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1 INTRODUCTION

Computing situations that are beginning to emerge in the networked environment
require data and knowledge from a number of geographically distributed sites to
be considered simultaneously. A number of geographically distributed databases
together form an implicitly specified global dataset that contains all the data re-
levant for a computation. For example, some computation tasks may require si-
multaneous consideration of data, parts of which reside in census databases, labor
statistics databases, and employment related databases. Each of these is a huge
database and resides on a different site in a different city. One cannot hope to
easily move all these databases to a single computer site, merge or join them, and
then execute an algorithm with the tuples in the resulting humongous database.
It would be desirable to have algorithms that let the individual databases reside
at their own sites and work with an imagined implicit join of the databases by
decomposing themselves into localized computations such that each localized com-
putation can be performed locally within a single site using its physical database.
A common constraint in these situations is that the data cannot be moved to
other network sites due to security, size, privacy and data ownership considera-
tions.

Functions are the major tool for describing the real world in mathematical terms,
and the main building block of our work. The problem of constructing a continuously
defined function from given discrete data is unavoidable whenever one wishes to
manipulate the data in a way that requires information not included explicitly in
the data. In this age of ever increasing digitization in the storage, processing,
analysis, and communication of information, it is not difficult to find examples of
applications where this problem occurs (e.g. sensor network, image processing etc.).
The relatively easiest and in many applications often most desired approach to solve
this problem is interpolation, where an approximating function is constructed in such
a way as to agree perfectly with the usually unknown original function at the given
measurement points. Also, many practical problems occur in science, engineering,
through production processes, and in the different phases of the practical life where
we have a single function that depends on several independent variables, and we
need to optimize this function, i.e., finding the extrema.

In this paper, we present a methodology for designing two decomposable al-
gorithms for constructing a function from given discrete data, and finding the ex-
trema of any function whose arguments are stored across multiple private distributed
databases. This methodology consists of a general model for decomposition, and
a set of algorithms for realizing this model. Our presented algorithms have the
capability to decompose their computations to fit the nature of data distribution
across the network sites. The objective of the algorithms is to perform function
computation tasks for any arbitrary data distribution across the network by ex-
changing summaries derived from local databases. Our idea is to decompose the
steps of an algorithm into localized computational steps that can be executed at
the participating sites and the intermediate results thus obtained are transmitted
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to the Coordinator site. This may have to be repeated a number of times until
an algorithm is completed. It thus works by exchanging partial results during the
execution of an algorithm. Our algorithms are tailored for situations in which we do
not have closely connected processors. There are multiple processors but they are
independent and reside at geographically distant sites. In our methodology, each
data source (a network node) is represented by an agent. This agent knows all about
its underlying database and can access any part of it, as represented in Figure 1,
which can be described as follows:

1. Some network node Init-Node wants to perform a computation C which requires
a body of data D. The entire data D may not be available on Init-Node itself.

2. A search is performed over the network to identify those other nodes that can
provide some relevant parts of D for the computation and are willing to coopera-
te. Init-Node selects a sufficient set of participant nodes that together constitute
the body D. Attributes of databases at different nodes may be unique to their
sites or may exist at more than one participating sites.

3. The initiator Init-Node determines a decomposition of computations C, com-
patible with the distribution of attributes of D. It then seeks results of local
computations from the participating nodes and composes them to construct the
global result. A number of (decomposition, partial computation, composition)
iterations may be required for completion of C.

If the computation does not require updates to databases then the agent also does
not need an update privilege for its underlying data. The desired global computation
is conveyed to the agents of the participating sites. Each agent then determines the
local computations that it needs to perform keeping in mind the constraints of
shared data with other sites and also the local results that it needs to share with
other agents in order for the global result to evolve at Init-Node. An alternative to
communicating with agents at other sites is that a single agent visits each of the
participating sites and performs some local computation at each site when visited.
Objectives of the agent’s design include minimization of communication across the
sites and enough generality of the formulation to permit agents to handle different
sets of participating sites and different patterns of knowledge sharing across the
participating nodes.

The rest of the paper is organized as follows: In the next section, we present the
related work of our proposed problem. In Section 3, we describe the integration of the
distributed data. The description of the first algorithm for constructing a function
from distributed databases, its simulation, and its complexity computing are given
in Section 4. Section 5 describes the second algorithm for finding the extrema of
any function, its simulation results, and its complexity computing. Finally, Section
6 provides our conclusion.
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Fig. 1. Databases represented by agents

2 RELEVANT RESEARCH

There has been extensive research in algorithms for sequential and parallel archi-
tectures [1, 2, 3, 4, 5, 6, 7, 8, 9]. The main focus of the parallel and distributed
algorithms has been on systems of closely coupled processors, where data can be
easily shared by the processors. The distributed knowledge environment, where
data cannot be shared as easily as a distributed shared memory (DSM) and must be
transmitted over a wide-area network in the form of small message packets, needs
a set of network algorithms, that minimize the traffic over the wide-area network.
Though there are some differences between our work and DSM, the two most im-
portant differences are:

1. the optimization problem in DSM is to minimize the number of participating
processors, in our work the number of processors are fixed and we looking for
minimizing the number of exchanged messages among the participating nodes.

2. The processor message in DSM is only to read data, our message can do some
calculation and then reply with result.

Our algorithmic decompositions can be seen as regular distributed databases al-
gorithms being implemented by a number of coordinated agents either exchanging
messages among themselves or visiting participating sites to gather results of local
queries and computations [10, 11, 12, 13, 14, 15].

Multi-agent systems research has addressed many issues relating to the distribu-
tion of knowledge and processing capability over a loosely connected communication
network. In most of this work [16, 17, 18] agents are modeled as having only a limited
view of the global resources and knowledge. In contrast, our approach is directed
at systems where cooperative agents freely access local results from other agents to
evolve concepts from their collective knowledge while trying to minimize the commu-
nication of messages and data among themselves. In our algorithms, the computing
agent at each site does not need to have any uncertainty about the state of data



Agents for Integrating Distributed Data for Function Computations 1105

or knowledge of other sites or computing agents. They only need to be asked for
their local results and they would be truthfully given the needed information sought
by other agents. However, this access can be restricted to prohibit any actual data
tuples flowing out of a site. The goal of the agents in our formulation is also to
minimize the exchange of information among themselves for performing the global
computations.

The study of interpolation received a lot of attention since the ancient ages.
In [19], Toomer believes that Hipparchus of Rhodes (190–120 BC) used linear in-
terpolation in the construction of tables of the so-called “chord function” for the
purpose of computing the positions of celestial bodies. In [20], Grevera and Udupa
compared the interpolationmethods for the very specific task of doubling the number
of slices of 3-D medical data sets. In [21], Evans et al. presented a real interpolation
method involving broken-logarithmic functors. They obtained a variety of interpola-
tion theorems for quasi-linear operators on quasi-Banach spaces, including limiting
cases. In [22], Sol and Salembier stated a quadratic image interpolation method.
The formulation is connected to the optimization of lifting steps. This relation trig-
gers the exploration of several interpolation possibilities within the same context,
which uses the theory of convex optimization to minimize quadratic functions with
linear constraints. In [23], James et al. presented sequential linear interpolation
(SLI) structure for the efficient interpolation of multidimensional nonlinear func-
tions. In [24], Chandrasekhar described a parallel algorithm for linear interpolation
of variables in the interior pixels of a triangle when the values of the variables are
specified at the vertices of the triangle. In [25], Yibin et al. considered a 3-D inter-
polation problem that commonly arises during structure determination for spherical
viruses. They described more sophisticated global interpolation algorithms based
on a least-squares point of view that exploits the symmetry. In this paper, using
the sum of the squares interpolation, we present a self-decomposing algorithm for
constructing a function from given discrete data of any arguments that are stored
across a number of distributed databases.

In [26], Cindy, Michel and Sebastien derived expressions for the discrete s-convex

extrema in moment spaces. The 3-convex extrema X
(3)
min and X(3)

max have been derived
and proved using Cut-criterion method that allows comparison between two random

variables in the s-convex, and using the same method, the 4-convex extrema X
(4)
min

and X(4)
max have been derived. The original solution to the circular extrema find-

ing problem was due to LeLann [27] and required O(n2) message passes. In [28],
the algorithm proposed by Chang and Roberts requires O(n logn) in the average
case, and O(n2) in the worst case. Both solutions were unidirectional. In [29], the
algorithm by Hirschberg and Sinclair has O(n logn) message passes in the worst
case, but requires bidirectional communication. In [30], Burns has a slightly better
bidirectional O(n logn) algorithm.

The problem of finding the extrema of any binary function was given by Dobkin
and Suri [31], they proposed algorithm for maintaining such extrema in a semi-online
model of computation. However, no fully dynamic algorithm for these problems was
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previously known. Their algorithm needs the existence of a data structure that,
given a value y, then finds the value x among the given inputs that minimize f(x, y).
This class of functions includes the closest pair problem, the diameter problem, and
many similar geometric optimization problems. Dobkin and Suri called this prob-
lem the problem of finding extrema of decomposable functions. The work in [32]
proposed a method to solve the problems of the minimum separation among a set of
rectangles or higher-dimensional axis-aligned boxes, the extrema distance between
a set of points and a set of hyperplanes, and the extrema axis-aligned rectangles
or boxes having a long diagonal defined by a pair of points. In [33], David and
Elaine presented a method to search for distance function extrema from a point
to a curve or a surface. They used geometric operations to find all local extrema.
David and Elaine approach is based on hierarchical pruning of the spline model.
This type of approach is commonly used to find a global extrema by bounding
portions of the geometry with a conservative spatial primitive, such as a sphere
or oriented bounding box. Instead of bounding just geometry, their approach also
bounds tangent spreads on portions of the geometry and searches to satisfy the ze-
ros of a distance extrema function. The theoretical ground and the mathematical
rules for finding the extrema value of a single function f that depends on several
independent variables (x1, x2, . . . , xn) in d-dimensional space are explained in [34].
In this paper, we present self-decomposing general algorithm for finding the ex-
trema of any function whose arguments are stored across a number of distributed
databases.

3 INTEGRATION OF DISTRIBUTED DATA

In a distributed setting, a dataset D is implicitly defined in n explicit databases. We
model databases Dis at the ith sites, by a relation containing a number of tuples.
Each Di contains set of attributes represented by Xi. For any two databases Di

and Dj , the corresponding sets Xi and Xj may have a set of shared attributes given
by Sij . Since an arbitrary number of independent, already existing databases may
be consulted for a computation, we cannot assume any data normalization to have
been performed for their schemas.

The implicit data set D with which the computation is to be performed is a sub-
set of the set of tuples generated by a Join operation performed on allDi’s. However,
the tuples of D cannot be made explicit at any network site because entire databases,
Di’s, cannot to be moved to other sites. The tuples of D, therefore, must remain
implicitly specified. This inability to make the tuples of D explicit is the main prob-
lem addressed in the generalized decomposition of global algorithms. To facilitate
computations with implicitly specified D, we define a set S that is the union of all
the attribute intersection sets Sij, that is,

S =
⋃

i 6=j

Sij. (1)
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The set S contains the names of all those attributes that occur in more than one Di.
We define a relation Shared which contains all possible tuples that can be enumerated
for the attributes in the set S.

3.1 Nature of Data Distribution

The dataset D consists of a set of tuples where each tuple stores the values of
relevant attributes. The distributed nature of such a dataset can lead to two common
types of data fragmentation: horizontal fragmentation wherein subsets of data tuples
are stored at different sites; and vertical fragmentation wherein subtuples of data
tuples are stored at different sites. Assume that a dataset D is distributed among
n sites containing databases D1, D2, . . . , Dn. The individual databases Di together
constitute the implicit global dataset D.

Horizontal Fragmentation: A dataset D is partitioned into a set of databases
D1, D2, . . . , Dn each of which have the same set of attributes Xi, and a subset of
tuples of the original dataset D. Each tuple of D is in exactly one database. The
set of shared attributes S is the same as Xi for each database. The union of all
databases Di constitutes the complete dataset D, i.e., D1 ∪D2 ∪ . . .∪Dn = D.

Vertical Fragmentation: A dataset D is partitioned into a set of databases D1,
D2, . . . , Dn where each database contains a subset of the attributes of the original
dataset D. Each attribute must be included in at least one database. It is
possible for some attributes to be shared (duplicated) across more than one
database.

In effect, each Di is a projection of an implicit global D. Vertically fragmented
datasets are more interesting because they provide an opportunity to share know-
ledge across the participating sites.

3.2 Agent’s Decomposition Task and Our Contribution

The objective of an agent is to perform the global computation by communicating
with other similar agents at other sites; and each agent performing some compu-
tation with its local database. Each agent should be able to decompose the global
computation into local computations – in the context of and as constrained by the
sharing of attributes across the participating agents – and perform its local part
with its own data. Each agent Agenti in Figure 1 represents a Di and communicates
with similar agents at other nodes to exchange the results of its local computations.
The decomposition methodologies discussed here can be seen to reside with each
individual agent; and each agent is also capable of initiating and completing an in-
stance of a global computation by either exchanging local results with other agents
stationary at their respective sites, or by launching a mobile agent that visits other
network sites. In the case of a mobile agent, the decomposition tools and knowledge
reside with the mobile agent.
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Let us say a result R is to be obtained by applying a function F to the implicit
dataset D. That is:

R = F(D). (2)

When the global computation is to find extrema in distributed data components, the
value of R is the tuple at which the given function has the maximum or minimum
value across the global data; D is the database containing the data; and F corre-
sponds to the implementation of an algorithm for inducing R, from D. Distributed
databases used by the agents cannot make explicit the tuples of D, which remain
implicit in terms of the explicitly known components D1, D2, . . . , Dn. The set S of
Shared attributes determines what explicit D would be generated by the individual
data components. An implementation of F in Equation (2) above, for some S, can
be engineered by a functionally equivalent formulation given as:

R(S) = H[h1(D1, S), h2(D2, S), . . . , hn(Dn, S)]. (3)

That is, a local computation hi(Di, S) is performed by agent Agenti using the
database Di and the knowledge about the attributes Shared among all the data
sites (S). The results of these local computations are aggregated by an agent using
the operation H. However, it may not be possible to decompose a complex com-
putation algorithm into local computations and an aggregator. In this case, we can
decompose smaller computational primitive steps of such a complete algorithm and
the agent keeps track of the control aspects of sequencing various steps of such an
algorithm.

The number and nature and hi operators and the nature of H would vary with
the participating Dis and the set of attributes S among them. Hence, a different
set of h-operators would need to be generated by the agent for each new instance
of Di’s and S.

Figure 2 shows the process by which the agent would compute R from the Dis.
The component operators of a decomposition (H and his), therefore, need to be
dynamically determined by the agent for each instance of F(D) depending on the
participating nodes; the attributes contained in their native databases; and the
sharing pattern of attributes.

Here, using the decomposition formula above, we present a methodology and
design two decomposable algorithms for constructing a function from given dis-
crete data, and finding the extrema of any function whose arguments are stored
across multiple private distributed databases. This methodology consists of a gene-
ral model for decomposition, and a set of algorithms for realizing this model. Our
algorithms have the capability to decompose their computations to fit the nature
of data distribution across the network sites. The objective of the algorithms is to
perform function computation tasks for any arbitrary data distribution across the
network by exchanging summaries derived from local databases. Our algorithms
are tailored for situations in which we do not have closely connected processors.
There are multiple processors but they are independent and reside at geographically
distant sites.
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3.3 Cost Models for Algorithmic Complexity

Traditionally, the complexity of algorithms has been measured in terms of the CPU
time and the required memory. This cost model is well-suited for computations
on a single computer and the closely-coupled processors model. When a number of
loosely networked sites are involved in a cooperative computation the communication
cost becomes the overwhelmingly dominant component of the total cost. Complexity
for distributed query processing in databases has been discussed in [35]. In our
experience with the design and analysis of decomposable network algorithms, we
have found that each step of the algorithm must exchange a number of messages for
evaluating the various quantitative values. Here and in other similar works [10, 11,
12, 13, 14], we have used cost models involving the number of messages exchanged
and reflecting the efficiency of decomposition carried out by the network algorithm.
We choose the following two cases for analyzing the complexity of our algorithms.

1. Stationary Agents Case. In case of stationary agents, we choose the follow-
ing two models for analyzing the complexity of our algorithms. In these cost
models, we count the number of messages that must be exchanged among all
the participating sites in order to complete the execution of the algorithm.

• Cost Model 1: Exchanging One Summary per Message (Un-optimized): One
message exchange includes only one local computation request at a time. The
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messages are exchanged in a sequential manner, that is, one site is asked for
one local computation, the corresponding summary is obtained, and then
the request is sent to the next participating database.

• Cost Model 2: Exchanging All Summaries per Message (Optimized): One
message exchange includes all local computation requests which correspond
to all tuples condj of S and receive all corresponding summaries in one
message.

2. Mobile Agent Case. In this case, the complexity can be measured in term
of the number of agent hops from one site to other or in term of the number of
agent visits to each site. The number of hops/visits is independent of the size
of implicit dataset D.

4 DECOMPOSABLE LEAST SQUARES INTERPOLATION

Traditionally, if we have a number n of experimentally determined points, (x1, y1, z1,
w1), (x2, y2, z2, w2), . . ., (xm, ym, zm, wm), we can construct a linear relation through
them in the form

W = b+ a1X + a2Y + a3Z, (4)

where b, a1, a2, and a3 are constants, the right choice of these constants is the one
that minimize the sum of the squares of the deviations D.

D =
m
∑

i=1

(wi − (b+ a1xi + a2yi + a3zi))
2. (5)

Equation (5) represents the deviations between the observed values wi and the ones
b+ a1xi + a2yi + a3zi that would be predicted using (4). We calculate the values of
b, a1, a2, and a3 from the following partial derivatives:

∂D

∂b
= 0,

∂D

∂a1
= 0,

∂D

∂a2
= 0, and

∂D

∂a3
= 0. (6)

Using Equations (3), (4), we get the following assistant equations for determining
b, a1, a2, and a3:

∑

W = m ∗ b+ a1
∑

X + a2
∑

Y + a3
∑

Z,
∑

X = b
∑

X + a1
∑

X2 + a2
∑

XY + a3
∑

XZ,
∑

Y = b
∑

Y + a1
∑

Y X + a2
∑

Y 2 + a3
∑

Y Z,
∑

Z = b
∑

Z + a1
∑

ZX + a2
∑

ZY + a3
∑

Z2.

In distributed setting, the implicit dataset D has n attributes B and Ai, where
i = 1, 2, . . . , m−1. The objective of our algorithm is to construct a linear function B,

B = b+ a1A1 + a2A2 + . . .+ am−1Am−1, (7)
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where the constants b, a1, a2, . . . , am−1 can be determined from the assistant equa-
tions. In our algorithm, we consider each data tuple in the implicit dataset D as
a point in the d-dimensional space.

4.1 The Algorithm Outlines

In this section, we introduce our algorithm to construct a single function from given
discrete data using inter-node communication of local summaries and inferences
and obtain the same results that would have been obtained were the computations
performed with all the data transferred to a single site.

The Coordinator site will run the following procedures:

1. Call Count Computing procedure to compute the total number of tuples, Nt, in
the implicit dataset D

2. Call Sum Computing procedure to compute the summation of each attribute

3. Call Sum Product Computing procedure to compute the sum of product for each
pair of attributes

4. Call Constant Determination to determine the constants.

In the following, we introduce the Count Computing, Sum Computing,
Sum Product Computing, and Constant Determination procedures for computing
the total number of tuples in implicit dataset D, the sum of each attribute, the
sum of product of each two attributes, and determine constant, respectively from
distributed databases.

4.1.1 Count-Computing Procedure

When the tuples of D are explicitly available in a relation then the count of all its
tuples can be easily obtained. For our case of implicity defined D, we can decompose
the counting process in such a way that various local count requests can be sent to
sites of individual Dks and the responses can then be composed to construct the
total count for the tuples in implicit dataset D. The decomposition for obtaining
the count Nt is as follows:

Nt =
∑

l

(

n
∏

k=1

N(Dk)condl

)

, (8)

where the subscript condl specifies a condition composed from the attribute value
pairs of the lth tuple of the relation Shared, n is the number of participating databases
(Dks), and (N(Dk)cond l

) is the count in relation Dk of those tuples that satisfy the
condition cond l. Each term in the product is the count of tuples which satisfy
condition cond l in a Dk. The resulting product produces the number of distinct
tuples that would be contributed to the implicit join of all the Dks for the condition
specified by cond l. The summations in the above expression amount to selecting
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each tuple of Shared as cond l and then summing the product terms obtained for each
tuple. This expression, therefore, simulates the effect of a join operation performed
on all the n databases without explicitly enumerating the tuples. A desirable aspect
of the above decomposition of Nt is that each local computation N(Dk)cond l

can be
translated into an SQL query: Select count (*) where cond l and sent to the site
containing database Dk. The pseudocode for computing Nt is shown below:

Count of Tuples in Implicit Space 1. Local Computation: The following code
will be executed at every local data site Dk

(a) for every shared tuple l do

• Compute N(Dk)condl , and ship the results back to the Coordinator
site

(b) end for

2. Global Computation: The following code will be executed at the Coordinator
site

(a) for every shared tuple l, compute the total number of tuples that satisfy
cond l from the following relation:

Nl =
n
∏

k=1

N(Dk)cond l
. (9)

(b) Compute the total number of tuples from the following relation:

Nt =
∑

l

Nl =
∑

l

(

n
∏

k=1

N(Dk)cond l

)

. (10)

4.1.2 Sum Computing Procedure

For an attribute x, we need to compute
∑

i xi where i is an index over all tuples in
implicit dataset D. There are two different cases of x (shared or unshared), each
case requires a different way to compute the summation. They are described as
follows:

Case 1:
∑

i xi when x ∈ S: In this case the attribute x belongs to the relation
Shared. The value

∑

i xi where i is an index over all tuples in D can be computed
as:

Sum =
∑

l

(xl ∗Nl) (11)

where l indexes over all the tuples of relation Shared, and Nl is similar to Equa-
tion (9).

Case 2:
∑

i xi when x /∈ S: In this case x is not a shared attribute so it must be
reside on a single network site. In this case, the sum of x can be computed using
the following procedure:
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• For every tuple l in Shared,

– Send a message to each participating site and obtain the average value:
xl =

1
n

∑

i xi from the site that contains x.
– Count the tuples in D that belong to l.
– The sum of x can be computed as:

Sum =
∑

l

(xl ∗Nl). (12)

4.1.3 Sum Product Computing Procedure

For a sum of products, we need to compute
∑

i xiyi where x and y are two attributes
in the implicit dataset D and i is an index over all tuples in D. Due to the different
ways in which attributes x and y may be distributed across the network sites, it
turns out that there are six different cases, each case requires a different way to
compute the sum of products. They are described as follows:

Case 1:
∑

i x
2
i when x ∈ S: In this case x is a shared attribute and the value

∑

i x
2
i

where i is an index over all tuples in D can be computed as

SP =
∑

l

(x2
l ∗Nl) (13)

where l indexes over all the tuples of relation Shared, and Nl is similar to Equa-
tion (9).

Case 2:
∑

i x
2
i when x /∈ S: In this case x is not a shared attribute so it must reside

on a single network site. For every tuple l in Shared we send a message to each
participating data site and obtain the average value: x2

l =
1
n

∑

i x
2
i from the site

that contains x. We also obtain the count of tuples in D that belong to l. The
sum of product can be computed as

SP =
∑

l

(x2
l ∗Nl). (14)

Case 3:
∑

i xiyi when both x, y ∈ S: Since both the attributes are shared attributes,
for each tuple l in Shared we can form the product of the values taken by x and y
attributes in this tuple and multiply it by the count of tuples in D for which the
conditions of this tuple are true. Thus,

SP =
∑

l

(xl ∗ yl ∗Nl). (15)

Case 4:
∑

i xiyi when only one attribte is in S: Let us say x ∈ S and y /∈ S. The
sum of product can be computed as

SP =
∑

l

(xl ∗ yl ∗Nl) (16)
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where l indexes over all the tuples of relation Shared, yl is the average of y for
all tuples that belong to l in D and Nl is similar to Equation (9).

Case 5:
∑

i xiyi when both x, y /∈ S and x and y reside on different network sites:
In this case x and y are not shared and they reside on different sites. For each
tuple l in relation Shared we obtain

∑

xl and
∑

yl for all tuples that belong to l.
Thus the sum of product can be computed as

SP =
∑

l

(

∑

(xl) ∗
∑

(yl)
)

. (17)

The sum of product for this case can also be computed as follows:

SP =
∑

l

(xl ∗ yl ∗Nl) (18)

where l indexes over all the tuples of relation Shared, xl and yl are the average
of x and y respectively for all tuples that belong to l in D and Nl is similar to
Equation (9).

Case 6:
∑

i xiyi when both x, y /∈ S and x and y reside on same site: In this case,
for each tuple l in relation Shared we obtain xlyl =

1
n

∑

i xi ∗yi for all tuples that
belong to l. Thus the sum of product can be computed as:

SP =
∑

l

(xlyl ∗Nl). (19)

The above six cases cover all possible ways in which the attributes may be
distributed across the network. The Coordinator site sends its requests to all
the participating data sites and only the sites that have replications will send
the response.

4.2 Constant Determination Procedure

This procedure will be executed at the Coordinator site using the results of the
above procedures.

1. Construct the following assistant equations:

•
∑

B = Ntb+
∑m−1

i=1 (ai ∗
∑

(Ai)), where m is the number of attributes

• for i = 1 to m− 1
∑

BAi = b
∑

Ai +
∑m−1

j=1 (aj ∗
∑

(Ai ∗ Aj)).

2. Solve the constructed assistant equations to determine the constants.

3. Return the relation B = b+ a1A1 + a2A2 + . . .+ am−1Am−1.
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4.3 Complexity and Analysis

Stationary Agent Case: We give below an expression for the number of messages
that need to be exchanged for dealing with the implicit of tuples. Let us say,
there are: (1) n relations residing at n different network sites, (2) r tuples in
relation Shared.

• Cost Model 1: The number of messages needed will be the sum of the number
of messages required to compute Nt, the number of messages required to
compute

∑

x, and the number of messages required to compute
∑

xy, each of
which will take n∗r messages. Thus the total number of messages exchanged
will be

Exchanged Messages = 3n ∗ r. (20)

• Cost Model 2: In this cost model, values corresponding to all tuples cond l

of S send in one request and receive the summaries in one message. This
reduces the number of messages exchanged to n, the same as the number of
participating sites. Thus the total number of messages exchanged will be

Exchanged Messages = 3 ∗ n. (21)

The trade-off between the two approaches is that the first one may be considered
more secure for transmission over a network because each message contains only
very little information about the participating databases. The second alternative
requires very few messages but each message contains more information about
each database. The above analysis shows that according to the above formulas,
in case of One Summary per Message the maximum number of messages which
would need to exchange is proportional to the the number of tuples in Shared and
the number of participating sites, and in case of Exchanging all the Summaries
in one Message the maximum number of messages which would need to exchange
is proportional to the number of participating sites only.

Mobile Agent Case: This agent has the relation Shared stored in it. During
a visit to a data site, it computes all local computations for that site. The local
results for computing all the counts can be gathered during a single visit to
a site. Thus, the mobile agent can compute all terms of assistant equations by
visiting each site only once (n hops) and then aggregating the local results.

Assertion 1. The algorithm for constructing a function for D’s attributes in dis-
tributed data returns the same results with respect to the algorithm for constructing
a function for centralized data attributes.

Proof. It is obvious that the counts Nt,
∑

x, and
∑

xy computed in the distributed
case are the same as the counts computed in the centralized case. Then the assistant
equations are identical, i.e., we obtain the same results as if we brought all the data
together and construct these equations globally. ✷
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4.4 Simulation Results

We have performed a number of tests to demonstrate that the interpolation can be
computed in a distributed knowledge environment without moving all the databases
to a single site. The following figures show the results in form of graphs that provide
a comparative analysis when the algorithm is run using the unoptimized version, i.e.
sending one summary per message, and using the optimized version, i.e., sending all
the summaries for a particular site in one message.
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Fig. 3. Time taken to calculate interpolation on distributed databases

Figure 3 shows how the time taken to compute the interpolation in an implicit
database D changes with the size of the individual databases. As we can see, when
we exchange one summary per message, the time taken to compute the interpolation
varies exponentially as the size of the database increases. However, when we use the
optimized method the time taken to compute the interpolation reduces considerably
and depends on the number of participating sites.

Figure 4 shows how the number of messages exchanged between the Coordinator
site and the remote sites varies with the number of tuples in the database. It
can be seen easily that the number of messages exchanged varies with the size of
the database when we send one summary per message. The result validates the
expression for the total number of messages exchanged as given above. However in
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Fig. 4. Number of messages exchanged to calculate interpolation on distributed databases

the optimized version when we receive all the summaries in a single message, the
number of messages exchanged was a constant depending upon the total number of
participating sites.

5 DECOMPOSABLE FUNCTION OPTIMIZATION

The objective of the second algorithm is to find the extrema (maximum) of a func-
tion f that depends on several independent arguments (x1, x2, . . . , xd) using inter-
node communication of local summaries and inferences and obtain the same results
that would have been obtained were the computations performed with all the data
transferred to a single site. In our algorithm, we consider each data tuple in the
implicit dataset D as a point in the d-dimensional space and consider the attribute
as the function arguments.

Our algorithm consists of two parts; the first part aims to reduce the number of
tuples in the relation Shared, where every local data siteDi filters the Shared relation
to the shared tuples that may achieve the maximum value of the function through
them. The second part aims to find the candidate point at which the function takes
the maximum value at each local data site Di.
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Definition 1. A function f(A,B, C, . . . ,W ) has an extrema (maximum value) at
a point (a, b, c, . . . , w), if the value of the function f(A,B, C, . . . ,W ) at all points
that sufficiently close to this point is less than the value of f(a, b, c, . . . , w).

5.1 Algorithm Outlines

Data structure: A table called Max is maintained at the Coordinator site. It has
one column for every attribute to store the candidate value for extrema, and one
column for the corresponding function value.

Reduce the number of tuples in the relation Shared as follows:

1. Local computation: The following code will be executed at every participat-
ing site to find the candidate shared tuples.

• for every shared tuple l do

– Select all tuples that belong to l.
– Compute the function value at every selected tuple (consider the un-

known attributes at every Di as constants).
– Sort the values in decreasing order.
– Return the shared tuple that corresponds to the maximum value to

the Coordinator site.

2. Global computation: At the Coordinator site, we generate from the returned
tuples a new relation called MaxShared, that has a number of tuples much
less than the original Shared relation.

Finding the extrema point:

1. Local Computation: We find the corresponding unshared values of every
tuple in MaxShared

• for every tuple j in MaxShared do

– Select all tuples that corresponds to j,
– if the number of selected tuples = 1,

∗ Return the unshared attributes value corresponding to this tuple
to Coordinator site.

– else

∗ Compute the function value at each tuple (consider the unknown
attributes as constants),

∗ Sort the function values in decreasing order,
∗ Return the unshared attributes values corresponding to the maxi-
mum value to the Coordinator site.

2. Global Computation: The Coordinator site will execute the following steps
to find the tuple at which the function has maximum value:
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• Update the Max table for every tuple in MaxShared,
• Compute the function value fval for each row in Max table.
• Return the tuple corresponding to the maximum value of fval.

End algorithm.

5.2 Complexity and Analysis

Stationary Agent Case: We give below an expression for the number of messages
that need to be exchanged for dealing with the implicit tuples. Let us say there
are:

1. n relations, residing at n different network sites,

2. r tuples in relation Shared,

3. ŕ tuples in relation MaxShared.

• Cost Model 1: We send one message to each participating data site to find
the shared tuple at which the function takes on the maximum value. We
send one message to each data site to find the unshared attributes values
where the function takes on the maximum value for each tuple ŕ. Thus the
total number of messages exchanged will be

Exchanged Messages = n+ n ∗ ŕ = n(1 + ŕ). (22)

• Cost Model 2: In this cost model, we send n messages for generating the
relation MaxShared. We send one message to each data site to find the
unshared attributes values where the function takes on maximum value for
all tuples ŕ. Thus the total number of messages exchanged will be

Exchanged Messages = 2 ∗ n. (23)

The above analysis shows that according to the above formulas, in case of One
Summary per Message the maximum number of messages which would need
to exchange is proportional to the the number of tuples in MaxShared and the
number of participating sites, and in case of Exchanging all the Summaries in
one Message, the maximum number of messages which would need to exchange
is proportional to the number of participating sites only.

Mobile Agent Case: This agent has the relation Shared stored in it. During
a visit to a data site, it computes the function value for all shared tuples and
keeps the shared tuple that satisfies the maximum value of the function in its
mind. Once all the sites have been visited, the agent generates the relation
MaxShared according to the tuples that have been kept. The mobile agent
would need to visit each site another time for computing the global value of the
function for each tuple ĺ. Thus the total number of visits (hops) will be

Number of hops = 2n. (24)
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Assertion 2. If all subsets of a point P cannot maximize a function f , where the
rest of P is constant, then P cannot maximize f .

Proof. Assume f = x+ y+ z has the maximum value at the point p0 = (x0, y0, z0),
and p0 maximizes f but all of its subsets cannot maximize f . Since p0 maximize f ,
then f(x0, y0, z0) > f(x, y, z) for all points (x, y, z), i.e.,

x0 + y0 + z0 > x+ y + z. (25)

If z is constant, then x0 + y0 + z > x+ y + z which is contradiction. ✷

Assertion 3. The algorithm for finding the extrema from distributed data returns
the same results with respect to the algorithm for finding the extrema from centra-
lized data.

Proof. Using the same assumptions as in Assertion 2, if x is constant, then

x+ y0 + z0 > x+ y + z. (26)

If y is constant, then
x0 + y + z0 > x+ y + z. (27)

If z is constant, then
x0 + y0 + z > x+ y + z. (28)

By adding Equations (26), (27), and (28), we find that x0+ y0+ z0 > x+ y+ z, i.e.,
we obtain the same results as if we brought all the data together and compute the
extrema. ✷

Since the maximized operation is opposite of the minimized operation, we can
modify our algorithm to find the extrema (minimum) value of a function by inverting
the maximized instructions to minimized instructions.

5.3 Simulation Results

We have performed a number of tests to demonstrate that the extrema can be com-
puted in a distributed knowledge environment without moving all the databases to
a single site. The following figures show the results in form of graphs that pro-
vide a comparative analysis when the algorithm is run using the unoptimized and
optimized versions.

Figure 5 shows how the time taken to compute the extrema in an implicit
database D changes with the size of the individual databases and the number of
tuples in MaxShared. As we can see, when we exchange one summary per mes-
sage, the time taken to compute the extrema varies exponentially as the size of the
database increases. However, when we use the optimized method the time taken to
compute the extrema reduces considerably and depends on the number of partici-
pating sites.
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Fig. 5. Time taken to calculate the extrema on distributed databases

Figure 6 shows how the number of messages exchanged between the Coordina-
tor site and the remote sites varies with the number of tuples in MaxShared. It can
be seen easily that the number of messages exchanged varies with the size of the
database and the number of tuples in MaxShared when we send one summary per
message. The result validates the expression for the total number of messages ex-
changed as given above. However, in the optimized version when we receive all the
summaries in a single message, the number of messages exchanged was a constant
depending upon the total number of participating sites.

6 CONCLUSION

We have demonstrated that agents can perform integration of arbitrarily distributed
data and knowledge for performing computations. Tasks such as computing ex-
trema and running interpolation can be computed by appropriately coordinating
agent actions. These actions are self-determined and self-controlled by the agents
in response to the varying sets of participating agents and arbitrary overlaps in the
local datasets. Also, for simple arithmetic computations, the number of messages
to be exchanged among the n participating agents does not exceed the order of n.
This is very significant because it gives us the scalability required for handling large
databases. The number of tuples at individual network sites may keep on increas-
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Fig. 6. Number of messages exchanged to calculate the extrema on distributed databases

ing but the number of messages that need to be exchanged among the agents for
a global computation remains constant. We have demonstrated the adaptability of
the extrema finding algorithm, and interpolation algorithm. We have shown the
complexity of performing these computations in terms of messages that need to
be exchanged among the stationary agents for performing these computations. We
have also analyzed the number of visits that a mobile agent would need to make to
each site for completing the global computation. One very significant contribution
of these results is that many tasks can be performed on a number of databases re-
siding at different network sites by agents without having to move the databases to
a single site and the communication cost among the performing agents is also very
low.
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