
Computing and Informatics, Vol. 29, 2010, 823–847

THE APPLICATION OF SPIKING NEURAL
NETWORKS IN AUTONOMOUS ROBOT CONTROL

Peter Trhan

Department of Computer Science

Faculty of Natural Sciences, University of Matej Bel

Tajovského 40, 974 01 Banská Bystrica, Slovakia

e-mail: petertrhan@pobox.sk

Manuscript received 4 September 2008; revised 18 November 2008

Communicated by Vladimı́r Kvasnička

Abstract. Artificial neural networks have a wide range of applications nowadays
in which they are used for intelligent information processing. This paper deals with
an application of spiking neural networks in autonomous mobile robot control. The
topology of the implemented spiking neural networks was developed through a mo-
dified genetic algorithm and through the process of autonomous interaction with

the scene environment. Since the genetic algorithm did not use a crossover operator
we adapted the mutation operator adding a constraint that prevented creation of
a new generation of population with weak individuals in comparison with the pre-
vious generation of population. The paper proposes a parallel combination of both
left and right local spiking neural network as well as a practical implementation of
this proposition in the form of an intelligent navigation system in an autonomous
mobile robot. This design enhances the implemented navigation system with a new
cognitive property of intelligent information processing using a spiking neural net-
work. Having been adapted to the scene environment, the navigation system was
able to make right decisions, change its direction and refrain from collision with the
scene walls.

Keywords: Spiking neural network, genetic algorithm, population, navigation sys-
tem, mobile robot, trajectory control



824 P. Trhan

1 INTRODUCTION

In our experiments the application of spiking neural networks for autonomous robot
control has been realized on a software basis. The proposed architecture, using
a parallel combination of two local spiking neural networks, is the core of the navi-
gation system of an autonomous robot. This model of the navigation system takes
its inspiration from biology, integrating evolutionary methods, neural networks and
hardware equipment. Moreover, the implemented navigation system is capable of
self-development through the interaction with the scene environment without hu-
man intervention. With these characteristics, the proposed system complies with
the principles and methodology of evolutionary robotics [17].

The proposed software implementation of the navigation system lends itself
to implementation in reconfigurable hardware devices such as EPGA (Field Pro-
grammable Gate Array) or PLD (Programmable Logic Devices). This kind of im-
plementation can be regarded as evolutionary hardware [19].

1.1 Examples of Applications of Neural Networks

in Intelligent Control Systems

Some interesting examples of the application of recurrent neural networks in au-
tonomous robot trajectory control were realized by Ziemke [27]. He compared and
evaluated four architectures of recurrent neural network, which he implemented in
the control system of a miniature robot named Khepera. The robot moved within
a rectangle-shaped scene measuring 1 by 0.6 meter. The recurrent neural network
received input information via 8 optical sensors with a range of 55 milimetres while
two output neurons controlled the movement of a left and a right engine. During
the adaptation of recurrent neural network to the scene environment, four start-
ing positions were randomly selected. The task of the recurrent neural network
was to control the movement of the robot without causing it to collide with the
walls of the scene and to park the robot in a designated zone. One of the sen-
sors evaluated the intensity of the reflected light within the scene and monitored
whether the robot reached the designated zone. The best results of the tested ar-
chitectures of recurrent neural networks were achieved by an extended sequential
cascaded network. In another series of experiments the author changed the envi-
ronment of the scene and made the task of the robot more challenging. He added
to the scene several circular signs, some within and others outside the designated
zone. In this case, the task of the robot was to avoid the signs outside the zone and
gradually pass over the signs within the designated zone. Similarly to the first series
of experiments, the best results were achieved by the extended sequential cascaded
network.

Researchers at the Laboratory of Intelligent Systems in Switzerland [14] have
been developing intelligent navigation systems for autonomous mobile robots for
a long time. The core of their navigation systems consists of neural networks,
which adapt to the scene environment through a genetic algorithm using autonomous



The Application of Spiking Neural Networks in Autonomous Robot Control 825

interaction of the system with its environment [6]. The Laboratory of Intelligent
Systems has been developing and experimentally testing the reliability of control
system prototypes which feature cognitive properties. Their systems are extensively
inspired by nature and draw especially on natural principles used by flying insects.
Currently, the Laboratory of Intelligent Systems is involved in the development of
intelligent flying robots, which boast low energy consumption and autonomous as
well as intelligent behavior. Previously, they implemented their navigation systems
into the miniature wheel robots named Kephera and Alice, a small airship named
Blimp2b and the ultra light airplanes C4 and F2 [28]. The most useful, from point of
view of our work, is the implementation of navigation systems in the wheeled robots
Khepera and Alice. The intelligent element of the navigation systems in these two
robots is a spiking neural network. The evolutionary development of the employed
spiking neural network within the scene environment took place without human
intervention. Experiments confirmed that this type of neural network is capable
of controlling the movement of a mobile robot without letting it collide with the
obstacles in the scene [4, 5].

Cellular neural networks are based on a different type of architecture and the
spatial location of its building units as well as on a different principle of signal trans-
mission among these units. The architecture and mathematical model of cellular
neural networks are designed for parallel processing of information. They perform
better in the cases where traditional methods are unable of delivering required speed
for parallel processing of information, e.g., when processing video signal in real time.
The cellular neural networks have been successfully applied to solving tasks in signal
processing, image processing (filtering of image information, edge and object detec-
tion, modeling optical flow, sign and object recognition, etc.); they have been used
to analyze 3D surfaces and solved differential equations [26].

The Computer and Automation Research Institute at the Hungarian Academy
of Science has been actively involved in the research in the field of cellular neu-
ral networks. Among other things, researchers there have analyzed spatial and
time qualities of movement, modeled optical flow and explored object recogni-
tion. In solving these tasks, they have successfully applied cellular neural net-
works. The knowledge acquired is implemented in the navigation systems of au-
tonomous mobile robots and airplanes. Their system is capable of detecting objects
by means of modeling optical flow from a sequence of images with low resolution
and, at the same time, it is able to recognize objects from images with high resolu-
tion [1, 20].

Having considered the above described three types of neural networks we de-
cided to apply a spiking neural network and implement it in a navigation system of
an autonomous robot. Our choice was influenced by the research results achieved
so far as well as by the availability of necessary hardware, which we needed for
implementation and for conducting experiments.



826 P. Trhan

1.2 Applied Hardware and Software

Currently, a financially affordable generation of robots is available on the market.
The use and programming of these robots do not require advanced knowledge in
robotics. What is more, these devices have light weight, low energy consumption,
easy maintenance, they use wireless communication and are equipped with basic
sensors.

Our proposed navigation system was designed to be used with the Lego Mind-
storms NXT robotics kit [15] (henceforth referred to as NXT). On the basis of our
experience we can say that the choice of this financially affordable robot for our
experiments was a correct one. The communication between our desktop computer
and the NXT robot took place via Bluetooth technology, which proved sufficiently
fast for this implementation of neural networks. The applications used with the
NXT were programmed in the Eclipse [3] freeware development platform using the
Java programming language and Java Runtime Environment (version 1.6) running
on the Windows XP 32 bit operational system.

The iCommand freeware library offers Java classes for controlling the NXT via
Bluetooth. This library works directly with the LEGO NXT firmware and we did
not have to substitute the original NXT firmware for the leJOS NXJ. The latter is
an interpreter of the platform-free Java bytecode for the NXT. Our implementations
of neural networks used iCommand, version 0.7 [16]. This technology enabled us to
create applications for the NXT in Java on a desktop computer while maintaining
robot mobility, i.e. we could use computing and memory capacity of the desktop
computer and made full use of robot features at the same time.

Figure 1 depicts the communication between the NXT and the desktop com-
puter. It represents the implementation of a parallel combination of the left and
right local spiking neural network, which receive coded information from ultrasonic
sensors. The communication takes place in real time via Bluetooth technology. The
transmission of information itself takes place during each sensory-control cycle of
networks activity as the system receives current information from the sensors and
directs the movement of the robot accordingly. The wireless information transfer is
shown as a dashed line. The applied type of communication does not limit mobility
of the robot. When activated, the proposed navigation system initiates commu-
nication between the desktop computer and the robot. Before becoming inactive,
communication is terminated. During operation, the navigation system is not ham-
pered by the communication, it is stable and, in case we need to access current data
from its sensor or to change robot direction, we can use the appropriate method
from the iCommand library.

All the implementations were carried out using one or two ultrasonic sensors
and one optical sensor. When using only one ultrasonic sensor, we placed it on
the front of the robot, in a forward direction of its movement. When two sensors
were used they were positioned on the left and right arms of the robot. The robot’s
small arms were located on the front side at an angle of ±45◦ to its longitudinal
axis. The position of arms was adjusted according to need. The optical sensor was



The Application of Spiking Neural Networks in Autonomous Robot Control 827

Fig. 1. Communication between the desktop computer and the mobile NXT robot via the
iCommand library and Bluetooth technology

placed in the middle of the front side facing downwards, evaluating the intensity
of the light reflected from the scene floor. By means of the optical sensor we were
able to monitor the situation when the robot was leaving the designated zone (by
passing over the black line). Leaving the designated zone would in practice result
in an undesired contact with the wall of the scene. In our experiments, this served
as a simulated collision of the robot.

In our last implementation we added a miniature wireless camera to the sys-
tem. Ajoka Aj-007S miniature camera was attached to the front side of the mobile
robot (Figure 2, part 2). It ran on 9 volt battery, which was placed behind the
NXT intelligent cube. The analogue signal from the camera was transmitted on
a radio wave into an audio and video receiver. The radio receiver is purchasable in
a package with the camera. In addition, we used a Trust Surveillance Interface 801
analogue video and audio digitizer for this implementation. It served as an interface
between an analogue source of video signal (i.e. our radio receiver) and the desktop
computer. The camera, receiver and digitizer provided a wireless transmission of
image information from the analogue camera directly into the desktop computer in
a digital form.

In order to acquire and process image for the input vector of the neural net-
works in the Java language we used the freeware Java Media Framework classes,



828 P. Trhan

Fig. 2. Part 1) the ultrasonic sensors; Part 2) the wireless camera

version 2.1.1e [22] and the Vision class, which is also a part of the iCommand li-
brary.

2 THE MODEL AND DYNAMICS OF A SPIKING NEURON

The models of spiking networks differ from one another in the definition of their
membrane potential of a neuron. The membrane potential represents a state of the
spiking neuron and characterizes neuronal dynamics. The incoming impulses from
presynaptic neurons increase (the impulses passing through excitatory synapses) or
decrease (the impulses coming through inhibitory synapses) the membrane potential
of the postsynaptic neuron [8].

2.1 The Mathematical Model of the Implemented Spiking Neuron

The implemented model of the neuron which we used in our applications of spik-
ing neural networks is based on the SRM0 model [8]. This model, in contrast to
the original SRM0 one, uses only linear functions, which denote the current state
of the neuron as well as the individual response kernels of the presynaptic and
postsynaptic impulses. The weight of a synapsis is coded with the rate of one bit
(value 1 corresponds to the existing synaptic connection between neurons, value 0
represents the absence of synaptic connection). Thus, the created model is easy-
to-calculate and lends itself to the application in control systems with low-power
consumption [4, 5].

The membrane potential ui of the neuron i is updated at discrete time intervals.
The kernel εij, which denotes the postsynaptic potential, represents the current
increment of the membrane potential of the neuron at a given time interval. The
increment of neuron i of the presynaptic neuron j is represented by the following



The Application of Spiking Neural Networks in Autonomous Robot Control 829

function (1):
εij(t) = oj(t− 1)wijsj (1)

where oj(t − 1) = 1, if the presynaptic neuron j has generated an impulse at the
preceding time interval t − 1, otherwise (if the neuron j has not generated an im-
pulse) oj(t− 1) = 0. The sj variable (sj is the sign of neuron j) determines whether
the postsynaptic neuron potential j is excitatory (sj = 1) or inhibitory (sj = −1).
The wij variable defines the weight of the synapse between the j presynaptic neu-
ron and i postsynaptic neuron (if there is connection from j neuron into i neuron,
therefore wij = 1, otherwise wij = 0).

The synaptic connections and signal direction in Figure 4 are shown as oriented
edges. The signal corresponding to output (oi or ii) from neuron i is transmitted
through an oriented edge starting from neuron i.

The incremental value of neuron i from input neuron j which is a neuron response
to the external input is expressed by the function (2):

κij(t) = ij(t− 1)wij (2)

where ij(t− 1) is an output of input neuron j at the preceding time interval t− 1.
During the activity of the implemented neural network the external input does not
update at each time interval but at regular intervals, every time after a certain
number of time intervals. At the time when updating of the input neurons does not
occur ij(t) = 0.

The functions (3) define kernel ηi for the phase of the action potential (of impulse
generation) and the hyperpolarisation phase of neuron i. Kernel ηi(t) carries out
the following operations:

oi(t) = 1 ∧ ui(t) = 0 if ui(t) > ν + r(t)

oi(t) = 0 if ui(t) ≤ ν + r(t) (3)

where r(t) represents a randomly generated relatively small value from the interval
with centre in 0. As a result of adding random value r(t) to the threshold ν of
neuron i, the level of neuron threshold changes dynamically, the random value r(t)
brings noise to the neuron and improves the properties of the neural network [4, 5].
If the membrane potential of neuron i at time t exceeds its threshold value ν which
changed by adding up value r(t), the neuron generates an impulse (the output of
neuron i is set to value 1, i.e. oi(t) = 1) and the value of its potential drops to
low negative value η0. In our case, we did not use low negative value, but we set
neuron potential to 0, i.e. ui(t) = 0. The hyperpolarisation phase corresponds to
neuronal refractoriness after an impulse has been generated in the following time
interval t+ 1.

The membrane potential fluctuation causes a decrease of the membrane poten-
tial in the absence of presynaptic impulses. This property of neuron is defined by
subtracting of the constant value from the membrane potential of the neuron at each
time interval.



830 P. Trhan

Putting all the above kernels εij , κij, ηi together (Equations (1) to (3)) produces
the mathematical model of the implemented impulse neuron (4):

ui(t) =
∑

j

εij(t) +
∑

k

κik(t) and the realization of kernel ηi(t) (4)

while the summation of kernels εij goes through all the presynaptic neurons and the
summation of kernels κik passes through all input neurons.

2.2 Algorithmization of the Implemented Spiking Neuron Model

The behavior of the spiking neuron (employed in our implementations and de-
scribed in the preceding subchapter 2.1) can be summarized by the following algo-
rithm [5, 25]:

1. If at the preceding time interval t− 1 neuron i generated an impulse, its mem-
brane potential ui will be blocked (hyperpolarization phase) and in the following
time interval t+1 it will pass into a resting state and will be able to get updated.

2. Updating of the potential of neuron (if the membrane potential is not blocked)
by the incoming impulses from presynaptic and input neurons (5):

ui(t) =











ui(t− 1) +
∑

j εij(t) if ui(t− 1) +
∑

j εij(t) +
∑

k κik(t) ≥ ur

+
∑

k κik(t)
ur if ui(t− 1) +

∑

j εij(t) +
∑

k κik(t) < ur

(5)

where ui(t) represents the new updated membrane potential of neuron i in time t
and ui(t − 1) stands for its preceding potential at time t − 1. Kernels εij(t)
and κik(t) are calculated through the equations (1) and (2). The resting value ur

is, in our case, set to 0.

3. The phase of impulse generation set by the output oi(t) of neuron i at time t

according to (3). If neuron i was inactive (has not generated an impulse), its
potential will be updated at the following time interval t+ 1.

4. Realization of the fluctuation of the potential of neuron i (6):

ui(t) =

{

ui(t)− k if ui(t)− k ≥ ur

ur if ui(t)− k < ur
(6)

where k is a small value (experimentally chosen) which does not change during
the network activity.

3 THE MODEL OF A SPIKING NEURAL NETWORK

On the basis of the published results by the Laboratory of Intelligent Systems [4, 5,
28] we implemented their model of a spiking neural network in our conditions and
we conducted a series of experiments.



The Application of Spiking Neural Networks in Autonomous Robot Control 831

The spiking neural network learnt to control the movement of a mobile robot
on the basis of autonomous reaction with the environment, i.e. the spiking network
adapted to the created scene environment through evolutionary development of in-
dividuals of the population, which coded synaptic connections as well as the neuron
signs. The implemented evolution adapted to the neural network in a relatively
short time and the network was capable of navigating the mobile robot without
collisions with scene walls. The robot moved in straight lines until it approached
a wall of the scene (or other scene obstacle); then it turned round and moved on.

In our conditions, however, the implemented spiking network in the navigation
system of the robot was not able to turn in the correct direction. For example, if the
robot approached the wall from the left side in the direction of its movement, that
is to say if the angle between the longitudinal axis of the robot and the direction
vector of the wall plane was smaller on the left side of the robot (in Figure 3, α < β)
then it would be desirable to avoid collision with the wall by taking a right turn.
For this reason we proposed a new architecture of the spiking neural network and
realized a new series of experiments.

Fig. 3. Turning the robot in the correct direction in front of the scene wall

3.1 The Architecture of the Spiking Neural Network

Our proposed architecture of a parallel combination of two local spiking neural
networks was influenced by the following assumptions and conditions:

• Inspiration from nature – the choice of the type of an artificial neural network.
Flying insects perceive the image of the environment through a pair of com-
pound eyes. The communication in insects between the eye and the brain in
the form of impulses is often ten times higher as it is in humans. Owing to this
fast communication insects are able to detect movement quickly. Movement of
objects in the environment represents impending danger [18]. The model of the
implemented navigation system to control the movement of a robot (the core
of this system is a spiking neural network) is similar to the biological system of
vision and communication as well as the evaluation of input information from
the environment.



832 P. Trhan

• Inspiration from nature – the solution of the problem of learning to turn into
a desired direction before an obstacle through individual processing of informa-
tion from the left and right side of the environment in the direction of move-
ment. In most animals (in contrast to humans) the fields of vision of indivi-
dual eyes do not overlap and each eye “sees separately” [2], i.e. the eye inde-
pendently evaluates the information from its field of vision – from its point of
view.

• The results of our experiments with the implemented architecture of a spiking
neural network according to the Laboratory of Intelligent Systems [14]. The
system detected impending collision with an obstacle, but lacked the ability of
turning into a desirable direction before an obstacle.

• Adaptive and hierarchical mixtures of local feedforward neural networks which
delegate classification of objects among several neural networks. A gating neural
network produces coefficients of proportionality for corresponding input vectors.
On the basis of the highest value of the coefficient of proportionality the selec-
tor realizes the selection of an output vector of the corresponding local neural
network [9, 10].

• The deterministic principle of neural networks which asserts that every output
impulse has to have its cause in the preceding input impulses [13]. In coding in-
put vectors we worked on the above deterministic principle, according to which
closer proximity from an obstacle causes a higher activity of input neurons (input
units) and, in turn, this higher activity of input units causes a higher activity of
output neurons (what is important to us is the activity of controlling neurons;
the controlling neurons are those which are used in coding output information
from the neural network).

• The simplifications of the algorithmization of the system in relation to the hard-
ware – the availability of sensors and their ability to monitor the environment,
the functionality of the applied communication libraries, the features allowing
to control the trajectory of robot movement through the information from the
network output.

• Taking into account the spatial limits of the physical surroundings during the
realized experiments – the size and shape of the created scene in relation to the
dimensions of the mobile robot.

The proposed architecture consisting of a combination of two local spiking net-
works and the flow of information from the sensors including the controlling output
from the selector are shown in Figure 4. This architecture does not use a gate neural
network. The selector makes a selection according to the prevailing activity of the
controlling neuron of the corresponding spiking network (i.e. it selects a more active
local network). Another important information from the selector is the position of
the more active local network (either left or right). The left local spiking network is
defined as the one which receives the input vectors coded from the current informa-
tion on the “left side” of the scene environment in the direction of robot movement.



The Application of Spiking Neural Networks in Autonomous Robot Control 833

The right local spiking network receives the information on the “right side” of the
scene environment.

Fig. 4. The architecture of a paralel combination of two local spiking neural networks

Different input vectors for the left and right local networks (both input vectors
activate the input neurons of the spiking networks at the same time), the absence
of a gate neural network, the type of neural networks as well as their target use
are the main differences in comparison to an adaptive or hierarchical mixture local
feedforward neural networks [9, 10].

In our experiments we used two ultrasonic distance detection sensors located on
the left and right front side of the robot at a ±45◦ angle with the longitudinal axis
of its movement direction. Similarly to most animals, the left and right vision fields
do not overlap.

The applied coding of input vectors generates a higher activity of input units in
relation to a decreasing distance from an obstacle. According to the deterministic
principle of neural networks, a higher activity of input units causes an increased ac-
tivity of neurons (our local networks have only two layers – the input and the output
one). These working assumptions and the defined spatial topology of the proposed
architecture comprising a parallel combination of two local spiking networks enables
us to determine the location of a nearby obstacle by comparing the activities of the
left and right local networks.



834 P. Trhan

In our approach, both left and right local spiking networks have the same pa-
rameters; the only prerequisite being one controlling neuron in the output layer of
both networks. The output information from the controlling neuron is coded accord-
ing to the number of generated impulses between two subsequent sensory-controlled
cycles (a sensory-controlled cycle is the cycle activity of the neural network when
sensors and engines get updated). This information is a response of the neural net-
work to one input vector. The higher activity of the controlling neuron of the left
local spiking network in comparison to the activity of the controlling neuron of the
right spiking network signals an impending collision on the left side, i.e. the robot
approaches an obstacle or the wall in the movement direction from the left and it
is desirable for the robot to avoid collision by turning right. In this case selector
output is the controlling command to turn right (“R” in Figure 4). Analogically,
a prevailing activity of the right local network signals an impending collision on
the right side and selector output is a controlling command to turn left (“L” in
Figure 4).

If there are no obstacles or a wall in robot direction of movement the elements
of input vectors of both local networks have zero value, neurons are inactive and
do not generate impulses. In this case, selector output is a controlling command to
carry on in the forward direction (“F” in Figure 4).

3.2 The Evolutionary Adaptation of a Parallel Combination

of Local Spiking Networks

The adaptation of spiking neural networks by means of evolutionary optimization
algorithms is an alternative to the traditional gradient descent methods. The models
of spiking neurons are described by complex mathematical equations and the appli-
cation of gradient descent optimization methods makes the equations more complex
still [8, 11, 21]. Due to the use of these equations, the adaptation of spiking neu-
ral networks is more calculation demanding and its implementation, in most cases,
requires simplifications to fit the applied hardware.

In our implementations we use the evolutionary adaptation of spiking networks.
In particular, we chose the most popular, genetic algorithm. The genetic algorithm
that the evolutionary model of our navigation system uses searches for the fittest
individual on the basis of the information from the scene environment and the defined
objective function (fitness function1).

Graphic representation of the navigation system is shown in Figure 5. The nav-
igation system acquires information on the scene environment through sensors or
through image information from the camera. Once determined, the topology of the
local spiking networks, coded by the fittest individuals from two populations (each
local network has its own population of individuals) creates a navigation system

1 The fitness function is the function you want to optimize. For standard optimization
algorithms, this is known as the objective function [7].



The Application of Spiking Neural Networks in Autonomous Robot Control 835

which is capable of controlling the mobile robot without collisions with the obstacles
of the scene.

Fig. 5. Graphic representation of the implemented navigation system

One individual from the population codes the topology of a spiking neural net-
work (active synaptic connections and neuron signs) in the form of a binary genetic
string. The success rate of an individual is determined by the function value of the
defined objective function [12]. In order to simplify the implementation, we defined
the objective function in such a way that the optimization genetic algorithm ma-
ximized the function values of developing individuals, i.e. the fittest individual had
the maximum function value of the objective function.

The objective function was defined on the basis of the following requirements
that our navigation system had to meet:

• To simplify implementation the function values of the objective function have to
be normalized, i.e. its range of definition should be defined by the interval 〈0, 1〉.

• It is desirable that the robot moves in straight lines, i.e. that it keeps a long
enough distance from the obstacles (walls of the scene).

• Given the proposed coding of the input vectors of the spiking networks, a longer
distance from an obstacle does not have a bearing on the activity of the network
neurons and the response of the controlling neurons to such a stimulus equals
zero amount of generated impulses. In response to such a stimulus the selector



836 P. Trhan

evaluates the controlling command for straight movement. Another requirement
for our navigation system is minimization of the number of commands for robot
turns.

• A failure of the system in the form of a simulated collision, i.e. the robot passing
over the black line, is undesirable. The black line marks the limits of the scene
passing along its walls.

• The navigation system requires two evolutionary adaptations of local spiking
neural networks.

Each individual of the population is evaluated within 15 seconds on the basis of
the real information from the scene environment, reactions of the navigation system
(the core of the system consists of two local spiking networks), robot trajectories and
monitoring of simulated collisions. All of these are evaluated during every sensory-
controlled cycle of local networks activities and the resulting value of the objective
function is calculated as an average of these partial values of the objective function.

Let 1, 2, . . . , t, t + 1, t+ 2, . . . , n be the time sequence of the sensory-controlled
cycles realized within 15 seconds of the evaluation of two individuals (the robot
moves within the boundaries of the scene and is controlled by the navigation system
with the topology of spiking networks on the basis of currently evaluated individu-
als). The value of the objective function calculated at the sensory-controlled cycle t
is expressed as the partial fitness value of an individual from the left local network
fitLind(t). Analogically, the value of the objective function calculated at the same
sensory-controlled cycle t is expressed as the partial fitness value of an individual
from the right local network fitRind(t). Concurrently, we make the calculations
of the partial fitness values fitLind(t) a fitRind(t) for the individuals of both local
networks. The resulting fitness value of a population individual of the left local
network is thus calculated through Equation (7):

fitLind =

∑n
1
fitLind(t)

n
(7)

In the same way, we synchronically calculate the evaluation of an individual of
the right local network. The calculation of all parts of the partial fitness values
fitLind(t), fitRind(t) and their gradual summation are realized at every sensory-
controlled cycle. The resulting fitness values of the individuals fitLind and fitRind

are calculated according to (7), after evaluation of individuals has been completed.
The calculation of the partial fitness value fitLind(t) at the sensory-controlled

cycle t was then defined, in relation to the requirements laid down for our navigation
system, through Equation (8); the same procedure applied for an individual of the
right local network:

fitLind(t) = fitdistL(t)fitdirectL(t)(1− fitcrashL(t)) (8)

Equations (7) and (8) define the objective function of our genetic algorithm.
The values of part fitdistL(t) (Equation (8)) are coded according to the current in-



The Application of Spiking Neural Networks in Autonomous Robot Control 837

formation from the ultrasonic sensor located on the left side in the direction of robot
movement. Part fitdistL(t) produces a maximum value when sufficiently distanced
from an obstacle; with decreasing distance, its values fall. This part is used to ensure
that sufficient distance is kept from obstacles.

The other part, fitdirectL(t), of Equation (8), increases the fitness value of an in-
dividual, provided there is no obstacle on the left side in the direction of robot move-
ment and it fulfils the requirement of minimization of the number of commands to
turn the robot right.

In the same way, the parts of the partial fitness values fitdistP (t) and fitdirectP (t)
are evaluated for an individual from the right local network. The only difference
is the way information on the environment from the right ultrasonic sensor and is
acquired from the controlling neuron of the right local network.

The last part of the calculation of the partial fitness value of an individual in
Equation (8) is fitcrashL(t). The value of this part is equal to 1 when a simulated
collision is detected, otherwise it is 0. The optical sensor, which detects a simu-
lated collision, provides the acquired information for both individuals at the same
time. A collision for the robot is undesirable, therefore we defined this part of the
calculation of the partial fitness value of an individual as (1− fitcrashL

(t)).
The above-described parts of Equation (8) for the calculation of partial fitness

values of individuals were devised for an evolutionary adaptation of a parallel com-
bination of left and right local networks with respect to available hardware as well
as to the type and number of sensors.

As an evolutionary optimization algorithm a simplified genetic algorithm was
employed. In order to generate new individuals (children) in the populations (of
both left and right local networks) we used a modified mutation operator only. We
did not use a genetic crossover operatator in our implementation. Also, the selection
of individuals from the population is not realized through a quasi-random selection.
All individuals in the population have an equal chance of being selected, irrespective
of their fitness value. For this reason, a genetic algorithm at the beginning of
an evolutionary adaptation of local networks is little effective and what is more,
a mutation-generated individual can have lower fitness value than the original one.

The former deficiency was partially eliminated through a modification in muta-
tion. The traditional mutation changes the value of only one or two elements (bits)
of the genetic string of an individual. In our mutation, within the first 10 minutes of
the evolutionary adaptation of the networks we dynamically determine the number
of elements of the genetic string of an individual, the value of which then changes
(mutates).

The latter deficiency concerning a possibility of generating a weaker individual
(the one with lower titness value) in comparison to the individuals of the current
population and the introduction of this individual into a new generation was eli-
minated by the following condition: If the fitness value of a generated individual
is smaller than that of the weakest individual of the current population, then this
individual will not be introduced into a population and it will be removed from
further consideration.



838 P. Trhan

Our simplified genetic algorithm, designed for the adaptation of a parallel combi-
nation of local spiking networks, was implemented into a navigation system (left and
right local spiking networks and a genetic algorithm form the basis of the proposed
navigation system) of a mobile robot and was experimentally tested in customized
conditions.

4 EXPERIMENTAL VERIFICATION OF THE APPLICATIONS

OF SPIKING NEURAL NETWORKS

In order to explore the reliability of the implementation of the proposed architecture
of a parallel combination of left and right spiking neural networks, we conducted
a series of 4 experiments. Prior to experiments proper we carried out simulation in
the Matlab development environment. Thus, we were able to experimentally set the
parameters of the applied spiking neural network as well as the neuron model.

In all, we have implemented four versions of applied spiking neural networks.
The first version used one spiking neural network, receiving information from one
ultrasonic sensor. The second version differed from the first one only in that it used
two ultrasonic sensors. The third and the fourth applied versions were the proto-
types of our proposed navigation system. Both of these versions of the navigation
system used two local spiking networks; the first one received information about
the environment from two ultrasonic sensors, the second received this information
from a miniature camera. An overview of all realized implementations is shown in
Table 1.

Implementation Number and Type and Notes
abbreviation type of sensors number of neural networks

1S 1SNN 1 ultrasonic sensor, 1 spiking neural network
1 optical sensor

2S 1SNN 2 ultrasonic sensors, 1 spiking neural network
1 optical sensor

2S 2LSNN 2 ultrasonic sensors, 2 spiking neural networks – Our proposed
1 optical sensor parallel combination of left implemented

and right local spiking prototype
networks

C 2S 2LSNN 1 wireless camera, 2 spiking neural networks – Our proposed
2 ultrasonic sensors, parallel combination of left implemented
1 optical sensor and right local spiking prototype

networks

Table 1. Overview of all implementations

In order to realize experiments with the implemented navigation systems we
created two scene types. Both had a rectangular layout. The scenes only differed
from each other in the colour patterns (texture) of their surfaces and to a minimum
extent in their size as well. The mobile robot moved autonomously within the



The Application of Spiking Neural Networks in Autonomous Robot Control 839

confines of the scene according to the controlling commands of the navigation system.
The neural networks, which formed the core of the navigation system, surveyed the
scene environment through intelligent processing of current environment information
to control the trajectory of the robot.

The first three implementations shown in Table 1 acquired the information about
the environment through ultrasonic sensors only. For this reason, we were able to
conduct experiments using white-surface walls. The size of the created scene (first
part of Figure 6) was 170× 80 cm.

Fig. 6. Part 1) the scene with white walls; Part 2) the scene with a texture of black and
white stripes



840 P. Trhan

The other type of scene (second part of Figure 6) designed for last implemen-
tation shown in Table 1 had to be rearranged. It was desirable that the image
information from the camera stimulated a higher activity of the input units of the
spiking neural network in relation to the decreasing distance of the camera from
the wall texture [5, 28]. The alternative experiments which employed the calcula-
tion of the optical flow for impending collision detection were realized prior to the
application of the neural networks proper [23, 24]. The texture of the inner walls
of the scene was formed by vertical white and black stripes, the width of which
was randomly generated from the interval of 〈0.5, 3〉 cm. The experiments revealed
that the chosen width of vertical stripes in the wall texture has a bearing on the
distance between an obstacle and the zone in which the navigation system detects
this obstacle. The desired texture was achieved by covering the white area of the
walls with black paper stripes. The size of the created scene was 160× 70 cm.

Both scenes had identical floor coverings. This was made of white paper with
the dimensions of 180×90 cm. On these, a zone was created with a quasi-rectangular
layout, measuring 152 × 62 cm. The edge of the zone was lined with a black stripe
with a width of 4.5 cm. Black ground reflects less light than white one. This phe-
nomenon enables us to monitor easily whether the optical sensor is inside the zone
or on its black edge. The minimum distance between edge of the zone and the walls
of the scene was 4 cm. If the optical sensor passes over the black edge of the zone,
this is regarded as a failure of the neural network response to input information and
the navigation system issues a controlling command to change robot direction.

Tables 1 and 2 show the basic information and settings of parameters for the im-
plementations of spiking neural networks. For clarity, we use abbreviated forms for
the implementations. The settings of the parameters for implementations 2S 2LSNN

and C 2S 2LSNN in Table 2 (column 4 and 5) are given for one local spiking network,
the same settings apply for the other local spiking network.

Implementation 1S 1SNN 2S 1SNN 2S 2LSNN C 2S 2LSNN
one network one network

Number of input units 6 12 6 10

Number of neurons 10 10 10 10

Membrane potential threshold 5 5 5 2

Number of activity cycles

to determine response 40 40 25 25
to one input vector

Time for evaluation 15 15 15 15
of individual [s]

Table 2. Settings of the main parameters of neural networks in conducted experiments

During the testing and fine-tuning of the program we conducted a number of
experiments and the NXT mobile robot covered several kilometers. In this article
we only deal with one process of adaptation of each implementation of a spiking
neural network. During the process of adaptation of spiking networks, the number



The Application of Spiking Neural Networks in Autonomous Robot Control 841

of evaluated individuals, the substituted ones as well as the fitness value of the
individuals of every new generation are progressively saved. After the process of
adaptation has been completed the codings of the topology of all the individuals of
the last population generation and the overall time of adaptation are saved too. All
acquired values are saved by a program in text files.

Figure 7 shows, in graphic form, the progress of the development of the average
fitness value of individuals of each population generation which developed during
the process of adaptation of spiking neural networks. The abbreviated designation
2S 2LSNN – LN refers to the left local spiking network in the implementation
2S 2LSNN. Similar abbreviated designations were used for all local spiking networks
of our implementations 2S 2LSNN and C 2S 2LSNN. Starting from the top, the first
pair represents the 1S 1SNN and 2S 1SNN implementations, the middle pair refers
to the 2S 2LSNN implementation and the last pair represents the C 2S 2SNN

implementation. The vertical columns in the form of “I” represent the difference of
the values between the fittest and the weakest individuals in the same population
generation. On the basis of the behavior of the acquired values we can say that
during the adaptation the average fitness value of individuals gradually increased
and the difference between the fitness values of individuals simultaneously decreased
(drop in diversity). The individuals2 were becoming stable during the adaptation.

Having adapted spiking networks to the scene environment we, once again, con-
ducted a series of experiments. In these, we observed the behavior and reliability
of the navigation system after the previous adaptation of spiking networks. The
experiments were realized for all four implementations of spiking networks. Each
activity of the NXT mobile robot lasted 5 minutes and during this time the topology
of spiking networks was coded by a selection of the fittest individuals from the last
acquired generation of populations. For the 2S 2LSNN and C 2S 2SNN implemen-
tations we selected the pairs of the fittest individuals from the populations of the
left and right spiking networks.

During these experiments we saved the information about the number of left
and right turns of the NXT mobile robot. Through the optical sensor we detected
the state in which the robot left the designated zone. Thus we simulated the failure
of spiking network/s response to the input information about the environment. We
treated this event as an undesirable collision of the robot with the wall. For each
implementation, we conducted a minimum of six series of robot activities (runs).
From the acquired values we calculated average values of the events of the navigation
system which controlled the movement of the NXT robot. The results of this series
of experiments are shown in Table 3, which gives information on the reliability and
behavior of the navigation system during 5 minutes of robot activity.

The results from Table 3 show that the 1S 1SNN implementation had a high
degree of unreliability. This was caused by the fact that it only had one ultrasonic
sensor. Being placed on the front side of the robot in the direction of its longitudinal

2 The population of one spiking neural network comprised 10 individuals. This value
was constant in all implementations.



842 P. Trhan

Fig. 7. The development of the fitness value of individuals during the adaptation of spiking
networks



The Application of Spiking Neural Networks in Autonomous Robot Control 843

Implementation Left turns Right turns Collisions detected by optical sensor

1S 1SNN 1 36 32

2S 1SNN 27 54 7

2S 2LSNN 70 34 5

C 2S 2LSNN 126 7 6

Table 3. The average values of the events of the navigation system after the adaptation of
spiking networks

axis, one sensor was not able to correctly evaluate the distance from an obstacle in
the cases when the robot approached the wall from either left or right side in the
direction of its movement. In such cases, the neural network received incorrect
information and the response of the navigation system was incorrect.

The following two implementations, 2S 1SNN and 2S 2LSNN, coded the in-
formation from the environment via two ultrasonic sensors. Both implementations
showed a satisfactory degree of reliability and they can be used as the navigation
system of a mobile robot. It has to be said that the width of the walls of the scenes
is relatively small in relation to dimensions of our robot and controlling robot move-
ment is a demanding task for the navigation system. Moreover, the 2S 2LSNN

implementation (the proposed combination of two local spiking networks) in com-
parison to the 2S 1SNN implementation (using only one spiking network) has a cog-
nitive property which is able to determine the turn of the robot correctly face-to-face
with the wall of the scene.

Since we were not able to objectively record through our program the prop-
erty of the navigation system to change correctly robot direction face-to-face with
a scene wall, we calculated the correct and incorrect turns from video footage. This
video recording contained five minutes of activity for each of the implementations.
During the 2S 1SNN implementation the robot made 77 turns, of which 60% were
correct and 40% incorrect. During the 2S 2LSNN implementation the robot made
94 turns, of which 93% were correct and 7% incorrect. While testing implementation
2S 1SNN the robot kept turning almost exclusively in one direction, irrespectively
of the fact whether it approached the wall from the left or right side to its movement
direction. Conversely, the incorrect robot turns in the 2S 2LSNN implementation
occurred only in critical cases, when the robot found itself in the corners of the scene
or in situations when it approached the wall in a nearly perpendicular direction.

The last implementation, C 2S 2LSNN, was capable of evaluating an impending
collision with the wall of the scene, but it was unable to determine a correct turn
of the mobile robot. The C 2S 2LSNN implementation differed from the previous
three ones in the way it updates the input vector of spiking networks. This imple-
mentation does not use coded information from ultrasonic sensors for updating the
input units of spiking networks, but uses adjusted image information from a minia-
ture camera. The ultrasonic sensors are used only to calculate the fitness value of
individuals. Because of time limitations, we did not realize possible modifications
of this implementation and we did not attempt to improve it further.



844 P. Trhan

5 CONCLUSIONS

In this work we applied spiking neural networks in order to control an autonomous
mobile robot in a scene environment. In all, we realized 4 versions of applied neural
networks. All the versions of the applications were implemented in real conditions
in the form of the navigation system of an autonomous mobile robot. In two of
these versions, we applied our own architecture using a parallel combination of left
and right local spiking neural network.

Both versions of our proposed navigation system used two local spiking networks.
One version received the information about the environment from two ultrasonic sen-
sors and showed a satisfactory degree of reliability. Our navigation system was able
to make the right decision and turned correctly in front of a detected obstacle. The
second version, which received information about the environment from a miniature
camera, was capable of evaluating an impending collision with the wall of the scene,
but it was unable to determine a correct change of movement.

The series of conducted experiments and their results showed the reliability of
the proposed combination of two local spiking neural networks in the implementa-
tions of the robot navigation system. In addition, the prototype of the proposed
navigation system possesses features of an on-line adaptation of spiking neural net-
works and it is suitable for an implementation in evolutionary hardware. In the
series of experiments, the system achieved favourable results even during the adap-
tation of networks themselves. The navigation system detected the presence of
obstacles and with a change of the environment of the scene, the spiking networks
dynamically adapted to the realized changes. In this case, the difference between
the adaptation phase and the phase of neural network life began to disappear. On
balance, this system property is beneficial, because the majority of applications of
neural networks are limited by their adaptation phase.

What remains unsolved is the modification of the last implementation, in which
the current information from the scene environment is coded through the image
information from a miniature camera. In this implementation we suggest to modify
the part of the objective function of the genetic algorithm that evaluates the cor-
rectness of robot turns face to face with an obstacle. In addition, we propose that
the number of input neurons be increased as well as to modify the values of system
parameters.

In addition, we suggest to make changes to our simplified genetic algorithm so
that it becomes a fully-fledged genetic algorithm. In doing this, we would keep the
modified mutation operator as well as the condition which would prevent a new
generation of individuals, weaker than those from the previous population genera-
tion, from being developed. Although this change would make higher demands on
the computational performance and memory capacity of applied hardware, it would
speed up the evolutionary development of neural networks.

Another alternative would involve the use of frequency coding based on the aver-
age number of impulses emitted by several neurons in the output layer in response to
one external stimulus. From the point of view of our experiments, in which a spik-



The Application of Spiking Neural Networks in Autonomous Robot Control 845

ing neural network was used to set up autonomous navigation (a neural network
forms a system for obstacle detection and determination of movement direction),
the alternative of using several neurons for obstacle detection would probably work
more effectively and reliably than using one neuron separately. When the calcu-
lated average exceeds of the experimentally set threshold value, the event is taken
as a signal of proximity of an obstacle in the direction from which the external input
was received.

Acknowledgement

The author of this article would like to thank the Slovak Grant Agency for Scien-
ce (Grant No. 1/4391/07) which financially contributed to the publication of this
article.

REFERENCES

[1] Analogic Lab Publications [online]. [quoted 2008-08-21]. Available on: http://lab.
analogic.sztaki.hu/publications.html.

[2] Balog, T.: The Peculiarities of Insectal Eyes [Osobitosti oč́ı živoč́ıchov – in Slovak]

[online]. [quoted 2008-08-21]. Available on: http://balog.blog.sme.sk/c/119868/
Osobitosti-oci-zivocichov.html.

[3] Eclipse – An Open Development Platform [online]. [quoted 2008-08-21]. Available on:
http://www.eclipse.org.

[4] Floreano, D.—Mattiussi, C.: Evolution of Spiking Neural Controllers for Au-
tonomous Vision-Based Robots. In: Evolutionary Robotics from Intelligent Robotics
to Artificial Life, International Symposium, ER 2001, Tokyo, Japan, October 2001,
Springer 2001. ISBN 3540427376. pp. 38–61.

[5] Floreano, D.—Epars, Y.—Zufferey, J. C.—Mattiussi, C.: Evolution of
Spiking Neural Circuits in AutonomousMobile Robots. In: International Journal of
Intelligent Systems, Vol. 21, 2006, No. 9, pp. 1005–1024.

[6] Floreano, D.—Husbands, P.—Nolfi, S.: Evolutionary Robotics. In: Handbook
of Robotics, Springer Verlag, Berlin 2008.

[7] Genetic Algorithm and Direct Search Toolbox 2 – Users Guide. The MathWorks, Inc.

2008.

[8] Gerstner, W.—Kistler, W.M.: Spiking Neuron Models: Single Neurons, Popu-
lations, Plasticity. Cambridge University Press 2002. ISBN 0-521-89079-9.

[9] Jacobs, R.A.—Jordan, M. I.: Adaptive Mixtures of Local Experts. In: Neural
Computation 3, Cambridge: MIT Press 1991. pp. 79–87.

[10] Jordan, M. I.—Jacobs, R.A.: Hierarchical Mixtures of Experts and the EM Algo-
rithm. In: Graphical Models, Foundations of Neural Computation, Cambridge: MIT
Press 2001, ISBN-10: 0-262-60042-0, pp. 254–288.



846 P. Trhan

[11] Kistler, W.M.—Hemmen, J. L.: Modeling Synaptic Plasticity in Conjunction

With the Timing of Pre- and Postsynaptic Potentials. In: Neural Comput., Vol. 12,
2000, pp. 385–405.

[12] Kvasnička, V.—Posṕıchal, J.—Tiňo, P.: Evolutionary Algorithms [Evolučné
algoritmy – in Slovak]. Bratislava, STU 2000, ISBN 8022713775.

[13] Kvasnička, V.—Posṕıchal, J.: Connectivism and the Modeling of Cognitive Pro-
cesses [Konekcionizmus a modelovanie kognit́ıvnych procesov]. In: The Cognitive
Sciences [Kognitvne vedy – in Slovak]. Bratislava: Kalligram, 2002.

[14] Laboratory of Intelligent Systems. Ecole Polytechnique Fdrale de Lausanne, Switzer-
land [online]. [quoted 2008-08-21]. Available on: http://lis.epfl.ch.

[15] LEGO. Mindstorms NXT [online]. [quoted 2008-08-21]. Available on: http://

mindstorms.lego.com/eng/default.aspx.

[16] LEJOS. Java for LEGO Mindstorms [online]. [quoted 2008-08-21]. Available on:
http://lejos.sourceforge.net/index.php.

[17] Nolfi, S.—Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines. Cambridge, Massachusetts: MIT Press,
2000. ISBN 0262140705.

[18] Pechlát, J.: Insect Vision [Zrak hmyzu – in Slovak] [online]. [quoted 2008-08-21].
Available on: http://hmyz.net/ocihmyzu.htm.

[19] PlaNet Alife. Introduction to the EHW [Úvod do EHW – in Slovak] [online]. [quoted
2008-08-21]. Available on: http://alife.tuke.sk/index.php?clanok=574.

[20] Rekeczky, C.—Bálya, D.—Timár, G.—Szatmári, I.: BioInspired Flight Con-
trol and Visual Search With CNN Technology. In: IEEE International Symposium on
Circuits and Systems ISCAS 2003. Piscataway, N. J.: IEEE, 2003. ISBN 0780377613,
pp. 774–777.

[21] Rubin, J.—Lee, D.D.—Sompolinsky, H.: Equilibrium Properties of Tempo-
rally Asymmetric Hebbian Plasticity. In: Physical Review Letters, Vol. 86, 2001.
pp. 364–367.

[22] Sun Developer Network (SDN). Download JMF 2.1.1e Software [online]. [quoted
2008-08-20]. Available on: http://java.sun.com/products/java-media/jmf/2.1.
1/download.html.

[23] Trhan, P.—Mala, M.—Klaučo, R.: The BioInspired Optical Flow Detector. In:
Informatics ’07, Proceedings of the Ninth International Conference on Informatics,
Družba Hotel, Bratislava, June 21–22, 2007, SSAKI, Bratislava 2007, ISBN 978-80-
969243-7-0. pp. 77–80.

[24] Trhan, P.: Bio-Inspired VisionBased Navigation Systems. In: Applied Electron-
ics 2007, University of West Bohemia in Pilsen, Czech Republic, September 5–6,
2007, Pilsen: University of West Bohemia in Pilsen, 2007. ISBN 987-80-7043-537-3.
pp. 223–226.

[25] Trhan, P.—Škultéty, J.: Simulation of Evolutionary Development of a Spiking

Neural Network [Simulácia evolučného vývoja impulznej neurónovej siete – in Slovak].
In: Technical Computing Prague 2007, international conference, Czech Technical Uni-
versity in Prague Congress Center, Czech Republic, November 14, 2007, Humusoft,
Prague 2007. ISBN 978-80-7080-658-6.



The Application of Spiking Neural Networks in Autonomous Robot Control 847

[26] Weishaupl, T.—Schikuta, E.: How to Parallelize Cellular Neural Networks on

Cluster Architectures. In: International Symposium on Parallel Architectures, Algo-
rithms and Networks (ISPAN ’04), 2004.

[27] Ziemke, T.: Remembering How to Behave: Recurrent Neural Networks for Adaptive

Robot Behavior. In: Recurrent Neural Networks: Design and Applications, CRC
Press 2000. ISBN 0849371813. pp. 355–390.

[28] Zufferey, J. C.: Bio-Inspired Vision-Based Flying Robots. Ph.D. Thesis, Lau-

sanne, EPF, 2005.

Peter Trhan graduated at Matej Bel University, Faculty of
Natural Sciences in 1998 obtaining a M. Sc. degree in mathema-
tics and computer science (teacher training qualifications). He
works as an Assistant Professor at the Department of Computer
Science at the Faculty of Natural Sciences, Matej Bel University
in Banská Bystrica. He had also beem teaching at the Depart-
ment of Graphics, the Faculty of Fine Arts at the Academy of
Arts in Banská Bystrica and at the Institute of Applied Com-
munication at Matej Bel University. Currently he is a Ph.D.
student at the Faculty of Informatics and Information Technolo-

gies, Slovak University of Technology in Bratislava. His professional areas of interest
include neural networks, database systems and computer graphics. He has taken part in
six grant projects as a scientific co-worker. The most important of these were three Vega
and one Tempus Metea projects.


