowed. This checking policy is the strictest in existence at
CERN. Our final goal is to propagate this mode as wide as possible, because it
provides the highest security. All critical equipments are supposed to work in
this mode.

te TA(PA(AR(s))) A (context(s,t)) if protected(t) =1
s=10
ot € get, monitor N\ protected(t) =0

0 ot = set A protected(t) =0

exec(strict, s,t) =

By introducing a dynamic authorization algorithm we obtained a flexible security
system whose behavior can be easily changed at runtime. One of the main
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advantages of this approach is that it allows deploying CMW-RBAC step-by-
step without interruption of the existing software. Our final goal is to protect
every single device, but it is impossible to accomplish this job even in one year
taking into account the number of environments. We believe that our CMW-
RBAC model is a good example of a flexible authorization system which can
be applied to many other very large distributed systems. Based on this new
model we developed a software implementation for securing the LHC controls
middleware. In the following chapters we provide an overview of the software
technical requirements, and describe the implementation of the most important
components.

4 TECHNICAL REQUIREMENTS

To distinguish authentication from the closely related term authorization, the short-
hand notations Al (authentication) and A2 (authorization) are occasionally used. In
the present paper we list only the most important requirements of the authentication
and authorization components of the CMW-RBAC system [17].

4.1 Authentication Requirements

1. Encryption: the credentials used to authenticate the user shall be encrypted
when sent over the network.

2. Hardware independence: the programming interface of authentication shall be
independent of specialized hardware such as a card reader, fingerprint reader
etc.

3. Quick and simple: the operators must be able to log in quickly and easily.
Therefore, the method of authentication must be straightforward for the users.

4. Generic Application Programming Interface (API) for CMW-RBAC: to avoid
duplication of specific business logic in different applications and stay indepen-
dent of changes to the data model, the CMW-RBAC software shall provide
a common, platform independent API to all the interested systems.

5. Authentication method: authentication shall be done via user name and pass-
word from a personal CERN account. The software should allow flexibility for
future implementations of Kerberos and/or X.509 certificates.

6. Authentication by location should be implemented as an additional authenti-
cation method. This will allow users to be authenticated without providing
credentials from a very limited set of trusted machines located in the CERN
Control Centre (CCC).

7. Role activation mechanism: must be implemented to allow users to pick up roles
from the set of available roles.
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4.2 Authorization Requirements

1. Safeguards for authenticated users: CMW-RBAC shall be used for granting
authority to read, monitor, and write to devices. CMW-RBAC shall not grant
the permission to make a setting when it is denied by the Management of Critical
Settings (MCS).

2. Object of authorization: it shall be possible to restrict access, i.e. define access
privileges for the following operations on each device property: read, monitor,
and write. In practice, it is the write operation and exceptionally the monitor
operation which will be restricted.

3. Permission administration: the permissions shall be defined during the de-
sign/deployment phase, and authorized administrators shall be able to edit the
permissions at any time

4. Logging/tracking: CMW-RBAC shall keep track of all write actions. It shall
keep a log of the action stating the user name, the location, the day and time,
the property and any parameters used to grant permission.

5. Performance: authorization shall be fast and shall not hinder the performance
of the middleware.

5 AUTHENTICATION

The purpose of the CMW-RBAC authentication system is to verify the digital iden-
tity of a principal (which is either a human user or a program). This can be accom-
plished in several ways, described below. In any case, if the authentication succeeds
its result is a digitally signed authentication token that is returned to the applica-
tion [18]. The program can use the token whenever it needs to interact with various
parts to the control system. For example, the token can be provided as one of the ar-
guments in a Remote Method Invocation (RMI) call to set a device. Front-ends and
the middleware that are receiving such calls will verify the token, thus confirming
the identity of the remote party, and can use it as a basis for authorization.

The CMW-RBAC authentication token is a short-term uniform substitute of the
real credentials. It is issued by a central service that can reliably verify the user’s
identity. The central authentication service always signs tokens with a private key
to prevent any further modifications. Various recipients of the tokens can validate
them quickly and easily with the public key, and use them for making authorization
decisions [19].

The following diagram demonstrates the authentication process.

1. The application sends a login request to the CMW-RBAC.
2. CMW-RBAC checks the user location in the database.

3. If location is trusted, then the new token is immediately created and returned
to the user.
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Fig. 3. Authentication process

4. Otherwise the user is required to enter his credentials or choose the certificate
and send it to CMW-RBAC.

5. CMW-RBAC verifies the credentials with the CERN Account System (NICE).

6. If the check is successful CMW-RBAC retrieves roles from the database, gene-
rates a new token and signs it with private key to prevent any modifications.

7. CMW-RBAC returns a signed token containing the user roles to the application.

The A1 server is implemented in Java. It receives authentication requests via
HTTP from multiple clients, returning back either an authentication token, or an
error code. Each request from a user contains its credential in some form. All
requests are atomic, so no session information is cached by the server. The SSL/TLS
protocol is generally used over HTTP to protect the communication between the
two parties, and to authenticate the client’s X.509 certificate, if provided.

The client side is organized as a library implemented both in C++ and Java,
which can be used by other applications or application frameworks. This library
provides a function that should be called in order to obtain the authentication
token from the server. The Java implementation also provides several standard GUI
components, such as a login dialog, role picker dialog, and others. Basically, that
client-side authentication library can be used in most applications without changes.
The C++ version of the client library is more lightweight because it does not provide
any GUIL

5.1 Types of Authentication

Currently CMW-RBAC supports four types of authentication:

1. By user name and password: the user names and passwords are checked against
the central NICE account database, via a dedicated web service. No user account
information is stored in the CMW-RBAC own database.
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2. By X.509 certificate: if the user’s X.509 certificate is available, it can be used to
perform standard TLS/SSL authentication. Then, the certificate information is
used to look up the user name in the CMW-RBAC database.

3. By the network address (also called Authentication by location): certain clients
can be authenticated by their IP addresses, using a lookup table in the CMW-
RBAC database. Normally, the address authentication is permitted only for
a very limited number of machines, such as control room consoles.

4. By using an existing authentication token: any existing token can be used to
request a new one, providing that the original token is not expired, bears valid
signature, and was issued to the same location address. The lifetime of the new
token will not exceed the validity time of the original one.

5.2 Dynamic Separation of Duty

This section describes the implementation of the session mechanism in the CMW-
RBAC system. There is a special token type called master-token. This token may
be generated by the Al server, as any other type of the token. The difference is that
a master-token does not contain roles at all and that is why it cannot be used for
executing operations directly. Instead of roles a master-token contains a description
of the possible roles which allows the user to know the list of available roles and
activate some of them. When a user picks some roles, a master-token is sent to the
A1 server together with the list of the selected roles.

The A1 server verifies both the master-token and the roles and in case of success
returns to the user a newly generated token which contains only selected roles.
Typically the lifetime of the master-token is longer than regular token (application
token). A master-token may be valid up to one year. Thereby the usage of master-
tokens allows to activate some roles and helps stay logged in the system longer. This
is important for many operator programs which are supposed to stay authenticated
permanently, in spite of the several interruptions that occur along the year.

In most cases tokens are stored in the application memory to prevent any usage
by other clients. However, in some cases master-tokens are stored on hard disc
allowing several applications to use them.

6 AUTHORIZATION

Because the CMW-RBAC project begun when all other parts of the LHC Control
Software were already completed, its design was subject to a number of requirements
and limitations dictated by the infrastructure in place. Basically, we couldn’t change
much how the system operated, so CMW-RBAC was built as an additional part on
top of the existing components (in particular CMW) [19].

The CMW-RBAC A2 library is part of each and every device server. It is imple-
mented in C++ and compiled for all platforms used at CERN. The A2 server library
is called by the CMW server to perform authorization for equipment transactions.
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Every operation (get, set or subscription demand) is subject to an authorization
process and its execution can be denied when the issuer has insufficient privileges.
Other types of operations (e.g. reboot, configuration change) can be also controlled
through the RBAC by introducing additional server properties and limiting their
access with appropriate access rules.

Each transaction request is made from the application via the CMW client to
the CMW server. The CMW-RBAC token obtained at authentication is passed to
the CMW client. There the digital signature is verified, and if valid, the token is
sent to the CMW server. If the token is not valid a meaningful exception message
is returned to the sender. The CMW looks up the permission in the access map,
and depending on access rights either grants access or blocks the request. The
authorization process is demonstrated in Figure 4.

Application

CMW-RBAC
Client

—— 2] HTTP —p

CMW-RBAC A1l Server
CMW

Client @
[3] CORBA [5]

| —
| [4] CORBA
CMW Configuration Database

Server [1] File
CMW-RBAC E
6]TCP/IP —j
A2 Server erers >

Device Server

Log Server

Fig. 4. Authorization process

1. The access map is loaded from a local file upon device server startup.

2. The client application authenticates to the CMW-RBAC A1 server and obtains
a valid token.

3. The token is passed to the CMW client and then to the device server via CMW
protocol.

4. The CMW server receives the accelerator mode from a timing source.

5. The dynamic authorization algorithm verifies the user permissions and either
allows the operation or throws an exception.

6. The result of the authorization process is logged for auditing.
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7 ACCESS RULES

Deciding whether a particular operation is valid or not depends on a set of access
rules. They are specified by an equipment specialist for every device class, stored
and managed centrally in the Controls database. Every CMW server can read access
rules (referred to as access map), relative to device classes it is providing access to,
through a tab-separated text file located in the Network File System. This file
mirrors the access rules located centrally in the database, and is digitally signed by
the server to prevent any modifications.

The access map is read by the CMW server on its start-up. In addition, access
map can be reloaded upon a remote call from CMW client. It usually happens when
the set of related access rules has been altered by an equipment specialist. Access
rules are parameterized using all factors related to the authorization process. Apart
from specific values, an equipment specialist can put a wildcard ‘“*’ in any of the
fields except device class and operation. This is interpreted as “all values fit”.

The proposed structure of access rules allows straightforward and natural defi-
nition of access patterns to devices. Furthermore, we expect an average access map
to contain no more than 20-30 rules, which is an easily manageable number.

The authorization process is performed for all transactions, therefore it must be
fast and must not penalize significantly the performance of the system. As the time
spent in the authorization process was a concern for the CMW operation, it was
decided to implement the access map as a tree structure with a separate tree for
each operation type. Figure 5 presents the structure of access map tree.

8 PERFORMANCE AND TESTS

An important concern with any design is its performance. CMW-RBAC performs
authorization for every transaction within control system and thus authorization
algorithm must work as fast as possible. It should not hinder the performance of the
middleware. In order to estimate how much different factors affect the performance
we made several experiments.

8.1 Architecture

The LHC controls can run in 2-tier mode, meaning that the application and the
client are on one machine and the database and devices are accessed directly on the
second machine. This configuration is used for development and testing. However
when the system is in operation the configuration is usually 3-tier, with the client
in a middle tier. A common client is shared by several applications and consolidates
requests. In 2-tier, a dedicated client ensures that each request is made from the
same application. Therefore the CMW-RBAC token can be passed once per session
and the credentials can be used for each subsequent request.

In 3-tier, the requests can come from any application at random times. Thereby
the token must be passed for each transaction. This slows down processing be-
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Fig. 5. Access rules structure

cause of additional operations of token serialization and de-serialization. In order
to measure the performance we accessed test device server from remote client. The
authorization time is the time for the following operations: token serialization, de-
serialization and authorization process. The request time is the duration of the
whole equipment call. Table 1 demonstrates difference in terms of performance
between 2-tier and 3-tier architecture.

Linux 4 x 2.7 GHz | LynxOS 400 MHz | WinXP 3 GHz
CMW Authorization 2-tier 12.83 ps 201.5 ps 13.44 ps
CMW Request 2-tier 190 s 2000 ps 200 ps
CMW Authorization 3-tier 171.73 us 2111 us 182.4 us
CMW Request 3-tier 400 ps 4100 ps 410 ps

Table 1. Comparison of 2-tier vs. 3-tier

8.2 Logging

The purpose of this test is to estimate how logging of authorization impacts on
performance. In order to evaluate the impact we measured the whole time of the
equipment call when logging was disabled and when it was enabled. When access
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is granted only some user information (token, location, transaction) is being sent
to the log server; but when access is denied then device server also logs the extract
of the access map with the access rules that protect given transaction. Throwing
a detailed exception to the client is also expensive. The results of this test are
presented in Table 2.

Linux 4 x 2.7GHz | LynxOS, 400 MHz
Policy: no-check. Log: off. Access: granted 140 ps 1900 ps
Policy: no-check. Log: on. Access: granted 200 ps 2400 ps
Policy: strict. Log: off. Access: granted 150 ps 2000 s
Policy: strict. Log: on. Access: granted 220 s 2500 pus
Policy: strict. Log: on. Access: denied 390 ps 2630 pus

Table 2. Logging of authorization result

8.3 Conclusions

Experimental performance evaluation results for the CMW-RBAC system at CERN
lead to the following conclusions:

1. 3-tier token verification on every request has a larger impact on performance
than the other concerns. In 3-tier configuration the CMW authorization takes
2.1 ms at most. At this time, this is acceptable according to the requirements.
The performance decrease is caused mainly by additional operations of token
de-serialization and digital signature verification.

2. Logging of each request has a significant effect on the performance. Our tests
show the difference between having logging on versus having it off is roughly
20 % when access is granted and even more when access was denied. However,
typical device server configuration disables log output for authorized requests,
this is only enabled during server debugging. Logging of unauthorized requests
is always enabled and cannot be turned off.

3. The size of the access map has little effect on performance due to sophisticated
and optimized search algorithms. Time complexity of the authorization algo-
rithm is logarithmic, because of efficient binary search in the access tree. Our
test result shows a double increase in authorization time between one rule and
200 rules access map. Further increasing of the access map size has no significant
impact on authorization time.

4. The number of roles in the client token influences the performance more sig-
nificantly than the access map size. Authorization time almost doubled when
number of roles increased from 1 to 20.
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9 CONCLUSIONS

We have outlined the security design for the Controls Middleware at CERN and and
presented CMW-RBAC a novel access control model. This new model incorporates
the advantages of role-based permission administration together with a fine-grained
control of dynamic context attributes. We also propose a new technique called
dynamic authorization that allows phased introduction of access control policies in
large distributed systems.

The CMW-RBAC approach was successfully implemented based on the proposed
model. The system successfully passed many centrally organized tests. The feasi-
bility, performance and overheads of CMW-RBAC were experimentally evaluated.
The results show that the overhead is reasonable and the model can be effectively
used for dynamic context-aware access control for distributed controls middleware.

This allows us to assume that the proposed model of the CMW-RBAC could
be used in many other areas where access control is needed for large distributed
systems. Currently the RBAC system is released in a production version and used
by virtually every equipment device at CERN. Thanks to the dynamic authorization
algorithm we could propagate the CMW-RBAC step-by-step, without interruption
of the legacy subsystems. In the future we expect to extend the CMW-RBAC
functionality and applicability domain.
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