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Abstract. Platform independent modeling of information systems and generation
of their prototypes play an important role in software development process. How-
ever, not all tasks in this process have been covered yet, i.e. not all pieces of an in-
formation system can be designed using platform independent artifacts that are
later transformable into the executable code. One of the examples is modeling of
database check constraints, for which there is a lack of appropriate mechanisms to
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formally specify them on a platform independent level. In order to provide for-
mal specification of check constraints at platform independent level, we developed
a domain specific language and embedded it into a tool for platform independent
design and automated prototyping of information systems, named Integrated Infor-
mation Systems CASE (IIS*Case). In this paper, we present algorithms for trans-
formation of check constraints specified at the platform independent level into the
relational data model, and further transformation into the executable SQL/DDL
code for several standard and commercial platforms: ANSI SQL-2003, Oracle 9i
and 10g, and MS SQL Server 2000 and 2008. We have also implemented these
algorithms in IIS*Case as a part of the process of generation of relational database
schema.

Keywords: Check constraint, platform independent model, model-driven archi-
tecture, model-to-model transformation, model-to-code transformation, SQL/DDL
generation

Mathematics Subject Classification 2010: 68U35, 68P15

1 INTRODUCTION

Data constraints are purposed to preserve data integrity as well as impose business
rules over data in databases. Thus, they enrich database schemas with semantics
and relieve the overlaying business applications the burden of maintaining data in-
tegrity. Database management systems (DBMS) that are based on the relational
data model allow definition of various data constraints, usually providing different
declarative and procedural mechanisms for that purpose. On the other hand, there
is a need for platform independent specifications of constraints since the platform
independent models (PIM) allow designers to specify constraints of the system be-
ing modeled regardless of the particular platform and implementation technologies.
Such models provide easier maintainability and portability of database constraints
between different implementation platforms compared to constraint specifications
created for a particular platform only.

Our experience from a number of industrial or academic projects of develop-
ing information systems shows that obscure modeling techniques are used to de-
sign database constraint specifications. In some cases, there is even a lack of any
kind of specifications of database constraints. It is particularly the case with check
constraints, which represent an important concept for specifying business rules in
database design, since they are frequently utilized in database design projects from
various application domains, and cannot be compensated by other types of con-
straints at the abstraction level of data models. We believe that one of the reasons
for such circumstances is the lack of domain specific, platform independent and tool-
supported specification techniques for such constraints. Therefore, we have directed
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our research towards platform independent modeling of check constraints and au-
tomatic generation of executable code for several commercially available relational
DBMSs (RDBMS).

In our previous research we developed a domain specific language (DSL) aimed
at specifying check constraints at the level of PIMs. Also, we implemented a visual
editor for formal specification of check constraints in a guided way. The editor and
DSL are presented in detail in [1]. In this work, we extend our prior efforts by
creating algorithms providing model-to-model transformations of check constraint
PIM specifications into relational data model and model-to-code transformations
into the executable SQL/DDL code.

We also embedded the proposed algorithms into the Integrated Information Sys-
tems CASE tool, IIS*Case for short. It is a tool for platform independent design of
information systems and rapid generation of information system prototypes. Cur-
rently, the main features of IIS*Case are ([1]):

e conceptual modeling of database schemas, transaction programs, and business
applications of an information system,;

e automated generation of relational database subschemas in the 3"¢ normal form
(3NF);

e automated integration of independently designed subschemas into a unified da-
tabase schema in the 3NF;

e automated generation of SQL/DDL code for ANSI SQL-2003 standard and va-
rious RDBMSs;

e conceptual design of common user-interface (UI) models; and

e automated generation of executable prototypes of business applications.

A PIM model of an information system in IIS*Case includes specifications of
form types ([2, 3]). A form type concept is an abstraction of screen forms or docu-
ments that users utilize to communicate with the information system. By specifying
form types, designers model the following information system specifications:

1. a database schema with its constraints, as it is presented in [3, 4],
2. functionality of business applications ([1]), and

3. a future user interface (UI) of business applications ([2, 5]).

An advantage of PIM of form types is that the end users are presented with
a specification of the information system they can understand. This important
feature of 1IS*Case allows end users, software engineers and system architects to
collaborate in the development of an information system, which makes IIS*Case
suitable for End-User Development approach, as proposed in [6, 7]. Providing end
users a possibility to participate in early stages of the software development may
significantly raise the quality of information system specifications. In this way, user
requirements can be met more accurately, with less effort, since frequent misunder-
standings between the users and the software engineers can be avoided.
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The model of an information system in IIS*Case can also be classified as a PIM
in terms of Model-Driven Architecture (MDA) pattern ([8]), as it does not contain
any implementation-specific details. Furthermore, the whole software development
process in IIS*Case corresponds to MDA pattern, since PIM is firstly transformed
via model-to-model transformations into a platform specific model (PSM), and fur-
ther into the executable code by using model-to-code transformations. In [9], the
application of the model driven software development (MDSD) principles in IIS*Case
has been presented in detail.

In IIS*Case, the executable prototypes of business applications are completely
generated from the specifications created at the level of PIM. If there is a need
for a change in functionality of the prototype, it does not require long-lasting and
manual programming work. Instead, the PIM specifications are modified and the
prototype is generated again quickly. By this we address the problem of efficient
software evolution, as considered in [10, 11].

Database schema development methodology and formal specification of database
constraints supported by IIS*Case are out of the scope of this paper. They are dis-
cussed in [12] and [13], respectively. The generation of executable information system
prototypes is described in detail in [5]. Further considerations about 1IS*Case may
be found in several authors’ references, such as [14, 15].

[IS*Case allows design of various database constraints at the level of PIM, such
as primary key, referential integrity, inverse referential integrity, null constraints,
etc. This has been elaborated in several papers, e.g. [3, 16]. Because of the impor-
tance of check constrains in database design, our goal was to support PIM modeling
of that kind of constraints. Therefore we have developed a DSL for defining check
constraints at the level of PIM, which is presented in [1]. This DSL releases design-
ers any burden about implementation details regarding relational data model and
commercial RDBMSs, in accordance to the principles discussed in [17, 18]. Also,
our DSL can be regarded as a meta-level language, with SQL being taken as a base
level language according to [10, 11].

Consequently, we continue our efforts to provide complete lifecycle for platform
independent and tool-supported modeling and implementation of check constraints.
In this paper, we present algorithms for automatic transformation of check con-
straints specified at the level of PIMs of form types into relational data model,
which is still implementation independent, and further transformation into the exe-
cutable SQL/DDL code for several platforms: ANSI, Oracle and MS SQL Server.
These algorithms have also been implemented in IIS*Case and tested in a selected
case study.

The rest of the paper is organized as follows. In Section 2, we present the
current state of the art in the design of check constraints at both academic and
commercial level. In Section 3, a more detailed overview of the IIS*Case and DSL
for check constraint is given. It contains details necessary to follow the main results
presented in the paper. The model-to-model transformation of PIM specifications
of check constraints into check constraints in relational data model is presented in
Section 4. In Section 5 we present the model-to-code transformations into the exe-
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cutable SQL/DDL code for several RDBMSs. Conclusions and future work remarks
are given in Section 6.

2 RELATED WORK

PIM design of database check constraints has been rarely explored both in academic
and industrial environments. Demuth, Hussmann and Loecher in [19, 20] use the
Object Constraint Language — OCL ([21]) for PIM modeling of the check constraints.
They consider OCL as the natural way to design check constraints since they utilize
UML models to design database schemas. On the contrary, we have opted for a user-
oriented DSL for the same purpose since our approach and PIM model is entirely
user-oriented. However, we share similar ideas when it comes to the automatic
generation of the executable code of check constraints, where we pay special care
to code optimization in order to obtain better performance in case of commercial
RDBMSs.

Many commercial CASE tools allow PIM modeling of database schemas and
information systems. We analyzed several CASE tools broadly utilized among soft-
ware engineers: Oracle Designer [22], Sybase PowerDesigner [23], Enterprise Archi-
tect [24], IBM Rational Rose Data Modeler [25] and CA ERwin Data Modeler [26].
All of them provide entity-relationship (ER) data model for database design, but do
not support the entire lifecycle of modeling and generation of check constraints. Or-
acle Designer and Sybase PowerDesigner allow specification of check constraints only
by using SQL syntax in platform specific relational data model. On the other hand,
in Enterprise Architect, check constraints are modeled at the PIM level, but they
cannot span multiple relation schemes. On the contrary, IIS*Case does provide that.
ERwin Data Modeler allows specification of the check constraints only at the level
of attributes and generates executable code for them. Unfortunately, other types of
check constraints are not supported. IBM Rational Rose Data Modeler offers the
most advanced features of all analyzed tools for PIM design of check constraints.
It provides SQL syntax for specification of column and table check constraints and
in addition, it allows usage of the OCL for the definition of check constraints that
span multiple relation schemes. However, it does not provide the transformations
of constraints defined in OCL into the executable SQL code.

Cabot and Teniente claim in their survey presented in [27, 28], that modern
CASE tools do not provide satisfactory modeling functionalities of check constraint
at the PIM level nor appropriate automatic generation of the executable code. Con-
sequently, the authors have set a number of goals which future MDSD tools should
strive to: expressivity of PIM, efficiency of the generated code, technology-aware
generation of the code, technological independence of model-to-model transforma-
tions and checking time of constraints determinable by the designer. A goal of our
research is to improve IIS*Case to support all of them with a usage of a user-oriented
DSL.
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3 THE PIM OF THE CHECK CONSTRAINTS

At the level of PIMs, I1IS*Case provides a number of concepts such as domains,
attributes, user-defined functions, form types, etc. The definitions and examples
of these concepts may be found in [2, 3], as well as other authors’ references.
In this section, we give an overview of the DSL for creating check constraints.
By this, we present concepts necessary to create PIM specifications of check con-
straints. More details about PIM specifications of check constraints may be found
in [1].

A concept of the domain is used to specify a set of allowed values of an attribute.
It represents a kind of constraint present in all data models, named domain con-
straint. In IIS*Case, there are two types of domains: primitive and user-defined.
Primitive domains correspond to the basic, built-in data types such as Boolean, in-
teger, floating-point numbers, etc. User-defined domains are derived from primitive
or previously created user-defined domains and inherit all their properties.

A user-defined domain is created by either inheriting an existing domain or
grouping existing domains into a tuple or choice domain. Domain inheritance in
[IS*Case is of the same nature as it is in widely used object-oriented general-purpose
languages. In the following text, we refer to inheriting domains as child domains,
while inherited domains are their parent domains.

Tuple and choice domains are classified as complex domains in IIS*Case. A tu-
ple domain represents tuples of values where each value belongs to one of existing
domains. On the other hand, a choice domain represents values where each value
belongs to exactly one of the source domains.

To each attribute in IIS*Case, a domain specification must be assigned. By
this, if the same domain is associated to more than one attribute, all values of all
those attributes must be validated against the same domain constraint, regardless
of different semantics expressed by such attributes.

Apart from data type and maximum data length, any domain specification may
include a domain check constraint. It is specified by using our DSL and represents
a logical expression over the VALUE variable, which may be instantiated to any
attribute value that is validated by the domain constraint. For example, a domain
check constraint that allows only positive numeric values in a domain specification
is specified as:

VALUE > 0.

If both parent and child domains have domain check constraint defined, the
child domain inherits parent’s domain check constraint and concatenates it to its
own domain check constraint by means of AND logical operator.

The grammar for domain check constraints is formally specified in [1]. However,
we repeat here its formal specification in order to give the reader a complete and
precise overview of our DSL. The grammar is originally developed in the ANTRL
notation ([29]). However, we present it in Figure 1 in the Extended Backus-Naur
Form (EBNF) notation, for the sake of better readability.



Transformations of Check Constraint Specifications 1051

Exp = Exp bin operator Exp | un operator Exp | Primary Exp;
Primary Exp = constant | ’VALUE’[’.’ fieldName]

| function name ’(’ [ExpList] ’)’ | *(’ Exp ’)’;
Exp List = Exp { ’,’ Exp.List};

Fig. 1. Specification of the grammar for domain check expressions

The list of standard operators that may replace bin_operator or un_operator
includes the following ones:

e additive (+, —);

e multiplicative (¥, /);

e comparison (<, <=, >, =>);

e cquivalence (==, |=);

e concatenation (||);

e Boolean (NOT, AND, OR, XOR, =, <);
e inclusion (IN); and

o pattern matching (LIKE).

All the operators and parentheses are introduced with the common meaning
and priorities as it is a case in any form of SQL. Apart from introducing standard
arithmetic, string, comparison and logical operators existing in all general-purpose
languages, we also decided to introduce the operators LIKE and IN, which are
common in various forms of SQL. In this way, the language for check expressions
becomes more problem oriented. The grammar in Figure 1 also provides calls of
functions specified at the PIM level in IIS*Case.

The grammar in Figure 1 provides the use of constants in check expressions.
The common rules for specification and interpretation of constants are applied, and
accordingly we do not describe them in more detail.

The only variable symbol allowed in domain check expression is the VALUE
variable. If the check constraint is associated with a tuple or choice domain, the
VALUEFE variable may be qualified by the attribute name of a tuple or choice member.
In such a case, the check constraint is validated only against the specified tuple or
choice member instead of the whole domain value.

In IIS*Case, database schemas are designed to satisfy the universal relation
schema assumption (URSA). Therefore, each attribute is identified only by its name
throughout the whole database schema and there could not be two attributes with
the same name and different semantics, or with the different names and the same
semantics. By this, each attribute is specified independently of any form type or
relation scheme it will belong to.

We may assign an attribute check constraint to each attribute specification. It
is a logical expression over a variable representing the attribute name. In this way,
an attribute check constraint must be satisfied by any attribute value, regardless of
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the form types in which the attribute is included. For example, an attribute check
constraint that allows only numeric values from interval [5,10] to be assigned to
attribute representing student’s average grade, named AvgGrade, is specified as

AvgGrade >=5 AND AwvgGrade <= 10.

A formal specification of the grammar for attribute check expressions, as defined
in [1], is shown in Figure 2, in EBNF notation. With attName we denote a name of
the attribute which a check constraint is assigned to. Expression operands have the
same meaning as in the grammar specification for domain check constraints from
Figure 1.

Exp = Exp bin operator Exp | un operator Exp | Primary Exp;
Primary Exp = constant | attName[’.’ fieldName]

| function name ’(’ [ExpList] ’)’ | *(’ Exp ’)’;
ExpList = Exp { ’,’ Explist};

Fig. 2. Specification of the grammar for attribute check expressions

In IIS*Case, a form type is a tree of component types ([2]). A component type
is an abstraction that corresponds to real-life entity classes. A form type is a formal
specification of a screen form, i.e. document used in an information system. In

Figure 3 a form type FACULTY DEPARTMENTS is presented in its simplified
form.

FACULTY r,i,u,d

Facld, FacName, FacShortName, FieldOf Science

DEPARTMENT r,i,u,d

Depld, DepName, DepShortName, DepEmpNumber

Fig. 3. Form type FACULTY DEPARTMENTS

It contains FACULTY and DEPARTMENT component types. FACULTY com-
ponent type is a simple model of a faculty, which is modeled with faculty’s iden-
tifier, name, abbreviated name and employee count attributes. DEPARTMENT
component type is an abstraction of departments belonging to faculties and it is
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specified here with attributes that represent identifier, name, abbreviated name
and employee count of a department. The FACULTY DEPARTMENTS form type
specifies a master-detail UI form of university information system where information
about a faculty is displayed in master section and information about departments
belonging to the displayed faculty are viewed in detail section of the UI form.

Each component type contains a set of attributes and a set of constraints. At-
tributes underlined with solid lines are the keys of the component types. For each
component type, a set of allowable database operations is declared. It is shown
in the upper-right corner of the rectangle representing a component type. In this
example, for both component types, the following database operations are allowed:
r—read, i—insert, u—update and d—delete.

In [1], component type check constraints have been introduced. Informally,
a component type check constraint is a logical expression that is specified at the level
of a component type. It comprises variables that may reference the component type
attributes, as well as the attributes belonging to the superordinated component types
of the same form type. E.g., if identifier of a department has to be a positive numeric
value, the following check constraint is specified at the level of DEPARTMENT
component type from Figure 3:

Depld > 0.

At the level of the same component type, another constraint is specified to
preserve that the number of employees at each faculty is greater than the number
of employees at each of its belonging departments:

FacEmpCount > DepEmpCount.

A formal specification of the grammar for component type check constraints,
as defined in [1], is shown in Figure 4, in EBNF notation. With empAttName we
denote a name of the component type attribute referenced in a check constraint.
Expression operands have the same meaning as in the grammar specification for
domain check constraints from Figure 1.

Exp = Exp bin operator Exp | un operator Exp | Primary Exp;
Primary Exp = constant | cmpAttName[’.’ fieldName]

| function name ’(’ [ExpList] ’)’ | *(’ Exp ’)’;
Exp List = Exp { ’,’ Exp.lList};

Fig. 4. Specification of the grammar for component type check expressions

There are two ways to specify check constraints at the level of all three concepts
in IIS*Case:

1. free-form and

2. guided way.
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The 1IS*Case form for free-form specification of component type check constraints
is shown in Figure 5. By this, check constraints are specified directly by typing the
logical expression, which is a more suitable option for more experienced users of
[IS*Case.

Component Type Check Constraink x|

Camponert Type:  DEPARTMENT

Check Constraint:
acEmpCount = DepEmpCournt ;I

Expression Editor Check Syntax
Error log " Succes ;I
rMessages:
=l
apply | QK | Cancel | @ |

Fig. 5. A form for free-form specification of check constraints

A guided way for specification of component type check constraints is provided
by the visually-oriented Expression Editor tool. The main form of Expression Editor
is shown in Figure 6.

We believe that Expression Editor is more suitable option for less experienced
users or users who are supposed to learn the language by using the editor. More
details about Expression Editor may be found in [1].

We believe that the basic knowledge of mathematical logic or even SQL logical
expressions is enough to easily learn and use the DSL for check constraints. This
allows the users of SQL to learn our DSL with a minimum of effort.

Besides, we intend to formally evaluate the usability of our DSL for check con-
straints by using the Cognitive Dimensions Framework ([30]), as part of our future
work. One example of such evaluation may be found in [31]. To perform the evalu-
ation, we need an intensive communication with end users of IIS*Case.
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4 TRANSFORMATIONS OF THE CHECK CONSTRAINT
SPECIFICATIONS

In 1IS*Case, PIM specifications of database-related modeling concepts are firstly
transformed into relational data model which is still implementation independent.
All the transformations of PIM to PSM specifications provided by IIS*Case are
formalized through a vast number of algorithms, presented in previous authors’
references, such as [2, 16, 3]. They have been specified at the rigor of mathematical
formality, with proofs of their correctness included. The algorithms always produce
the same output (a relational database schema, as an example) from the same
input — a given set of form types. Therefore, we may consider our algorithms as
transformations in the course of MDSD approaches.

The PIM to PSM transformations in IIS*Case are part of the process of database
schema generation. A goal of the research presented in this paper was to enrich the
database schema generation process by taking into account check constraints. There-
fore, we have created transformations of PIM specifications of check constraints into
the relational data model. In this paper we present these PIM to PSM transforma-
tions.

Each check constraint is defined in the scope of a PIM concept, which can
be a domain, attribute or component type. Also, each check constraint includes
a logical expression used for validation of the constraint. Both the PIM concept
and the logical expression have to be transformed into the relational data model.
First, we present the transformations of the concepts check constraints are spe-
cified upon, and then the transformations of the check constraint logical expres-
sions.

The relational data model recognizes both concepts of the domain and the at-
tribute. They have the same semantics in various data models, as well as in relational
data model and PIM utilized by IIS*Case. Hence, the concepts which domain and
attribute check constraints are specified upon remain the same through the trans-
formations into the relational data model.

On the other hand, component types, as well as their check constraints, have to
be transformed using model-to-model transformations.

The PIM of form types bears, among other constraints, functional dependencies
of the modeled information system in such a way that all attributes of component
types depend on their keys. By using a modified Bernstein’s synthesis algorithm ([32,
33]), functional dependencies are transformed into a relational database schema.
Accordingly, the set of all form types is mapped to a set of relation schemes using
model-to-model transformations. This is thoroughly elaborated in [2, 3]. In the
following text, we denote the set of all relation schemes obtained from the set of all
form types with S.

The mapping between form types and relation schemes is many-to-many. There-
fore, each form type corresponds to a set of relation schemes. We denote this set
as Sp. In this way, form types represent user views onto the corresponding relation
schemes. Through such views, users can retrieve and manipulate data ([2]). Algo-
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rithms for determining a set of relation schemes that a form type corresponds to,
have been presented in detail in [2].

Example 1. We consider the form type UNIVERSITY ORGANIZATION given in
Figure 7.

FACULTY r,i,ud

Facld, FacName, FacShortName, FieldOfScience

DEPARTMENT | riud

Depld, DepName, DepEmpNumber

CHAIR i r,i,ud MAJOR l | ri,u, d

Chrld, ChrName, ChrEmpNumber Magjld, MajName

Fig. 7. UNIVERSITY ORGANIZATION form type

It consists of four component types: FACULTY, DEPARTMENT, CHAIR and
MAJOR, where each component type models the same-named entities belonging to
organizational parts of a university. Just for the sake of simplicity, let us suppose
that it is the only form type of the modeled information system. The algorithms for
transformation of a set of form types generate the following relation schemes given
in the form N(R, K), where N is the name of the relation scheme, R is the set of
attributes and K is the set of keys:

o Fuaculty({Facld, FacName, FacShortName, FieldOfScience}, { Facld});
e Department({Facld, Depld, DepName, DepEmpNumber},
{Facld + Depld});
o Chair({Facld, Depld, Chrld, ChrName, ChrEmpNumber },
{Facld + Depld + Chrld}); and
o Major({Facld, Depld, Majld, MajName}, { Facld + Depld + Majld}).
Since UNIVERSITY ORGANIZATION is the only form type, its set of corre-
sponding relation schemes Sg contains all generated relation schemes.
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By extending the main idea presented in [2], we have developed an algorithm for
model-to-model transformation of component type check constraints into relational
check constraints. According to the algorithm, a component type check constraint
may be transformed into a check constraint belonging to one relation scheme, but
also it may span multiple relation schemes in the relational database schema. If
a check constraint spans multiple relation schemes, it becomes an interrelation con-
straint. We have found the similar feature present in [19, 20] only, but not in popular
or widely used CASE tools.

Relation schemes spanned by a check constraint are further denoted as con-
text relation schemes of the constraint. We also denote a set of all context rela-
tion schemes of a check constraint as Scc. For each check constraint, Soc must
preserve a lossless join in order to preserve semantics of the PIM specified check
constraint.

The rest of this section is organized as follows. In order to introduce the al-
gorithm, we present in Section 4.1 the notions of lossless join of relation schemes,
a closure graph and a set of minimal nodes of a form type. The algorithm for
model-to-model transformation of component type check constraints into relational
check constraints is introduced in Section 4.2. Transformations of check constraint
logical expressions into its conjunctive and disjunctive normal forms are given in
Section 4.3.

4.1 Preliminary Notions

We assume that a reader is familiar with the relational data model at the level
of [34]. However, to improve the readability, in the following text we present some
well-known notions of relational data model. A relational database schema can
be formally represented by a single relation scheme, called the universal relation
scheme. As argued in [34], as well as in [35] and [33], such scheme is prone to the
update anomalies because of the redundant information contained in tuples of the
universal relation. In order to prevent update anomalies, universal relation scheme
is decomposed into set of smaller relation schemes whose relations do not contain
redundant data. Thereby, we obtain a relational database schema.

The decomposition is not performed in an arbitrary manner. The relations
obtained by the decomposition need to produce back the tuples of the universal
relation when natural join operation is applied over them. The relations that satisfy
this condition possess the lossless join property. The word “lossless” in this case
does not denote the loss of the tuples of the universal relation, but the loss of
information, since the natural join operation can create more tuples than there are
in the universal relation.

Formally, the lossless join property is defined in [34] as follows. A decomposition
D = {Ny(Ry, K1), N2(R2, K3), ..., Njo(Rom, Ki) } of & relation scheme N (R, K) has
the lossless join property with respect to the set of functional dependencies I on R
if, for every relation r of N(R, K) that satisfies I, the following holds, where < is
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the natural join of all the relations in D:
I (Ry(7),...,Rn(r)) =7

, where R;(r) denotes the projection of relation r to the set of attributes R;.

A closure of a set of attributes X is the set of attributes that functionally depend
on X, with respect to a set of functional dependencies. We also say that X is closed
by its closure or that X functionally determines its closure. Formally, the closure of
a set of attribute X, with respect to a set of functional dependencies I', is a set of
attributes

X =AX - AeTlt,

where I'" is the set of all functional dependencies that can be inferred from T'.

A closure graph is a directed graph where each node represents a relation scheme,
generated by the synthesis algorithm. Each directed edge represents the fact that
the set of attributes of superior relation scheme closes the set of attributes of subor-
dinated relation scheme, with respect to the set of functional dependencies inferred
from the set of all form types. Normally, each edge corresponds to a referential
integrity constraint between the connected nodes, since a proper or improper subset
of a key of a subordinated node is propagated as a foreign key into a superior node.
In the following example we illustrate the notion of a closure graph.

Example 2. For the form type UNIVERSITY ORGANIZATION from Figure 7,
closure graph generated by IIS*Case is given in Figure 8. Relation schemes Major
and Chair are linked to Department since each of them closes Department relation
scheme. Likewise, Department closes Faculty relation scheme.

Chair Major

Department

:

Faculty

Fig. 8. Closure graph of the UNIVERSITY ORGANIZATION form type

In this example, graph edges correspond to the following referential integrity
constraints:
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e Department|[Facld) C Faculty|Facld);
o Chair[(Facld, Depld)] C Department|(Facld, Depld)]; and
o Major|[(Facld, Depld)] C Department|(Facld, Depld)].

The closure graph is introduced and discussed in [2, 16]. In [33], the closure graph
is defined as graph (S, ¢), where a set of relation schemes S = N;(R;, K;)|i =1,...,n
is given, and a relation ¢ is defined in S? as

¢ = (Ni(Ri, Ki), N;(R;, K)) € S?|Rj C (R)¢t
A (YNi (R, Ki) € (S\{Ni(R;, K;), Nj(R;, K;)}))(R; & (Ri)f V Ri & (Ri)T),

In our proposed algorithm, we utilize the following two facts about the closure
graph:

1. the set of attributes of a node closes sets of attributes of all subordinated nodes,
and

2. two nodes connected in the closure graph represent two relation schemes pre-
serving the lossless join.

For the sake of simplicity in the following text, we say that relation scheme
Ni(R;, K;) closes relation scheme N;(R;, K;) if the set of attributes R; closes the
set of attributes R;. Also, we say that a relation scheme N (R, K) closes a set of
attributes X if the set of attributes R closes X. The set of minimal nodes of a form
type is a minimal subset of S, such that belonging relation schemes close all other
relation schemes in Sp. We denote this set as SMN . The SMN g is minimal if
there is no smaller subset of Sr with the same property. Formally, the set SMN r is
defined as

SMNp = {N;(Ri, K;) € Sp | V(N;(R;, K;) € (Sp\N; = (Ri, K;))),
(N;(R;, K;), Ni(R;, K;)) € )},

where ¢ is the relation of the closure graph (S,¢). The algorithm for generation of
SMN is given in [2].

In Example 1, relation schemes Major and Chair are the minimal nodes of the
UNIVERSITY ORGANIZATION form type.

4.2 Algorithm for Transformation of Component Type Check Constraint

The algorithm transforms a component type check constraint into a relational check
constraint. It is applied for all component type check constraints specified at the
level of PIM of form types. Inputs of the algorithm are the set of relation schemes
corresponding to form type Sg, the set of minimal nodes of form type SMN g, closure
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graph (5, ), and the check constraint logical expression LEcc. The result of the
algorithm is a set of context relation schemes of the modeled constraint Sce that
preserves a lossless join. Since each component type check constraint is defined in
the scope of a form type, Scc must be a subset of Sp. The algorithm consists of
the following three steps.

Step 1. The first step is to find a relation scheme in Sg, which closes all attributes
referenced by LE ¢ such that none of its subordinated relation schemes in the
closure graph has the same property. This relation scheme is named the mini-
mal node of a check constraint. The selection of the minimal node of a check
constraint is mandatory to preserve the lossless join of Sce, as proven in [33].

The union of closures of all schemes from SMN g contains all form type attributes
and consequently must contain all attributes referenced by LEcc. Hence, the
algorithm finds the minimal node of a check constraint by checking all relation
schemes of SMN g and searching for a relation scheme that closes all attributes
of LEcc. When such relation scheme is found, we further check all its subordi-
nated relation schemes in the closure graph for the same property and the step
repeats recursively until none of the subordinated relation schemes satisfies the
condition. The purpose of these steps is to skip all unnecessary relation schemes
from Sg while preserving the lossless join of the Sc¢.

Step 2. The next step is to determine all relation schemes that are referenced by
the check constraint. It is done by finding relation schemes from Sg that have
a non-empty intersection with the set of attributes used in LE¢¢. These relation
schemes are called the relevant schemes or relevant nodes.

Step 3. Finally, we find paths in the closure graph from the minimal node of the
check constraint to the relevant nodes. These paths provide the lossless join
between the minimal node and the relevant nodes, i.e. the lossless join between
all relation schemes from Sce. The nodes belonging to the paths are called
the necessary nodes. Since the minimal node closes all attributes of LE ¢,
the relevant nodes are subordinated to the minimal node in the closure graph.
Hence, the search for necessary nodes is done by the modified breath-first search
in the closure graph starting from the minimal node of a check constraint and
moving in the direction of graph edges. At each level of the closure graph, nodes
that lead to the relevant nodes are denoted as candidates for the necessary nodes.
From the candidates, the algorithm chooses their smallest subset that leads to
all relevant nodes and denotes them as the necessary nodes. Only the nodes
subordinated to the selected ones are included in the subsequent search. The
search terminates when it reaches all relevant nodes.

The output of the algorithm See is the union of the minimal node of check
constraint, the set of relevant nodes and the set of necessary nodes. The semantics
of the modeled check constraint is preserved by the lossless join of Sge. By this,
we guarantee that the check constraint logical expression is satisfied by the natural
join of relations over the schemes from Scc.
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For a better understanding how our algorithm works, we give one simple example
in Example 3 and a bit more complex example in Example 4.

Example 3. We specify a check constraint in the form type UNIVERSITY ORGA-
NIZATION from Example 1 with the following meaning: “The number of employees
of a department has to be greater than the number of employees of any belonging
chair.”
At the PIM level, this check constraint is specified in the Chair component type
as:
DepEmpNumber > ChrEmpNumber.

Our algorithm starts with finding the minimal nodes of the check constraint. In
this case, the relation scheme Chair has to be the minimal node since

1. it is also the minimal node of the UNIVERSITY ORGANIZATION form type,
2. it closes all attributes referenced by the check constraint logical expression, and

3. there are no subordinated schemes whose closure contains all attributes from
the check constraint.

Moreover, the only relevant relation scheme is Department, since together with Chair
it contains all needed attributes. Since these two relation schemes are already con-
nected in the closure graph, there is no need to find paths between them, and the
relation schemes Chair and Department are the result of the algorithm.

Example 4. In the score of the form type UNIVERSITY ORGANIZATION from
Example 1, we define another check constraint that imposes the following business
rule:  “If the field of science of a faculty is “Engineering”, the identifier of each
major at the faculty is between 101 and 1000.”

This could be a business rule of a university information system. It is specified
in the Major component type as

(FieldOfScience =='Engineering') = (MajID >= 101 A MajID <= 1000).

By using the same criteria as in Example 3, the algorithm denotes Major as the
minimal relation scheme of the check constraint and Faculty as the relevant. By do-
ing the breath-first search along the closure graph edges from Figure 8, starting from
the Major node with Faculty as the goal, the algorithm also finds the Department
scheme and adds it to the resulting set of schemes.

The algorithm is presented in Figure 9, in a form of pseudo-code. Transform-
CheckConstraint is the main process just encompassing the calls of three processes,
where each of them corresponds to exactly one algorithm step. The first two pro-
cesses are also presented in a form of pseudo-code in Figures 10 and 12, while the
third one is presented in [2], in detail. In the algorithm from Figure 9, all the va-
riables except MNce, SRNce and SNNoe have the same meaning as defined earlier
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PROCESS PROCESS TransformCheckConstraint
(I(Sk, (S, ¢), SMNk, LEcc), O(Scc), 10( )
BEGIN TransformCheckConstraint
CALL CheckConstraintMinimalNode (Sg, SMNg, (S, ¢), LEcc, MNoc)
CALL CheckConstraintRelevantNodes (Sz, LEcc, SRNcc)
CALL CheckConstraintNecessaryNodes
(SF, (S, ¥), MNoc, SRNoe, SNNoc)
SET Scc < MNgoc U SRNoe U SNNee
END PROCESS TransformCheckConstraint

Fig. 9. Algorithm for transformation of a component type check constraint

in the text. MNgc denotes the minimal node of the check constraint, while SRN¢cc
and SNNg¢ denote sets of relevant and necessary nodes, respectively.

The process CheckConstraintMinimalNode from Figure 10 searches for the mini-
mal node of a check constraint. All variables used in the pseudo-code, except
Attr(LEcc) and T, are defined earlier in the text. With Attr(LEc¢), we denote the
set of attributes referenced by the check constraint. The set of functional depen-
dencies inferred from all form types of the modeled information system is denoted
with T

To elaborate the correctness of the CheckConstraintMinimalNode process, we
outline the main steps of relational database schema generation in IIS*Case. The
main steps of transformation of a set of form types into a set of relation schemes
are inferring functional dependencies from the form types and applying the modified
Bernstein’s synthesis algorithm over them, as presented in [33], in detail. Thereby,
the transformation infers at least one functional dependency from each component
type. Since a form type is a tree structure of component types, the left hand side of
such functional dependency is a union of keys of component types belonging to the
path from the root component type to the component type from which functional
dependency is inferred.

Let us observe a set of relation schemes produced by the modified synthesis
algorithm. For each relation scheme from this set, the algorithm provides that it
corresponds to at least one component type of a form type. We call it a corresponding
component type for the relation scheme. Furthermore, it holds for each key of such
relation scheme and its corresponding component type that the relation scheme key
is a union of the keys of all component types belonging to the path from the root
component type to the corresponding component type. Also, the algorithm provides
that for each component type of a form type there will be a relation scheme whose
keys close the set of attributes of the component type, as well as all its superordinated
component types in the form type tree.

A component type check constraint can only reference attributes of the compo-
nent type it is defined at, and possibly attributes of the superordinated component
types in the form type tree. By the previous considerations, we conclude that there
is always at least one relation scheme that closes all attributes referenced by the
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PROCESS CheckConstraintMinimalNode
(I(Sk, SMN . (S, ¢), LEcc), O(MNcc), 10())
BEGIN PROCESS CheckConstraintMinimalNode
SET Cand + SMN
DO FindMinimalNode
SET Found < FALSE
DO CheckCandidates (VN;(R;, K;) € Cand)
IF (Attr(LEcc) C (R;){) THEN
SET MNCC «— NL(RL, Kz)
SET Found < TRUE
EXIT CheckCandidates
END IF
END DO CheckCandidates
IF Found THEN
CALL Subordinated(MNcc, Sr, (S, ), Cand)
ELSE
EXIT FindMinimalNode
END IF
END DO FindMinimalNode
END PROCESS CheckConstraintMinimalNode

Fig. 10. Process for finding the minimal node of a check constraint

check constraint. By this, relation schemes satisfying this property are candidates
for the minimal node of the check constraint. Furthermore, at least one of them has
to belong to Sg since functional dependencies inferred from the form type are also
used by the algorithm. In other words, such relation scheme belongs to the set of
minimal nodes of the form type or has to be subordinated to one of them. By this
conclusion we prove the correctness of the step for searching the minimal node of
a check constraint.

In Figure 11, we present the Subordinated process purposed to select directly
subordinated nodes in the closure graph. All variables used in the pseudo-code are
defined previously in the text. The process selects only nodes that belong to Sg
because they correspond to the form type in the scope of which the check constraint
is defined. Correctness of the Subordinated process is a consequence of the defini-
tion of the closure graph given in Section 4.1. For each node N;(R;, K;) given as
an input, each relation scheme from S is checked just once. Hereby, we estimate
the complexity of the process as O(n).

The loop FindMinimalNode of the process CheckConstraintMinimalNode from
Figure 10 is executed only on a part of the closure graph (S, ¢), which is subordi-
nated to SMN . We denote with k the number of the loop executions. Since each
processed node is checked only once, it follows that & < |S| = n holds. In each
loop execution, the Subordinated process is called. By this, the complexity of the
CheckConstraintMinimalNode process is estimated to O(n?).
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PROCESS Subordinated (I(N;(R;, Ki), S, (S, %)), O(Sres), I0())
BEGIN PROCESS Subordinated
SET Syes < @
DO FindSubordinatedNodes(VN;(R;, K;) € Sr)
IF ((Ni(Ri, K;), N;(R;, K;)) € ¢) THEN
SET S,es < Spes U {Nj(Rj, KJ)}
END IF
END DO FindSubordinatedNodes
END PROCESS Subordinated

Fig. 11. Process for selecting subordinated nodes in the closure graph

The CheckConstraintRelevantNodes process is presented in a form of pseudo-
code in Figure 12. All variables used in the pseudo-code are already introduced in
the previous text.

PROCESS CheckConstraintRelevantNodes
(I(SFk, LEcc), O(SRNce), 10( 1))
BEGIN PROCESS CheckConstraintRelevantNodes
SET SRNCC — 0
DO FindRelevantNodes(VN;(R;, K;) € Sr)
IF (R; U Attr(LEcc) <> @) THEN
SET SRNCC — SRNCC U {M(R“ KZ)}
END IF
END DO FindRelevantNodes
END PROCESS CheckConstraintRelevantNodes

Fig. 12. Process for selecting relevant nodes of a check constraint

This process identifies the relevant nodes of a check constraint by testing each
relation scheme corresponding to the form type encompassing the check constraint.
The process tests if the set of attributes of the relation scheme intersects with the set
of attributes referenced by the check constraint. If the test is positive, the relation
scheme is considered as relevant. Since the loop FindRelevantNodes is executed
once for each relation scheme corresponding to the form type, the complexity of this
algorithm step is O(n).

The CheckConstraintNecessaryNodes process is taken in its original form
from [2], where it is presented with a detailed proof of its correctness. Also in [2], its
complexity is assessed to O(n?). Since all processes called from the TransformCheck-
Constraint process are correct, we conclude that the algorithm for transformation
of a component type check constraint is also correct. Also, we conclude that the
complexity of our proposed algorithm is O(n*) since each algorithm step is executed
only once.
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4.3 Transformation of Check Constraint Logical Expression

The logical expression of a domain, attribute and component type check constraints
in the PIM of form types is introduced and defined using grammars given in Fi-
gures 1, 2 and 4, respectively. The transformation of a check constraint logical
expression is the same for logical expressions of domain, attribute and component
type check constraints. Therefore, in the following text we refer only to the logical
expression without differentiating the type of a check constraint it is a part of.

As a part of the PIM to PSM transformation of check constraints, the logical ex-
pression is transformed into its disjunctive (DNF) or conjunctive normal form (CNF)
using the logical equivalences from propositional calculus: replacement of implica-
tion and equivalence with negation, conjunction and disjunction, double negation,
De Morgan’s laws and distribution laws ([36, 37]). The resulting logical expression is
defined by the same grammar as the starting one, with a difference that equivalence
(¢<) and implication (=) operators are not allowed.

This transformation is necessary to provide the SQL code generation, since tar-
geted SQL platforms do not recognize implication and equivalence logical operations.
On the other hand, they are allowed in PIM specifications of check constraints.

In addition, this transformation is also necessary to provide semantic comparison
of check constraints and automatic identification of conflicts between PIM modeled
check constraints, which is a matter of our future research work.

For example, the logical expression of the check constraint specified in Example 4
is transformed into its DNF:

—(FieldOfScience ==' Engineering’) V (MajID >= 101 A MajID <= 1000),
or its CNF:

(—(FieldOfScience ==" Engineering') V MajID >= 101)
A (=(FieldOfScience ==" Engineering’) V MajID <= 1000).

5 GENERATION OF THE EXECUTABLE CODE
OF CHECK CONSTRAINTS

On the basis of designed database schema, SQL generator of IIS*Case currently
provides generation of SQL/DDL code for the following RDBMS platforms: ANSI
SQL-2003 standard, Oracle 9i and 10g, and MS SQL Server 2000 and 2008 RDBMSs.
During the research presented in this paper, we have extended the SQL generator
with model-to-code transformations that provide generation of SQL/DDL code for
relational check constraints for all supported platforms. SQL/DDL patterns and
supplementary procedures used for code generation are presented in the following
text. The input specifications for the generator of check constraints are the results of
the model-to-model transformations presented in the previous section, i.e. a closure
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graph, logical expression of the check constraint LEc¢ as well as a domain specifi-
cation, attribute specification, or a set of context relation schemes Sc¢ in a case of
domain, attribute, or component type check constraint, respectively.

In Section 5.1, we present the generation of domain and attribute check con-
straints. The generation of relation scheme check constraints is presented in Sec-
tion 5.2.

5.1 Generation of Domain and Attribute Check Constraints

According to the ANSI standard, domain check constraints are defined declaratively
by using CREATE DOMAIN statement with CHECK clause. The SQL/DDL pat-
tern for this purpose is given in Figure 13.

CREATE DOMAIN <constraint_name>
AS <data type> CHECK (<logical expression>);

Fig. 13. SQL/DDL pattern for domain check constraint for ANSI SQL-2003 standard

By <logical expression> we specify the logical expression of a check constraint
with a name given by <constraint name> By <data type> we associate a data
type to the domain in the scope of a target platform.

On the contrary, Oracle and MS SQL Server RDBMSs do not provide CRE-
ATE DOMAIN statement. Therefore, domain check constraints are generated as
column level check constraints by using the CHECK clause. The pattern is given
in Figure 14. Terms <table_name> and <attribute_name> denote relation scheme
and attribute names, respectively. The same pattern is also used for generation of
attribute check constraints for all platforms.

CREATE TABLE <table_name> (

<attribute name> <data type> CHECK (<logical expression>),

Fig. 14. SQL/DDL pattern for attribute check constraint for all platforms

At the level of PIM model, we may have both a domain and an attribute check
constraint related to the same attribute. Also, it is possible to assign attribute
check constraints both to a domain and its inherited domain. In all such situations,
the same SQL/DDL pattern is used, while <logical expression> of the pattern is
generated by concatenating logical expressions of all relevant check constraints with
AND logical operator. Consequently, the only one CHECK constraint is generated
per one attribute, with a <logical expression> consisting of AND-concatenated
related logical expressions specified at the level of a PIM.
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Example 5. Let us observe a PIM domain constraint NOT_NEG_NUM , which
inherits NUM BER built-in data type and constrains it to the positive numbers
only by the following check constraint:

VALUE >= 0.

At the level of a PIM, NOT_NEG_NUM is assigned to a PERCENTAGE
attribute, for which there is a check constraint specified by the logical expres-
sion

PERCENTAGE <= 100.

Let us further assume that PERCENTAGE is assigned to the EXAMS relation
scheme by the model-to-model transformations. To implement the specifications of
NOT_NEG_NUM and PERCENTAGE with their check constraints, the generators
for Oracle or SQL Server platforms finally produce SQL/DDL code as is given in
Listing 1.

CREATE TABLE EXAMS (

PERCENTAGE NUMBER
CHECK (PERCENTAGE>=0 AND PERCENTAGE<=100),

)

Listing 1. DDL code for PERCENTAGE attribute, generated for Oracle and MS SQL
Server

In a case of the ANSI standard, the generated SQL/DDL code is slightly dif-
ferent since NOT_NEG_NUM domain is specified explicitly, as illustrated in List-
ing 2.

CREATE DOMAIN NOT_NEG_NUM AS NUMBER CHECK (VALUE>=0);
CREATE TABLE EXAMS (

PERCENTAGE NOT_NEG_NUM CHECK (PERCENTAGE<=100),

)

Listing 2. DDL code for NOT_NEG_NUM domain and PERCENTAGE attribute, gene-
rated for ANSI SQL-2003 standard
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5.2 Generation of Relation Scheme Check Constraints

For the generation of component type check constraints, we differentiate two cases:

1. single relation scheme check constraints — having only one context relation
scheme, and

2. multiple relation schemes check constraints — spanning multiple context relation

schemes.

The pattern for a single relation scheme check constraint has the same form for all
platforms, given in Figure 15.

ALTER TABLE <table_name> ADD
CONSTRAINT <constraint name> CHECK (<logical_expression>);

Fig. 15. SQL/DDL pattern for single relation scheme check constraints for all platforms

The SQL/DDL pattern for check constraints spanning multiple relation schemes
is more complex since such check constraints cannot be fully declaratively specified.
Despite that multiple relation scheme check constraints are generated for the ANSI
platform using the declarative mechanism of assertions, the natural join of context
relation schemes cannot be created declaratively. On the contrary, Oracle and SQL
Server do not support assertions. Therefore, multiple relation scheme check con-
straints are implemented using triggers on context relation schemes. The details
regarding the code generation are given in the rest of the section.

The first step in generation of multiple relation scheme check constraints, com-
mon to all targeted platforms, is to generate the natural join expression for relation
schemes from Sgc. Since attributes in IIS*Case are defined according to the URSA
rule, the same-named attributes in two different relation schemes have the same se-
mantics and by making equality expression between the same-named attributes we
specify the appropriate join conditions. Thus, the natural join expression for a set
of relation schemes is created by making equality expressions between same-named
attributes in each pair of relation schemes that are directly connected in the clo-
sure graph, and joining those expressions with AND logical operators. We join only
relation schemes that are directly connected in the closure graph in order to avoid
generation of transitive and redundant join conditions. The EBNF of the natural
join expression is given in Figure 16.

natural_join_expression =
table name.attribute name ’=’ table name.attribute name
{’AND’ table name.attribute name ’=’ table name.attribute name};

Fig. 16. Natural join expression in EBNF notation

In the subsequent patterns, we use a term 1list_of_context _relation_schemes
specifying the list of the context relation schemes of a check constraint Sc¢, as given
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in Figure 17, in EBNF notation.

‘ list_of _context_relation_schemes = table_name {’,’ tablemame};

Fig. 17. The list of context relation schemes of a check constraint in EBNF notation

The ANSI SQL-2003 standard provides declarative mechanisms for defining lo-
gical conditions of constraints at the level of database schema. For these purposes,
the CREATE ASSERTION statement is used. We also use it to generate check
constraints spanning multiple relation schemes according to the patterns given in
Figure 18. The logic of the pattern is to count the tuples of the natural join of
relations over S¢e that do not satisfy the logical expression of the check constraint.
To satisfy the check constraint, the number of such tuples has to be zero.

CREATE ASSERTION ASSERT <constraint_name> CHECK(
(SELECT count(*) FROM <list_of_context_relation_schemes>
WHERE <natural_join expression>
AND NOT(<logical_expression>)) = 0);

Fig. 18. SQL/DDL pattern for multiple relation schemes check constraint for ANSI stan-
dard

To implement the same logic under Oracle 9i/10g RDBMSs and MS SQL Server
2000/2008 RDBMSs, triggers with procedural capabilities have to be used, since
these RDBMSs still do not provide CREATE ASSERTION statement. More pre-
cisely, a separate trigger has to be defined over each relation scheme from Sc¢, which
validates inserted or updated tuples against the constraint. Similar approach may be
found in [20] with a difference regarding the performance optimization. The authors
in [20] check all tuples of relations over Scc at each insert or update operation over
these relations. On the other hand, we check only newly inserted or updated tuples
by joining only them with other relations from Sc¢ and validating the resulting
tuples against the check constraint logical expression. The deleted tuples are not
checked by the trigger since deletion cannot violate the check constraint in any way.

In Oracle 9i/10g RDBMSs, it is technically achieved by modifying the natural
join expression and check constraint logical expression used in previous pattern
for the ANSI standard. We modify both expressions by replacing the name of the
context relation scheme of the trigger with :NEW pseudo-record, in order to reference
only the current tuple being processed by the trigger. The resulting expressions are
denoted simply as the modified natural join expression and modified check constraint
logical expression, respectively.

Also, the context relation scheme of the trigger is removed from the list of the
context schemes in order not to check all tuples of the corresponding relation. We de-
note such list as the reduced list of context relation schemes. The pattern for the pro-
posed trigger is given in Figure 19, where reduced list of the context relation schemes,
modified natural join expression and modified check constraint logical expression are
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denoted as <reduced list_of_context_schemes>, <natural_join expression_-
with :NEW>, and <logical expression with :NEW>, respectively.

CREATE OR REPLACE TRIGGER TRG <constraint name>
BEFORE INSERT OR UPDATE ON <table_name>
FOR EACH ROW
DECLARE cnt INT;
exc EXCEPTION;
BEGIN
SELECT count(*) INTO cnt FROM <reduced_list_of_context_schemes>
WHERE <natural_join_expression_with_:NEW>
AND NOT(<logical expression with :NEW>);

IF cnt<>0 THEN
RAISE exc;
END IF;
EXCEPTION
WHEN exc THEN
RAISE_APPLICATION_ERROR (-20900, ’Check constraint violated’);

END

Fig. 19. SQL/DDL pattern for check constraint trigger for Oracle platform

In a case the number of tuples that do not satisfy the logical expression of the
check constraint is not equal to zero, an exception is raised and the complete DML
statement firing the trigger is rolled back.

The same logic is used for the generation of such kind of check constraints in
MS SQL Server 2000/2008 RDBMS. However, details of technical implementation
are different, because:

1. the Inserted table is used instead of :NEW pseudo-record for creating the mo-
dified natural join expression and modified check constraint logical expression,
and

2. the context relation scheme of a trigger is replaced with the Inserted table,
instead of reducing the list of context relation schemes. Thereby, we obtain the
modified list of context relation schemes.

The pattern for MS SQL Server triggers is shown in Figure 20. The modified list
of context relation schemes, modified natural join expression and modified check con-
straint logical expression are denoted as <list_of_context_schemes with_Insert-
ed>, <natural join expression with Inserted>, and <logical expression wi-
th Inserted>, respectively.

In the following text, we give two examples of generated SQL/DDL code for the
check constraints specified in the Examples 3 and 4.
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CREATE TRIGGER TRG_<constraint_name>
ON <table_name>
FOR INSERT, UPDATE

AS
DECLARE @cnt INT

SELECT @cnt=count (*) INTO cnt
FROM <list_of_context_schemes with_Inserted>
WHERE <natural_join_expression_with_Inserted>
AND NOT(<logical expression with Inserted>)

IF (@cnt<>0)
BEGIN
RAISERROR(’Check constraint violated’,16,1)
ROLLBACK TRAN
END
GO

Fig. 20. SQL/DDL pattern for check constraint trigger for MS SQL Server platform

Example 6. We present the SQL/DDL code for the check constraint specified and
transformed into the relational data model in Example 3, generated for the ANSI
SQL-2003 standard and Oracle 9i/10g RDBMS. The SQL/DDL code for MS SQL
Server platform is omitted since it is very similar to the code for Oracle platform,
and is available upon request.

According to the ANSI SQL-2003, the check constraint is implemented using
the CREATE ASSERTION statement (Listing 3). In the listing, the natural join
expression is bolded; the logical expression of the check constraint is given in the
typewriter font, whereas the list of context relation schemes is given in italics.

CREATE ASSERTION ASSERT_CHKC_DepCha CHECK(
(SELECT count(x) FROM Department, Chair
WHERE Chair.Facld=Department .Facld
AND Chair . Depld=Department . Depld
AND NOT (Department.DepEmpNumber >
Chair.ChrEmpNumber)) = 0);

Listing 3. The check constraint from Example 3 generated for ANSI SQL-2003 standard

For Oracle 9i/10g RDBMS, the check constraint is generated as an insert and
update trigger on Department and Chair relation schemes. The triggers are given
in Listing 4.

Here, the modified natural join expression is bolded, modified check constraint
logical expression is given in the typewriter font and the reduced list of context
relation schemes is given in italics. It should be noted that the context relation
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scheme of each trigger does not appear in the lists of context relation schemes, i.e.
in the FROM part of the SELECT statements. Instead, the tuples of other context
relations of the check constraint are joined with the :NEW pseudo-record, i.e. with
the inserted or updated tuple.

CREATE OR REPLACE TRIGGER TRG_CHKC_DepCha_Chair
BEFORE INSERT OR UPDATE ON Chair
FOR EACH ROW
DECLARE cnt INT;
exc EXCEPTION;
BEGIN
SELECT count (%) INTO cnt FROM Department
WHERE :INEW.Facld=Department.Facld
AND :NEW.Depld=Department . Depld
AND NOT(Department.DepEmpNumber>:NEW.ChrEmpNumber );
IF cnt<>0 THEN
RAISE exc;
END IF;
EXCEPTION
WHEN exc THEN
RAISE_APPLICATION_ERROR (—20900,
’Check constraint violated’);
END;

CREATE OR REPLACE TRIGGER TRG_CHKC_DepCha_Department
BEFORE INSERT OR UPDATE ON Department
FOR EACH ROW
DECLARE cnt INT;
exc EXCEPTION;
BEGIN
SELECT count(*) INTO cnt FROM Chair
WHERE :NEW.Facld=Chair.Facld AND :NEW.Depld=Chair .Depld
AND NOT(:NEW.DepEmpNumber>Chair.ChrEmpNumber );
IF cnt<>0 THEN
RAISE exc;
END IF;
EXCEPTION
WHEN exc THEN
RAISE_APPLICATION_ERROR (—20900,
’Check constraint violated’);
END;

Listing 4. Oracle triggers generated for the check constraint from Example 3

Example 7. The check constraint from Example 4 is generated for ANST SQL-2003
platform with the CREATE ASSERTION statement (Listing 5). It can also be
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noticed here that the logical expression of the check constraint (typewriter font) has
been transformed into DNF, since the ANSI standard does not support implication
as a logical operation.

CREATE ASSERTION ASSERT_CHKC_DepMajFac CHECK(
(SELECT count(*) FROM Department, Major, Faculty
WHERE Department . Facld=Major . Facld

AND Department . DepId=Major . Depld

AND Department . Facld=Faculty.Facld

AND NOT((NOT(Faculty.FieldOfScience=’Engineering’))
OR(Major.MajID>=101
AND Major.MajID<=1000))) = 0)

Listing 5. The check constraint from Example 4 generated for ANSI SQL-2003 standard

On the other hand, the same check constraint is generated for Oracle platform
as insert and update triggers on Major, Department and Faculty relation schemes.
In Listing 6, we give only the trigger for the Major table, since other two triggers are
similar. The modified natural join expression is bolded, modified check constraint
logical expression is given in the typewriter font and the reduced list of context
relation schemes is given in italics.

CREATE OR REPLACE TRIGGER TRG_CHKC_DepMajFac_Major
BEFORE INSERT OR UPDATE ON Major
FOR EACH ROW
DECLARE cnt INT;
exc EXCEPTION;
BEGIN
SELECT count (%) INTO cnt FROM Department, Faculty
WHERE Department . Facld=Faculty.Facld
AND :NEW. Facld=Department . Facld
AND :NEW.Depld=Department . Depld
AND NOT((NOT(Faculty.FieldOfScience=’Engineering’))
OR (:NEW.MajID>=101 AND :NEW.MajID<=1000));

IF cnt<>0 THEN
RAISE exc;
END IF;
EXCEPTION
WHEN exc THEN
RAISE_APPLICATION_ERROR (—20900,
’Check constraint violated’);

END;

Listing 6. Oracle trigger on Major table for the check constraint from Example 4
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6 CONCLUSION

In this paper we have presented the algorithms for transformation of check con-
straint PIM specifications into check constraints defined in the relational data model
and generation of executable SQL/DDL code for the modeled check constraints for
several standard and commercial platforms. By the MDA terminology, we have de-
veloped model-to-model transformations from PIM to PSM specifications of check
constraints, as well as model-to-code transformations of check constraints from the
relational data model into the executable code. We have also implemented the pro-
posed transformation algorithms into the MDSD tool IIS*Case, and verified their ap-
plicability and validity in a case study. We extended the SQL generator of IIS*Case
with a new functionality to produce the executable SQL/DDL code using the pro-
posed patterns. To the best of our knowledge, by this we have created a convenient
and user-friendly for platform independent and tool-supported development of check
constraints.

During the research presented in this paper and its implementation, we have also
identified several directions for future research. Development of complex information
systems is always a demanding and team-oriented process, where each designer
models only a part of the information system from his or her point of view and field
of expertise. We have already developed algorithms for an automatic consolidation of
independently developed segments of an information system and creation of a unified
database schema of the information system as a whole. These algorithms are capable
of identifying formal conflicts and assisting in resolving semantic conflicts at the
level of relation schemes, sets of attributes, key constraints, as well as some other
constraints. However, check constraints are not currently supported. One of the
future research tasks is to provide algorithms for the consolidation of independently
modeled check constraints, as well as the assistance in identification and resolution
of semantic conflicts.

Such algorithms need to impose the following rules over the modeled check
constraints. Each check constraint modeled at the level of an information system
segment has to be equal to or stronger than the corresponding check constraint at
the level of the unified database schema. Also, a check constraint at the level of
the unified database schema has to be a logical consequence of all corresponding
check constraints modeled at the level of information system segments. To test
the satisfaction of the aforementioned rules the resolution method ([36]) may be
applied. For example, to test the satisfaction of the second rule, we will consider the
check constraints at the level of information system segments as premises, while the
check constraint at the level of the unified database schema is the conclusion. By
transforming check constraint logical expressions into CNF, we have created a formal
basis for applying the resolution method.

A future research task is also to extend the current functionalities of auto-
matic generation of check constraints by the coverage of user-defined functions (with
rather complex functionality, often including various SQL SELECT or even DML
statements) and their PIM specifications. As far as we know, this feature is not
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supported by the existing DBMSs directly. The most challenging issue in such a re-
search is that the results of user-defined functions may depend on the state and
updates of other database relations, not referenced directly by the check constraint
being validated.

Currently IIS*Case implicitly provides modeling business rules that result in
specifications of various database constraints, including check constraints. In order
to extend the modeling capabilities for business rules, we are to consider various
business rule technologies suitable for those purposes, as well as applying the modal
logic concepts ([38]).

Taking into account a large extent of the usage of check constraints both in
academic and industrial environments at one hand side, as well as the existing open
questions at the other, we believe that further research efforts regarding the check
constraints are fully justified.
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