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Abstract. This paper presents a new approach to flood mapping using satellite
synthetic-aperture radar (SAR) images that is based on intelligent tech-
niques. In particular, we apply artificial neural networks, self-organizing Kohonen’s
maps (SOMs), for SAR image segmentation and classification. Our approach was
used to process data from different satellite SAR instruments (ERS-2/SAR, ENVI-
SAT/ASAR, RADARSAT-1) for different flood events: the Tisza river, Ukraine
and Hungary, 2001; the Huaihe river, China, 2007; the Mekong river, Thailand and
Laos, 2008; and the Koshi river, India and Nepal, 2008.
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1 INTRODUCTION

In recent decades the number of hydrological natural disasters has increased con-
siderably. According to [1], in recent years we have witnessed a strengthening of
the upward trend, with an average annual growth rate of 8.4% in the 2000 to 2007
period. Hydrological disasters, such as floods, wet mass movements, represent 55%
of the overall disasters reported in 2007, having a tremendously high human impact
(177 million victims) and causing high economic damages (24.5 billion USD) [1].

Earth observation (EO) data from space can provide valuable and timely in-
formation when one has to respond to and mitigate such emergencies as floods.
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Satellite observations enable acquisition of data for large and hard-to-reach terri-
tories, as well as providing continuous measurements. Using satellite data, we can
determine flood areas, since it is impractical to provide such information through
field observations. The flood extent is very important for calibration and validation
of hydraulic models [2]. The flood extent can be also used for damage assessment
and risk management, and can benefit to rescuers during flooding [3].

The use of optical imagery for flood mapping is limited by severe weather con-
ditions, in particular by the presence of clouds. In turn, synthetic aperture radar
(SAR) measurements from space are independent of daytime and weather condi-
tions and can provide valuable information for monitoring of flood events. This is
mainly due to the fact that smooth water surface provides no return to antenna in
microwave spectrum and appears black in SAR imagery [4]. In contrast, a wind-
ruffled surface can give backscatter larger than that of the surrounding land. This,
in turn, considerably complicates the detection of water surfaces on SAR images for
flood applications. Though such surfaces are not present in our data sets, we plan
to investigate the influence of the wind on water detection from SAR imagery in the
future works.

Flood mapping procedure from SAR imagery consists, as a rule, of the following
steps. The first step consists in re-constructing a satellite imagery taking into ac-
count the calibration, the terrain distortion using digital elevation model (DEM) and
providing exact geographical coordinates. The second step is image segmentation,
and the third step consists in the classification to determine the flood extent.

This paper presents a neural network approach to flood mapping from satellite
SAR imagery that is based on the application of self-organizing Kohonen’s maps
(SOMs) [5, 6]. The advantage of using SOMs is that they provide effective software
tool for the visualization of high-dimensional data, automatically discover statisti-
cally salient features of pattern vectors in data set, and can find clusters in training
data pattern space which can be used to classify new patterns [5]. We applied our
approach to the processing of data acquired from different satellite SAR instru-
ments (ERS-2/SAR, ENVISAT/ASAR, RADARSAT-1) for different flood events:
Tisza river, Ukraine and Hungary, 2001; Huaihe river, China, 2007; Mekong river,
Thailand and Laos, 2008; and Koshi river, India and Nepal, 2008.

2 RELATED WORKS

To this end, different methods were proposed to flood mapping using satellite ima-
gery. European Space Agency (ESA) uses a multi-temporal technique to the flood
extent extraction from SAR images [7]. This technique uses SAR images of the same
area taken on different dates (one image is acquired during flooding and the second
one in “normal” conditions). The resulting multi-temporal image clearly reveals
change in the Earth’s surface by the presence of colour in the image.

Cunjian et al. [8] applied a threshold segmentation algorithm to flood extent
extraction from RADARSAT-1 imagery with the support of digital topographic
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data. Flood extent was extracted from RADARSAT SAR imagery using threshold
segmentation. Then, simulated SAR imagery was created from DEM and registered
to RADARSAT SAR imagery. Shade from the simulated SAR image was used
to mask the mislabeled flood extent from RADARSAT SAR due to its shadow
influence. The drawback of this approach is that threshold value should be chosen
manually, and will be specific for different SAR instruments and images.

Csornai et al. [9] used ESA’s ERS-2 SAR images and optical data (Landsat
TM, IRS WIFS/LISS, NOAA AVHRR) for flood monitoring in Hungary in 2001.
To derive flood extent from SAR imagery, change detection technique is applied.
This technique uses two images made before and during the flood event, and some
“index” that reveals changes in two images and, thus, the presence of water due
to the flooding (Wang 2002). Though these methods are rather simple and fast
(in computational terms), they possess some disadvantages: they need manual
threshold selection and image segmentation, require expertise in visual interpre-
tation of SAR images and require the use of complex models for speckle reduc-
tion; spatial connections between pixels are not concerned. More sophisticated
approaches have been proposed to segment SAR imagery for flood and coastal ap-
plications.

Horrit [10] has developed a statistical active contour model for segmenting syn-
thetic aperture radar (SAR) images into regions of homogeneous speckle statistics.
The technique measures both the local tone and texture along the contour so that
no smoothing across segment boundaries occurs. A smooth contour is favoured
by the inclusion of a curvature constraint, whose weight is determined analytically
by considering the model energy balance. The algorithm spawns smaller snakes to
represent multiply connected regions. The algorithm was tested to segment SAR
imagery from ESA’s ERS-1 satellite. The proposed approach was capable of seg-
menting noisy SAR imagery whilst accurately depicting (to within 1 pixel) segment
boundaries. However, application of active contour algorithm, in general, is sub-
ject to certain difficulties such as getting stuck in local minima, poor modelling of
long concavities, and producing inaccurate results when the initial contour is chosen
simple or far from the object boundary [11]. For statistical active contour models,
one should also have a priori knowledge of image statistical properties. In a case of
real SAR imagery, statistics may be badly represented by a modelled distribution.
Moreover, spatial correlation and regions of smoothly varying statistics may also
occur [10].

Dellepiane et al. [12] have proposed an innovative algorithm being able to dis-
criminate water and land areas in order to extract semi-automatically the coastline
by means of remote sensed SAR images. This approach is based on fuzzy connec-
tivity concepts and takes into account the coherence measure extracted from an
InSAR (Interferometric Synthetic Aperture Radar) couple. The method combines
uniformity features and the averaged image that represents a simple way of facing
textural characteristics. One major disadvantage of this method is that we should
have two precisely co-registered SAR images in order to estimate InSAR coherence
measure.
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In an approach proposed by Niedermeier et al. [13], an edge-detection method is
first applied to SAR images to detect all edges above a certain threshold. A block-
tracing algorithm then determines the boundary area between land and water. The
error is estimated by comparing the results achieved with a model based on visual
inspection: the mean offset between the final edge and the model solution is esti-
mated to be 2.5 pixels [13]. However, the number of the parameters and threshold
values affecting processing robustness is considerable in this approach.

Martinez and Le Toan [14] used a time series of 21 SAR images from L-band
PALSAR instrument onboard JERS-1 satellite to map the flood temporal dynamics
and the spatial distribution of vegetation over a large Amazonian floodplain. The
mapping method is based on decision rules over two decision variables:

1. the mean backscatter coefficient computed over the whole time series;

2. the total change computed using an “Absolute Change” estimator.

The classifier is first applied to the whole time series to map the maximum and
minimum flood extent by defining 3 flood conditions: never flooded (NF); occasion-
ally flooded (OF); permanently flooded (PF). Then, the classifier is run iteratively
on the OF pixels to monitor flood stages during which the occasionally flooded
areas get submerged. The mapping accuracy is assessed on one intermediate flood
stage, showing a precision in excess of 90%. However, to achieve this precision the
proposed classifier should be built on more than 8 images [14].

In this paper, we propose a neural network approach to flood mapping from
satellite SAR imagery. Our approach is based on segmentation of a single SAR
image using self-organizing Kohonen maps (SOMs) and further image classification
using auxiliary information on water bodies that could be derived, for example, from
Landsat-7/ETM+ images and Corine Land Cover (for European countries).

3 DATA SETS DESCRIPTION

We applied our approach to the processing of remote-sensing data acquired from dif-
ferent satellite SAR instruments (ERS-2/SAR, ENVISAT/ASAR, RADARSAT-1)
for different flood events:

1. Tisza river, Ukraine and Hungary, 2001;

2. Huaihe river, China, 2007;

3. Mekong river, Thailand and Laos, 2008 (see Figure 1); and

4. Koshi river, India and Nepal, 2008 (see Figure 2).

Data from European satellites (ERS-2 and ENVISAT) were provided from ESA
Category-1 project “Wide Area Grid Testbed for Flood Monitoring using Spaceborne
SAR and Optical Data” (4181). Data from RADARSAT-1 satellite were provided
from the Center of Earth Observation and Digital Earth (China).
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Pixel size and ground resolution of ERS-2 imagery (in ENVISAT format, SLC –
Single Look Complex) were 4m and 8m, respectively; for ENVISAT imagery they
were 75m and 150m; and for RADARSAT-1 imagery they were 12.5m and 25m.

We used the following set of auxiliary data to derive information on water bo-
dies: Landsat-7/ETM+, European Corine Land Cover (CLC 2000) and SRTM DEM
(version 3).

Neural network is built for each SAR instrument separately. In order to train
and test neural networks, we manually selected the ground-truth pixels with the
use of auxiliary data sets that correspond to both territories with the presence of
water (we denote them as belonging to class “Water”) and without water (class “No
water”). The number of the ground-truth pixels for each of the image is presented
in Table 1.

For ENVISAT/ASAR instrument, data from Chinese flood event was used to
construct and calibrate the neural network. This neural network, then, was used to
produce flood maps for India and Nepal, and Thailand and Laos events.

Fig. 1. SAR image acquired from ENVISAT satellite (date of acquisition 16.08.2007) dur-
ing the flooding on the river Mekong, Thailand and Laos ( c© ESA 2008)

For each image from Table 1, these data was randomly divided into the training
set (which constituted 75% of total amount) and the testing set (25%). Data from
the training set were used to train the neural networks, and data from the testing set
were used to verify the generalization ability of the neural networks, i.e. the ability
to operate on independent, previously unseen data sets [6].
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Satellite image/Region Number of ground-truth pixels for images
“No water” “Water” Total

ERS-2/Ukraine 148 182 153 096 301 278

ENVISAT/China 60 575 34 493 95 068

RADARSAT-1/China 135 263 130 244 265 507

Table 1. Distribution of the ground-truth pixels for ERS-2, ENVISAT and RADARSAT-1
images

Fig. 2. SAR image acquired from ENVISAT satellite (20. 08. 2007) during the flooding on
the river Koshi, India and Nepal ( c© ESA 2008)

4 METHODOLOGY DESCRIPTION

Our flood mapping procedure from SAR imagery consists of the following steps:

1. data pre-processing (calibration, geocoding, i.e. providing exact geographical
coordinates, and orthorectification), and

2. segmentation and classification on two classes using SOMs.

SOM is a type of artificial neural network that is trained using unsupervised
learning to produce a low-dimensional (typically two dimensional), discretised re-
presentation of the input space of the training samples, called a map [5, 6]. The
map seeks to preserve the topological properties of the input space. SOM is formed
of the neurons located on a regular, usually 1- or 2-dimensional grid (see Figure 3).
Neurons compete with each other in order to pass to the excited state. The output
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of the map is a so called neuron-winner or best-matching unit (BMU) whose weight
vector has the greatest similarity with the input sample x.

The network is trained in the following way: weight vectors wj from the topo-
logical neighbourhood of BMU vector i are updated according to [5, 6]

i(x) = arg min
j=1,L

‖x− wj‖ ,

wj(n+ 1) = wj(n) + η(n)hj,i(x)(n)(x− wj(n)), j = 1, L, (1)

where η is learning rate (see Equation (3)), hj,i(x)(n) is a neighbourhood kernel
around the winner unit i, x is an input vector, ‖•‖ means Euclidean metrics, L is
the number of neurons in the output grid, n denotes the number of iteration in the
learning phase.

Inputs

2-D grid of neurons (3-by-4)

Fig. 3. An example of SOM architecture

The neighbourhood kernel function hj,i(x)(n) is taken to be the Gaussian

hj,i(x)(n) = exp


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2σ2(n)
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where rj, ri(x) are the vectorial locations in the display grid of the SOM, σ(n) corre-
sponds to the width of the neighborhood function, which is decreasing monotonically
with the regression steps.

For learning rate we used the following expression:

η(n) = η0 · e
−

n

τ , η0 = 0.1, (3)

where τ is a constant. The initial value of 0.1 for learning rate was found experi-
mentally.

Kohonen’s maps are widely applied to the image processing, in particular image
segmentation and classification [5, 6]. Prior neural network training, we need to
select image features that will be given to the input of neural network. For this
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purpose, one can choose original pixel values, various filters, Fourier transformation,
etc. In our approach we used a moving window with backscatter coefficient values for
ERS-2 and ENVISAT images and digital numbers (DNs) for RADARSAT-1 image
as inputs to neural network. The output of neural network, i.e. neuron-winner,
corresponds to the central pixel of moving window. In order to choose appropriate
size of the moving window for each satellite sensor, we ran experiments for the
following windows size: 3-by-3, 5-by-5, 7-by-7, 9-by-9 and 11-by-11.

We, first, used SOM to segment each SAR image where each pixel of the output
image was assigned a number of the neuron in the map. Then, we used pixels from
the training set to assign each neuron one of two classes (“Water” or “No water”)
using the following rule. For each neuron, we calculated a number of pixels from
the training set that activated this neuron. If maximum number of these pixels
belonged to class “Water”, then this neuron was assigned the “Water” class. If
maximum number of these pixels belonged to class “No water”, then this neuron
was assigned the “No water” class. If neuron was activated by neither of the training
pixels, then it was assigned the “No data” class.

5 RESULTS OF IMAGE PROCESSING

In order to choose the best neural network architecture, we ran experiments for each
image varying the following parameters:

1. size of the moving window for images that define the number of neurons in the
input layer of the neural network;

2. the number of neurons in the output layer, i.e. the sizes of 2-dimensional output
grid.

Other parameters that were used during the image processing are as follows:

• neighbourhood topology is hexagonal;

• neighbourhood kernel around the winner unit is the Gaussian function (see Equa-
tion (2));

• initial learning rate is set to 0.1;

• number of the training epochs is equal to 20.

The initial values for the weight vectors are selected as a regular array of vectorial
values that lie in the subspace spanned by the eigenvectors corresponding to the two
largest principal components of the input data [5]. The results of experiments for
the images are presented in Table 2.

For the images with higher spatial resolution (i.e. ERS-2 and RADARSAT-1),
the best results were achieved for larger moving window (7-by-7). In turn, for the
ENVISAT/ASAR WSM image, we used the moving window of smaller size (3-by-3).
The use of higher dimension of input window for the ENVISAT image led to the
coarser resolution of the resulting flood extent image and reduced classification rate.
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Satellite image

ERS-2 ENVISAT RADARSAT-1

Input dimension 7-by-7 3-by-3 7-by-7

Output grid of neurons 10-by-10 7-by-5 5-by-5

Classification
rate for training
set

“No water” 79.40% 100.0% 99.99%
“Water” 90.99% 95.64% 91.93%
Total 85.29% 98.41% 96.04%

Classification
rate for testing
set

“No water” 79.57% 100.0% 99.99%
“Water” 91.06% 95.90% 91.89%
Total 85.40% 98.52% 95.99%

Table 2. Results of SAR images classification using SOMs

The examples of resulting flood extent maps derived from ENVISAT data ac-
quired for the Mekong river, Thailand and Laos (see Figure 1) and Koshi river, India
and Nepal (see Figure 2) are shown in Figures 4 and 5.

Fig. 4. The resulting flood extent shown with black colour for the Mekong river, Thailand
and Laos ( c©ESA 2008)
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Fig. 5. The resulting flood extent shown with black colour for the Koshi river, India and
Nepal ( c©ESA 2008)

6 CONCLUSIONS

In this paper we proposed a neural network approach to flood mapping using satel-
lite SAR imagery. To segment and classify SAR image, we applied self-organizing
Kohonen’s maps (SOMs) that possess such useful properties as ability to automati-
cally discover statistically salient features of pattern vectors in data set, and to find
clusters in training data pattern space which can be used to classify new patterns.
As inputs to neuron network, we used a moving window of image pixels intensities.
We ran experiments to choose the best neuron network architecture for different
satellite sensors: for ERS-2 and RADARSAT-1 the size of input was 7-by-7 and for
ENVISAT/ASAR the moving window was 3-by-3. Our approach has the following
advantages as comparing to the existing ones:

1. we apply a moving window to process the image and thus take into account
spatial connection between the pixels of the image;

2. neural network’s weights are adjusted automatically using ground-truth training
data;

3. to determine flood areas, we need to process a single SAR image.

This enables implementation of our approach in automatic services for flood mo-
nitoring. Considering the selection of ground-truth pixels to calibrate the neuron
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network, i.e. to assign each neuron one of the classes (“Water” and “No water”),
this process can be also automated using geo-referenced information on water bo-
dies for the given region. We applied our approach to determine flood areas from
SAR images acquired by three different sensors: ERS-2/SAR, ENVISAT/ASAR and
RADARSAT-1. Classification rates for these sensors using independent testing data
sets were 85.40%, 98.52% and 95.99%, respectively. These results demonstrate the
efficiency of our approach.
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