
Computing and Informatics, Vol. 29, 2010, 947–973

MAINTAINING FUNCTIONAL INTEGRITY
IN MULTI-AGENT SYSTEMS
FOR RESOURCE ALLOCATION

Krzysztof Cetnarowicz, Rafa l Dreżewski

Department of Computer Science

AGH University of Science and Technology, Kraków, Poland

e-mail: {cetnar, drezew}@agh.edu.pl

Manuscript received 10 March 2008; revised 4 December 2009

Communicated by Ivana Budinská

Abstract. The resource allocation problem is the problem of assigning resources
needed to accomplish some tasks. Such problems are present in many practical
domains and are generally very hard to solve. In the paper two multi-agent sys-
tems for resource allocation are presented. Each of them uses different mechanisms
(based on the ideas of “free agents” and “life energy”) for maintaining functional in-
tegrity related with the number of agents in the population. The preliminary results
of simulation experiments are also presented and the mechanisms of maintaining
functional integrity are analyzed.

Keywords: Multi-agent systems, resource allocation, functional integrity, limiting
the number of agents mechanisms

Mathematics Subject Classification 2000: 68T42: Agent technology

1 INTRODUCTION

The resource allocation problem is the problem of assigning resources needed to
accomplish some tasks. Such problems are present in many practical domains such as
logistics, networking, manufacturing, parallel computations and grid computations.
Generally such problems are very hard to solve and uncertainties in the times when
resources are needed and released introduce additional complexities.



948 K. Cetnarowicz, R. Dreżewski

In the case of grid computations paradigm application is composed of sub-tasks.
Each sub-task demands different types of services and resources. Resources in such
computations are processors, memory, disk storage, service providers, and network
links. The application of fast and robust technique of resource allocation, which can
also deal with crisis situations, is crucial to the correct functioning of grid technology.

Multi-agent paradigm, which comes from artificial intelligence, is now regarded
as the new approach to the construction of complex, distributed and decentralized
systems [3, 6, 7, 4]. The application of multi-agent technologies leads to the con-
struction of robust, flexible and crisis situations tolerant systems. It seems that
systems based on multi-agent paradigm can be used for solving resource alloca-
tion problems, especially in the situations where we have to deal with distributed
systems, dynamic environments, and uncertainties in the times when resources are
needed and released (like in the grid computations).

Many problems related to functioning of multi-agent systems are still unsolved.
Functional integrity of the systems belongs to such problems. In general, functional
integrity of a multi-agent system may be defined as preservation of basic functions
of the system during its functioning. Functional integrity may be analyzed from
the point of view of different functions of the system (the functions that should be
preserved) and also from the point of view of various factors that may influence the
loss or preservation of functional integrity of the system.

In the paper two systems for resource allocation are presented. Each of them uses
different mechanisms for maintaining functional integrity related with the number
of agents in the population. These mechanisms are based on the ideas of so-called
“free agents” and “life energy”. The free agents play a role of “unemployed” agents
looking for a job. The “life energy” is the special type of resource used to prevent
the excessive growth of the population of agents. The preliminary results of simula-
tion experiments are also presented and the mechanisms of maintaining functional
integrity are analyzed.

2 MULTI-AGENT SYSTEMS INTEGRITY: THE PROBLEM

OF CONTROLLING THE NUMBER OF AGENTS

Functional integrity of a multi-agent system may be defined as preservation of basic
functions of the system during its functioning. In a system, there are various factors
that may influence the loss or preservation of functional integrity of a system.

The basic factors that may influence multi-agent system’s functional integrity
are as follows:

• The global number of agents in a multiagent system. Excess of agents may
cause that system resources (hardware and software) become exhausted, what
is followed by the breakdown of the whole multiagent system.

• The number of agents of a given type in a multiagent system. There are agents
of different types, realizing different tasks. Ability to perform tasks of a system



Maintaining Functional Integrity in Multi-Agent Systems for Resource Allocation 949

is determined by an appropriate number of agents of each type: their absolute
number as well as a relative one (relatively to numbers of agents in other groups).

• The proper utilization of a given agent or group of agents. The agent may be
charged with a task for which it is not created. So, it is impossible to achieve
the goal by the agent and then by the whole system.

As mentioned above, one of the basic factors that may influence multi-agent
system functional integrity is the number of agents in a system.

Thus it is possible to single out such parameters as:

• global number of all agents:

– excess of the global number causes a general blocking of the whole multi-
agent system;

– a global lack of agents causes gradual disappearance of system functioning;

• the number of agents of certain types;

– an excess of agents of a certain type causes, that other groups of agents have
limited access to system resources and perform their tasks worse;

– a lack of agents of a certain type causes ceasing of system’s ability to perform
certain actions.

Thus a procedure of generation and liquidation of certain agents is important
and may be considered as follows:

• A certain agent may (if it has such abilities) generate a new agent of the same
type or of the other, determined type.

• A certain agent may be liquidated:

– on its own initiative as a result of a decision made or as a result of its status,

– as a result of initiative of the other agent (it is liquidated by the other agent).

Therefore a role of a mechanism that controls, depending on system needs, gene-
ration of new agents and liquidation of useless or even disturbing ones, is fundamen-
tal. It is very important that the mechanism mentioned above does not introduce
the explicit or implicit centralization of the multi-agent system.

An agent has limited possibilities of perception of an environment, limited in
principle to its own environment and it does not have a direct access to some global
information in the system. As a result, in many cases, a certain agent making
decisions on generation or liquidation of the other agent cannot take all factors
essential from the point of view of functional integrity of the whole system into
account.

The task of control of a number of agents is a key task for efficient system func-
tioning. On the other hand, it is difficult to be performed if we additionally assume
that the regulation mechanism should function automatically without a necessity to



950 K. Cetnarowicz, R. Dreżewski

centralize the multi-agent system that is decentralized from its nature and has to
be decentralized.

There are some works where the out of control increase of the number of agents
has been observed (for example [5]), but we did not find any discussion of methods
that enable to control the number of agents in the system.

3 MULTI-AGENT SYSTEMS FOR RESOURCE ALLOCATION

WITH UNEMPLOYMENT MECHANISM

Practical examination of MAS functional integrity problem connected with the num-
ber of agents in the system and verification of mechanisms of their number regulation
were carried out with the use of a multi-agent system of resources distribution in
decentralized environment of a graph form.

The graph is made by multiprocessor structure composed of processors as nodes
and connections between them as edges. Tasks to be computed by processors make
a resource to be balanced in the considered system.

Fig. 1. Scheme of the multiprocessor structure

In the studied multiprocessor structure (Figures 1, 2) each of processors has its
own memory and it can communicate with eight determined other processors by
means of independent channels (ports) as well as with any other processor of the
structure by means of a bus.

At a given moment of time only one pair of processors can use a bus. Every
processor of the structure is equipped with the operating system that provides exe-
cution of tasks and task transfer by channels and by the bus. The goal of the
multiprocessor system is to compute a group of tasks. The order of computing of



Maintaining Functional Integrity in Multi-Agent Systems for Resource Allocation 951

Fig. 2. Scheme of the node (processor) in the multiprocessor structure

tasks is determined at random during the course of computation (that is a typical
situation, for example, for simulation of discrete processes).

The main function of the operating system is to ensure such a load balancing
for processors of the structure that execution of all tasks could be completed in the
shortest time possible.

Distribution of tasks in the structure by connections between a given processor
and its neighbors can be provided by an operating system of the processor with the
use of channels. Distribution of tasks without the use of a bus does not guarantee
high execution efficiency. When a bus is applied, for each transmission two distant
processors in the structure have to be chosen, and a sender as well as a receiver have
to be determined.

For the purpose the above-mentioned multi-agent system may be applied.

The resource distributed around the multi-processor structure represents the
tasks to be executed. The resource consumption corresponds to execution of tasks
and resource generation – to creation of tasks.

In the realized multi-agent system agent a
0 (of type 0) that resides at a given

processor which, for instance, needs tasks (or has excess of tasks) looks for tasks to
exchange with neighboring nodes via direct connections.

However, if it is impossible (the neighbor nodes are in the same situation, i.e.
they have a lack or an excess of tasks), then agent a0 can create an agent a1 of type 1
(or an agent a

2 of type 2). The created agent has a mission to find some tasks or
a processor that has a lack of tasks. The agent a1 (a2) navigates through the whole
multiprocessor structure and looks for a processor which has an excess (or a lack)
of tasks. When it finds such a processor, it initiates a transmission process with the
use of the bus.



952 K. Cetnarowicz, R. Dreżewski

An agent acquires the information necessary to realize its algorithm by the
observation (what is typical for the M-agent architecture [1]). Mobile agent is able
to observe resources (parameters) found in the node where it remains. The result
of the observation gives input data to the performed algorithm of the agent. Mobile
agents do not need to go back to their source node, but in certain type of experiments
they in fact returned to the home node. Whether an agent has to return to the home
node depends on the task being realized – sometimes it can be desirable to return
to the home node and pick up the next task for realization and sometimes the agent
can destroy itself after sending the obtained information to the home node. At its
destruction the mobile agent can send information (about the destruction) to the
agent of type a

0 of its source node to enable it to generate a new mobile agents.

Effectiveness of computing of the multi-agent system may be represented by:

• efficiency index Ef :

Ef =
Tc

n ∗ Tr

∗ 100 % (1)

where Tc is a time of execution of all the tasks in a single processor computer,
Tr is a real time of execution of all the tasks in a multiprocessor structure, n is
a number of processors in the multiprocessor structure,

• index of transient uniformity measure of tasks distribution in the structure Wq:

Wq =
n ∗ max1≤i≤n(Nti)

∑i=n
i=1

(Nti)
(2)

where Nti is a number of tasks in a node (processor) ti, n is a number of
processors in the structure.

3.1 Control of a Number of Agents in a Multi-Agent System

As mentioned before, an existence and a number of agents of a certain types belong
to factors that have a basic influence upon preservation of functional integrity of the
system.

One of very essential cases of functional integrity of the system is prevention
of excessive (even unlimited) increase of the number of some groups of agents, and
thus – the global number of agents.

The described problem may be observed on examination of the presented system
of distribution of tasks. For instance, a decrease of the global number of tasks in
the system leads to the increase of the number of agents looking for jobs (a1).

This makes realization of basic functions of the system by other groups of agents
more difficult, which causes the loss of functional integrity of the system (Figure 3).

At the time when a number of new tasks appearing in the system stops to
increase (stabilizes or decreases), an increase (practically unlimited) of the total
number of agents occurs.



Maintaining Functional Integrity in Multi-Agent Systems for Resource Allocation 953

Fig. 3. Total number of agents a) and total number of tasks b) appearing in the multipro-
cessor system (T – time)

When the number of agents exceeds a permissible number for a certain system
(in the examined system – approx. one million), blocking of the system functioning
occurs.

3.2 Multi-Agent System with a Limited Number of Agents

To prevent unlimited increase of the number of agents in the system, it is possible
to equip the system with mechanisms that enable to limit the number of agents
existing and acting in the system at the moment.

In an example system, the constraint should concern the number of agents of
type a

1 and a
2, while the number of agents of type a

0 is constant, in agreement
with the shown definition (one agent in one node of the structure). Agents a

1 and
a
2 are generated by agent a

0, therefore the limiting mechanism should be built in
the algorithm of an agent of type a

0. It is realized with the use of the so-called
limitation mechanism.



954 K. Cetnarowicz, R. Dreżewski

Each agent of type a
0 has maximal numbers of agents of type a

1 and a
2 assigned

which may be generated at the given moment (in the experiments the number of
generated agents is limited to 6 agents). It has counters that enable to trace a num-
ber of generated agents of type a

1 and a
2 – the agents that may be generated by

a certain agent of type a
0.

Maximal permissible numbers of generated agents are defined arbitrarily at the
moment of generation of each agent of type a

0. If a given agent of type a
1 or a

2

performs an assigned task and is liquidated, it sends information about it to an agent
of type a

0, that generated it. The agent a
0 may now (if it is necessary) generate

a new agent of a certain type.

As a result, each agent of type a
0, and thus each processor with which a certain

agent is connected, may have at every moment of system functioning, the number of
generated agents of type a

1 or a
2 from zero to the value defined by an appropriate

parameter.

The parameters are fixed arbitrarily for each agent of type a
0 as system confi-

guration parameters, selected in experimental way.

Simulation examination of a multi-agent system equipped with the described
limitation mechanism consisting in arbitrary limiting of agents’ number, confirm
effectiveness of the proposed solution.

Fig. 4. Chart showing the total number of agents in time (T ), variant with a limited
number of agents a), variant without a limit of agents’ number b)



Maintaining Functional Integrity in Multi-Agent Systems for Resource Allocation 955

The total number of agents shown in Figure 4 stays at a relatively low level and
does not block the system work.

The presented mechanism of limitation of the number of agents is effective,
however it has imperfections that have influence upon optimal work of a system.
One of basic disadvantages is the fact that an arbitrary definition of limits of number
of agents of particular types is difficult (or even impossible), both in a theoretical
as well as in a practical way. It is even difficult to define a reasonable premise
that enables in general case an estimation of optimal number of agents of particular
types.

3.3 Limitation of the Number of Agents with the Use of Mechanism

of Excessive Agents Liquidation

To regulate the number of agents, a mechanism of excessive agents liquidation may
be used. The mechanism is based on accurate identification of results that may be
caused by an excessive number of agents in the system. By way of analysis of the
mentioned results, the decisions concerning the type and number of agents to be
liquidated are made.

Analyzing the considered multi-agent system it is possible to notice that an agent
of type a

0 connected with a certain processor is responsible for processor’s work.

The agent, among others, performs tasks processing and services for agents being
at the moment in a given node.

If the number of agents in a certain node (including agents passing through
a given node) increases, then just an agent of type a

0 has to devote more time to
operations for the sake of the mentioned agents instead of computing tasks.

Thus, if the number of agents (of type a
1 and a

2) in a certain node increases
(above a given level), an agent of type a

0 residing in a given node liquidates some
number of the agents (of type a

1 and a
2). As a result, a number of agents of type

a
1 and a

2 is brought to some level as far as it is possible to the optimal one.
Results of application of excessive agents’ liquidation mechanism are shown in

Figure 5.

3.4 Limitation of the Number of Agents with the Use of Mechanism

Making a Decision of New Agent Generation Dependent Upon

the Number of Agents of the Same Type in Neighboring Environment

Analyzing a problem of too great a number of agents occurring in the system, it
is possible to reach the source of the problem. To limit the number of agents of
a given type it is necessary to check and control the number of generated agents. It
is necessary to introduce a mechanism of control of agents’ generation in a system.

An agent responsible for generation of all types of agents is of type a
0. Such

a mechanism of control of generated number of agents should be built into an algo-
rithm of an agent of this type.



956 K. Cetnarowicz, R. Dreżewski

Fig. 5. Chart showing the number of agents in time (T ), variant with a mechanism of
liquidation of excessive agents a), variant without limitation of agents’ number b)

Let us assume that an agent of type a
0 is to generate a new agent (of type a

1)
searching for tasks. A schema of procedure of the mentioned agent of type a

0 that
takes into account control of generated agents number is as follows.

The mentioned agent of type a
0 observes the closest environment i.e. the node

where it is, particularly agents of type a
1 currently existing in the node during their

passing through the node.

Each of the passing agents (of type a
1) has some resource of energy that is

determined on generation and is being decreased (of fixed energy portion) during
the transfer of the agent between nodes.

Many agents of low energy level in a given node make evidence that searching
for tasks in a structure by other nodes (precisely, their agents of type a

0), is fruit-
less. This allows assuming with a high probability that there is a lack of searching
resources (free tasks) in the environment (multiprocessor structure).

The mentioned resident agent of type a
0 counts the number of agents of type a

1,
which have energy level less than some arbitrary determined level.

If a number of agents of type a
1 with the energy level less than a given level is

greater than some arbitrary assigned number, then a given agent of type a
0 abstains

from generation of a new agent of type a
1 (i.e. looking for tasks) on the assumption

that such generation is pointless as there is a lack of a resource in the environment
(free tasks).

Result of practical examination of influence – of the described mechanism of
refraining from generation of new agents – on a general number of agents in the
system is shown in Figure 6.



Maintaining Functional Integrity in Multi-Agent Systems for Resource Allocation 957

Fig. 6. Chart showing the number of agents in time (T ). Variant with limitation of the
number of generated agents (decision on refraining from generation) a) and variant
without limitation of agents’ generation b).

Practical usefulness of the described mechanism of regulation of a number of
agents in multi-agent environments is hereby confirmed.

3.5 A Concept of Free Agents and Their Application to Stabilization

of the Number of Agents in a Certain Population

The notion of a free agent enables effective and a relatively simple limiting of the
number of agents in a certain population. Control of the total number of agents in
a system is possible by way of increasing a number of agents of one type at the cost
of the number of agents of the other type – according to the needs connected with
tasks performed by the system.

Moreover, owing to migration of free agents in the system, effective transfer of
agents from one part of environment to the other – where agents of a certain type
are needed, is possible.

A concept of a free agent applies the principle that each agent may have the
ability to generate the other agent of the same type or of the other type.

A free agent is such a sort of an agent that does not perform any assigned task
but only moves around in the system and looks for tasks for itself. Thus it is a sort
of “unemployed” agent searching for a job. In particular, a procedure of a free agent
may be presented in the following points:

• A certain agent of a determined type undertakes actions to perform assigned
tasks.



958 K. Cetnarowicz, R. Dreżewski

Fig. 7. Scheme of evolution of population of agents with the concept of a free agent

• A situation occurs when the mentioned agent cannot continue its activity and
is to be liquidated. It may happen in these two cases:

– an agent concludes that its further activity is pointless because a task was
realized and it liquidates itself,

– an agent is not able to realize the assigned task, thus further action of the
agent is impossible and the agent undergoes liquidation – e.g. it ceases to
exist because of lack of life energy.

• Before its liquidation, an agent generates a free agent – thus it transforms itself
into an “unemployed” agent.

• A free agent, moving in the environment checks if, on the basis of a status of
environment, there is a need for an agent of a type available in the system.

• If a free agent finds out that there is such a need for an agent of a determined type
(a1 or a2), it generates such an agent and it undergoes liquidation (effectively it
transforms into an agent realizing a task).

The concept of a free agent consists in creation of a new type of an agent a
3,

that as an “unemployed” one occupies itself with a search for a job.

As a result, evolution of the population of agents consists in the following: agents
of types a1 and a

2 may transform into agents of a type a
3 (free, “unemployed”) and

vice versa. The transformation process is composed of two operations: agent gener-
ation and agent destruction. For example the agent of type a

3 generates an agent
of type a

1 or type a
2 and destroys (deactivates) itself.

If we want to change the global number of agents in a system then we generate
(create) or liquidate (kill) only free agents – of type a

3 (Figure 7).



Maintaining Functional Integrity in Multi-Agent Systems for Resource Allocation 959

3.6 Results of Simulation Examination of a Multi-Agent System

with Free Agents Applied to Distribution Tasks

The presented concept of a free agent application was examined with the use of
an exemplary multi-agent system for tasks distribution in the multi-processor struc-
tures.

Fig. 8. Chart showing the number of agents in time (T ). Variant with free agents (“un-
employed”) chart of a coefficient of non-uniformity of tasks’ distribution a), relative
number of agents: of type a

1 b), of type a
2 c), of type a

3 – free agents d).

Fig. 9. Chart showing the number of agents in time (T ). Variant with free agents (“un-
employed”) the number of agents of type a

1 a), the number of agents of type a
2 b),

the number of agents of type a
3 – free agents c), chart of the total number of agents

of all types (a1, a2, a3) – d).



960 K. Cetnarowicz, R. Dreżewski

Results in the form of a chart are shown in Figures 8 and 9.
The chart in Figure 9 shows changes of the numbers of each type of agents during

the system functioning and tasks computation. It is possible to observe that the
global number of agents initially increases up to a predetermined value and stays
practically constant during the computation.

Numbers of agents of certain types change depending on the needs.
The fact may also be observed in Figure 8, where the number of agents of each

type was compared with the coefficient of non-uniformity of tasks distribution (Wq)
during computations.

variant Efficiency index
Ef

mechanism of arbitrary
limiting of a number 72%
of agents in node

mechanism of limiting
of a number of generated 73%
agents (decision on generation)

mechanism with the use of
a free agent (a constant 73%
global number of agents)

Table 1. Results of simulation examination of a multi-agent system of tasks distribution.
Comparison of efficiency of the system for different mechanisms of the number of
agents limiting

The results shown in Table 1 make evidence that efficiency of the system with
the presented mechanisms (with arbitrary limited number of agents in the node,
with a mechanism of abstaining from generation in the case of a large number of
agents in surroundings and with a mechanism based on a concept of free agents) is
close for each mechanism.

However (as mentioned before), the facility is different in application of each
method, easiness of optimal parameters selection and universality of the meth-
ods.

4 MULTI-AGENT SYSTEM FOR RESOURCE ALLOCATION

WITH THE MECHANISM OF LIMITING OF THE NUMBER

OF AGENTS BASED ON THE “LIFE ENERGY”

The multi-agent system for resource allocation with the mechanism of limiting of
the number of agents based on the “life energy”is presented in Figure 10. The main
goal of the system is to maintain the amount of resource in all nodes at the optimal
level.

The environment of the system has the graph-like structure and is composed of
nodes with each node connected with its four neighbors. Each node can be located



Maintaining Functional Integrity in Multi-Agent Systems for Resource Allocation 961

Nodes

Generated agent

Returning agent
Migration

Resource

Static agent

Agents from 
another nodes

Resource "Life energy"

Fig. 10. Multi-agent system for resource allocation with the mechanism of limiting of the
number of agents based on the “life energy”

on different host. In each node there is some amount of resource. The amount
of resource in a particular node is changing during the simulation in stochastic
manner.

There are two kinds of agents in the system: static and mobile. One static
agent is present at each node. The main goal of the static agent is to make decisions
whether it is necessary in the given time to generate a mobile agent. This decision
is based on the current amount of the resource in the given node.

When the actual level of resource in the node is not equal to the optimal value
then the static agent generates the mobile agent. When there is too much resource
in the given node, the static agent gives some resource to the mobile agent.

In the opposite case, the mobile agent is sent in order to collect some resource
from another nodes and “transport” it to the node of its origin. The mobile agent
can gain some resource from another node only when the priority of its home node
is higher than that of the node in which it is currently located. The priority of the
given node is proportional to the deviation of the current amount of its resource
from the optimal level.

In order to realize their goal, the mobile agents migrate from node to node.
In the process of making the decision to which node the agent should migrate the
nodes which were already visited are taken into account – the agent tries to avoid
already visited nodes. When the agent realizes its goal (collecting or distributing the
given amount of resource) it returns to its home node, returns the resource which it
possesses, and is removed from the system.



962 K. Cetnarowicz, R. Dreżewski

The system is implemented in Java. All the agents are implemented as threads
and the communication between nodes is based on the socket mechanism, so it is
possible to run the nodes at the same host or at different hosts.

4.1 The Number of Agents Control Mechanism Based on “Life Energy”

In the systems described in the previous sections the agents’ “energy” was used
as the “second level” mechanism for maintaining system integrity. In the system
described in this section the so called “life energy” mechanism is used as the main
technique of preventing the excessive growth of the number of mobile agents.

During its creation each mobile agent is given some amount of special resource
(called “life energy”). Each migration between nodes costs some “energy”. When
the agent loses all its “energy” it returns to home node, despite of the state of
realization of its goal. When the goal was not fully realized the agent returns all
undistributed (or collected) resource to its home node after the return.

Such mechanism, in connection with the restriction of the number of mobile
agents generated in each node, prevents excessive growth of the number of agents
resulting from mobile agents, which can not realize their goals and do not return to
their home nodes. Without such mechanism such agents do not return to its home
nodes and nodes generate additional mobile agents, what can result in excessive
growth of the population and in poor performance of the whole system.

4.2 Experimental Results

In this section the results of experiments with the described system are presented.
The main goal of the experiments was to investigate whether the presented sys-
tem for resource allocation works properly during various crisis situations. Also the
influence of the maximal number of mobile agents generated by each node on the
performance of the system was investigated. Other parameters were constant dur-
ing the experiments – they were set to optimal values obtained during preliminary
experiments.

The results of the experiments, whose goal was to show whether the system
works properly with different maximal numbers of mobile agents, are presented in
Figures 11–15. The best results were obtained when the maximal 15 mobile agents
for each node were used. In this case it took about 15 seconds to allocate resources in
such a way that their levels was equal in all 5 nodes starting from different levels in
each node. In the case of less agents used, the time needed to allocate the resources
was longer and in the case of 20 agents the time was longer and the resources were
not allocated quite properly – there were differences in the resource levels in the
nodes resulting from the fact that many agents were generated and each of them
took some resources in order to distribute them among the other nodes. In the case
when the differences in the amounts of the resource between nodes are small and
there is generally too much resource in the system, mobile agents can not find nodes
where they may leave their resources.



Maintaining Functional Integrity in Multi-Agent Systems for Resource Allocation 963

0 50 100 150 200

0
50

00
0

10
00

00
15

00
00

20
00

00

t [s]

am
ou

nt
 o

f r
es

ou
rc

e

Node 1
Node 2
Node 3
Node 4
Node 5

a)

0 50 100 150 200

−
10

0
−

50
0

50
10

0

t [s]

am
ou

nt
 o

f r
es

ou
rc

e 
[%

]

Node 1
Node 2
Node 3
Node 4
Node 5

b)

Fig. 11. The amount of resource a) and the percentage of deviation from the optimal level
of resource b) in the nodes during the typical experiment. Maximum 2 mobile agents
generated in each node.



964 K. Cetnarowicz, R. Dreżewski

0 20 40 60 80 100 120 140

0
50

00
0

10
00

00
15

00
00

20
00

00

t [s]

am
ou

nt
 o

f r
es

ou
rc

e

Node 1
Node 2
Node 3
Node 4
Node 5

a)

0 20 40 60 80 100 120 140

−
10

0
−

50
0

50
10

0

t [s]

am
ou

nt
 o

f r
es

ou
rc

e 
[%

]

Node 1
Node 2
Node 3
Node 4
Node 5

b)

Fig. 12. The amount of resource a) and the percentage of deviation from the optimal level
of resource b) in the nodes during the typical experiment. Maximum 5 mobile agents
generated in each node.



Maintaining Functional Integrity in Multi-Agent Systems for Resource Allocation 965

0 20 40 60 80 100

0
50

00
0

10
00

00
15

00
00

20
00

00

t [s]

am
ou

nt
 o

f r
es

ou
rc

e

Node 1
Node 2
Node 3
Node 4
Node 5

a)

0 20 40 60 80 100

−
10

0
−

50
0

50
10

0

t [s]

am
ou

nt
 o

f r
es

ou
rc

e 
[%

]

Node 1
Node 2
Node 3
Node 4
Node 5

b)

Fig. 13. The amount of resource a) and the percentage of deviation from the optimal level
of resource b) in the nodes during the typical experiment. Maximum 10 mobile agents
generated in each node.



966 K. Cetnarowicz, R. Dreżewski

0 20 40 60 80

0
50

00
0

10
00

00
15

00
00

20
00

00

t [s]

am
ou

nt
 o

f r
es

ou
rc

e

Node 1
Node 2
Node 3
Node 4
Node 5

a)

0 20 40 60 80

−
10

0
−

50
0

50
10

0

t [s]

am
ou

nt
 o

f r
es

ou
rc

e 
[%

]

Node 1
Node 2
Node 3
Node 4
Node 5

b)

Fig. 14. The amount of resource a) and the percentage of deviation from the optimal level
of resource b) in the nodes during the typical experiment. Maximum 15 mobile agents
generated in each node.



Maintaining Functional Integrity in Multi-Agent Systems for Resource Allocation 967

0 10 20 30 40 50 60 70

0
50

00
0

10
00

00
15

00
00

20
00

00

t [s]

am
ou

nt
 o

f r
es

ou
rc

e

Node 1
Node 2
Node 3
Node 4
Node 5

a)

0 10 20 30 40 50 60 70

−
10

0
−

50
0

50
10

0

t [s]

am
ou

nt
 o

f r
es

ou
rc

e 
[%

]

Node 1
Node 2
Node 3
Node 4
Node 5

b)

Fig. 15. The amount of resource a) and the percentage of deviation from the optimal level
of resource b) in the nodes during the typical experiment. Maximum 20 mobile agents
generated in each node.



968 K. Cetnarowicz, R. Dreżewski

0 50 100 150 200

0
50

00
0

10
00

00
15

00
00

20
00

00

t [s]

am
ou

nt
 o

f r
es

ou
rc

e

Node 1
Node 2
Node 3
Node 4
Node 5

a)

0 50 100 150 200

−
10

0
−

50
0

50
10

0

t [s]

am
ou

nt
 o

f r
es

ou
rc

e 
[%

]

Node 1
Node 2
Node 3
Node 4
Node 5

b)

Fig. 16. The amount of resource a) and the percentage of deviation from the optimal level
of resource b) in the nodes during the experiment with one node down. Maximum 10
mobile agents generated in each node.



Maintaining Functional Integrity in Multi-Agent Systems for Resource Allocation 969

0 20 40 60 80 100 120 140

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

t [s]

am
ou

nt
 o

f r
es

ou
rc

e

Node 1
Node 2
Node 3
Node 4
Node 5

a)

0 20 40 60 80 100 120 140

−
10

0
−

80
−

60
−

40
−

20
0

20

t [s]

am
ou

nt
 o

f r
es

ou
rc

e 
[%

]

Node 1
Node 2
Node 3
Node 4
Node 5

b)

Fig. 17. The amount of resource a) and the percentage of deviation from the optimal level
of resource b) in the nodes during the experiment with the rapid decrease of the
resource in one node. Maximum 10 mobile agents generated in each node.



970 K. Cetnarowicz, R. Dreżewski

0 20 40 60 80 100 120 140

80
00

0
10

00
00

12
00

00
14

00
00

16
00

00
18

00
00

20
00

00

t [s]

am
ou

nt
 o

f r
es

ou
rc

e

Node 1
Node 2
Node 3
Node 4
Node 5

a)

0 20 40 60 80 100 120 140

0
20

40
60

80
10

0

t [s]

am
ou

nt
 o

f r
es

ou
rc

e 
[%

]

Node 1
Node 2
Node 3
Node 4
Node 5

b)

Fig. 18. The amount of resource a) and the percentage of deviation from the optimal level
of resource b) in the nodes during the experiment with the rapid increase of the
resource in one node. Maximum 10 mobile agents generated in each node.



Maintaining Functional Integrity in Multi-Agent Systems for Resource Allocation 971

Results of the experiments with different kinds of crisis situations are presented
in Figures 16–18. The results of experiments with one node down during the process
of distributing the resource are presented in Figure 16. It can be seen that the system
was able to redistribute resources despite of the malfunction of one of the nodes. In
the case of the rapid decrease of the resource in one of the nodes the system was
also able to properly redistribute resources, what can be observed in Figure 17. In
Figure 18 the results of the experiment with the rapid increase of the resource in
one of the nodes are presented. Also in this case the system was able to properly
redistribute the resource between the nodes.

5 CONCLUSIONS

In the paper the application of the multi-agent paradigm to the construction of the
systems for resource allocation was presented. Two such systems were presented
in the course of this paper. The basic difference between them was the mechanism
of maintaining their functional integrity – controlling the number of agents in the
system. First of the presented systems used the mechanism of which the most impor-
tant part was the idea of “unemployed agents” and the second one the mechanism
based solely on the “life energy”.

As the presented preliminary results clearly show, multi-agent systems can be
used in the case of the resource allocation problems. Systems based on the multi-
agent paradigm are robust, crisis situations resistant, and can be applied to the
resource allocation problems in dynamic and distributed environments.

Both mechanisms of maintaining functional integrity of the presented systems
worked well. The experiments showed that the problem of excessive number of
generated agents cannot be solved directly by agents responsible for the generation,
on their own. The reason is they usually do not have the global information, which
would enable making appropriate decisions. However, a possibility exists that the
agents may obtain the information indirectly by the observation of some groups of
the agents of other types, within the whole population of agents. It is even possible
to suggest a solution consisting in the following: in the system there are some types
of agents, whose only task is global information supply to the other agents (also by
their own specific behavior in the system).

Stabilization of the number of agents with the application of the “free agents”
concept seems to be very promissing. The concept may be considered as a special
approach to the the multi-agent system, where agents on their own look for the tasks,
since they are not arbitrary granted assignments to the jobs. Moreover, a group of
the free agents ensures a way of agents’ transfer from a group of a certain type to
a group of the other type what causes self-control of a number of agents within the
groups of certain types depending on the system needs.

The idea of “life energy” – introducing special kind of resource needed for per-
forming every action of an agent – also proved to work well in the task of main-
taining functional integrity of the multi-agent system. Such mechanism was already



972 K. Cetnarowicz, R. Dreżewski

applied with success in evolutionary multi-agent systems, in which the evolution-
ary processes are realized in the multi-agent system [1, 2]. In such systems agents
may reproduce and die, thus some decentralized mechanisms of controlling of the
number of agents is needed. The mechanism of “life energy” also plays the role of
selection mechanism in such systems – the agents compete for limited resources and
the better fitted ones survive and reproduce with greater probability.

Future research will include the application of the multi-agent systems for re-
source allocation in dynamic environments and in domains with high uncertainties in
the times when the resources are needed and released, like logistics, manufacturing,
and grid computations. The comparison to other techniques for resource allocation
is also included in the future plans.

REFERENCES

[1] Cetnarowicz, K.—Kisiel-Dorohinicki, M.—Nawarecki, E.: The Application
of Evolution Process in Multi-Agent World to the Prediction System. In M. Tokoro

(Ed.), Proceedings of the 2nd International Conference on Multi-Agent Systems (IC-
MAS 1996), Menlo Park, CA, 1996. AAAI Press.

[2] Dreżewski, R.: Co-Evolutionary Multi-Agent System With Speciation and Re-

source Sharing Mechanisms. Computing and Informatics, Vol. 25, 2006, No. 4,
pp. 305–331.

[3] Ferber, J: Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-

gence. Addison-Wesley, 1999.

[4] Russell, S.—Norvig, P.: Artificial Intelligence: A Modern Approach (2nd Edi-
tion). Prentice-Hall, 2002.

[5] Uhurski, P.—Grochowski, M.—Schaefer, R.: A Two-Layer Agent-Based Sys-
tem For Large-Scale Distributed Computation. Computational Intelligence, Vol. 24,
2008, No. 3.

[6] Weiss, G. (Ed.): Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. The MIT Press, 1999.

[7] Wooldridge, M.—Ciancarini, P.: Agent-Oriented Software Engineering: The
State of the Art. In P. Ciancarini and M. Wooldridge (Eds.), Agent-Oriented Software
Engineering, Vol. 1957 of LNCS. Springer-Verlag, 2001.



Maintaining Functional Integrity in Multi-Agent Systems for Resource Allocation 973

Krzysztof Cetnarowi
z is Associate Professor at the Depart-

ment of Computer Science, AGH University of Science and Tech-
nology in Kraków, Poland. He obtained Ph.D. degree in 1977
and habilitation in 1999 at the AGH University of Science and
Technology. He is the author of patents and more than 100 pa-
pers in artificial intelligence, multi-agent systems, evolutionary
algorithms, image processing, and simulation. He was the mem-
ber of programme committees of the DIMAS 1995, ICMAS 1998,
MAAMAW 2001, CEEMAS 2001, IACS 2004, CEEMAS 2005,
the workshop Intelligent Agents in Computing Systems orga-

nized within the ICCS 2007, and the workshop Intelligent Agents and Evolvable Systems
organized within the ICCS 2008 conference.

Rafa l Dre_zewskiworks at the Department of Computer Scien-
ce, AGH University of Science and Technology in Kraków, Po-
land. He obtained Ph.D. degree in 2005. His research interests
include artificial intelligence techniques and artificial life simu-
lations of complex and emergent systems. He is the author of
more than 40 papers mainly in the area of artificial intelligence,
evolutionary algorithms, and multi-agent systems. He was the
member of programme committee of the Workshop on Evolu-
tionary Computation in Finance and Economics (EvoFIN) or-
ganized within EvoStar 2008, EvoStar 2009, and EvoStar 2010

conferences, the member of programme committee of PPSN 2010, and the member of the
technical committee of Congress on Evolutionary Computation 2008.


