
Computing and Informatics, Vol. 33, 2014, 327–342

SMOT+: EXTENDING THE SMOT ALGORITHM
FOR DISCOVERING STOPS IN NESTED SITES

Francisco Moreno, Andrés Pineda

Departamento de Ciencias de la Computación y de la Decisión
Universidad Nacional de Colombia, Sede Medelĺın
e-mail: {fjmoreno, afpinedac}@unal.edu.co

Renato Fileto, Vania Bogorny

Departamento de Informatica e Estat́ıstica
of Universidade Federal de Santa Catarina (UFSC) Brazil
e-mail: {r.fileto, vania.bogorny}@ufsc.br

Abstract. Several methods have been proposed to analyse trajectory data. How-
ever, a few of these methods consider trajectory relations with relevant features of
the geographic space. One of the best-known methods that take into account the
geographical regions crossed by a trajectory is the SMoT algorithm. Nevertheless,
SMoT considers only disjoint geographic regions that a trajectory may traverse,
while many regions of interest are contained in other regions. In this article, we
extend the SMoT algorithm for discovering stops in nested regions. The proposed
algorithm, called SMoT+, takes advantage of information about the hierarchy of
nested regions to efficiently discover the stops in regions at different levels of this
hierarchy. Experiments with real data show that SMoT+ detects stops in nested
regions, which are not detected by the original SMoT algorithm, with minor growth
of processing time.

Keywords: Trajectories of moving objects, stops and moves, semantic trajectories,
nested sites, trajectory episodes in different spatial granularities

1 INTRODUCTION

The increasing use of mobile devices, such as GPS and cell phones, is producing
large amounts of a new kind of data called trajectories of moving objects. Trajectory



328 F. Moreno, A. Pineda, R. Fileto, V. Bogorny

data can be useful in several domains such as traffic management, animal behavior
analysis, tourism, and marketing, among others. In order to extract information
from these data, new methods and algorithms are needed to process large data
amounts and make them more meaningful.

A raw trajectory is a sequence of geographic points visited by a moving object
during a certain period of time. It can be represented as a sequence of observations
of the form (x, y, t), where x and y refer to the position of the moving object, using
some coordinate system, and t is the time of the observation. The observations are
ordered according to the ascending values of the timestamps t.

Several works have been proposed for trajectory data analysis and mining. These
works can be split into two main categories: approaches that work with raw trajec-
tories and approaches that focus on semantic trajectories. This article focuses on
the second category. From the semantic point of view, the work of [16] is the most
known. It introduced the idea that a trajectory of a moving object is more than
a set of points. According to Spaccapietra, a trajectory is a set of important places
visited by the moving object, for a given reason and during a minimum amount
of time. Thus, a trajectory can be considered as a sequence of stops and moves
through a set of interesting sites. An interesting site IS is a geographic location
that is important for the application (e.g., a hotel, a touristic place). Following this
idea, Alvares in [1] proposed the first algorithm to instantiate the model of stops
and moves, called SMoT (Stops and Moves of Trajectories). This method is simple,
though helpful, to associate meaning to trajectory segments.

An interesting site s can be represented by a 2-tuple s = (Rs,∆s), where Rs is
a topologically closed polygon in R2, and ∆s is a strictly positive real number that
represents the minimum time that a moving object should stay in Rs to consider
that this moving object has visited (stopped in) s [1].

Given a set of interesting sites IS, the trajectory of a moving object can be
enriched with additional information, e.g., the subset of IS visited by the object.
According to [1], a stop is a portion of a trajectory (i.e., a sequence of consecutive
spatio-temporal observations) inside an interesting site s ∈ IS, and that meets the
Minimum Staying Condition (MSC). The MSC states that the time covered by the
consecutive observations in a stop must be greater than or equal to the threshold ∆s,
i.e., the moving object must stay inside Rs for a period of time greater than or equal
to ∆s for this stay to be considered a stop. On the other hand, a move is a portion of
a trajectory whose spatio-temporal observations are not contained in any interesting
site, or if they are, their covered time does not meet the MSC.

The SMoT algorithm [1] checks the intersection of each trajectory with the set
of sites IS which may be interesting for the problem at hand (e.g., hotels, cinemas,
restaurants, shopping malls). The interesting sites can be collected from a geogra-
phical data source (e.g., Google Earth, shape files, geographical databases). Sites
intersected by consecutive observations (spatial temporal points) of a trajectory for
a minimum amount of time are considered as stops, and the observations in that
intersection are labeled as part of the stop in the respective site.



SMoT+: Extending the SMoT Algorithm 329

The SMoT algorithm only considers disjoint spatial sites. However, in the geo-
graphic space many sites are spatially related to each other. For instance, con-
sider a particular shop, inside a shopping mall, which is located in a particular
district, which, by its turn, is located in a city, and so on. As the SMoT algo-
rithm does not consider possible intersections or nesting of the geographic sites of
interest, applying it to such a site collection can lead to misinterpretations. For
example, suppose that a moving object has passed through a shop s1 and, after
a while, through another shop s2, both located inside the same shopping mall sm,
which is located in neighbourhood n of a city c. Assume that the trajectory in-
tersections with each of these sites took longer than the respective time threshold
to consider a stop in that site. Using SMoT, only the city c may be added to
the set of stops of the trajectory. Discovering the stops in each site of the set
{s1, s2, sm, n, c} would give more information to the analyst, with respect to the
meaning of the trajectory. The stops in all nested regions would more realistically
express the trajectory semantics, in different levels of the regions nesting hierar-
chy.

Considering these limitations of the SMoT algorithm, this article introduces
a new algorithm, called SMoT+, to find stops in nested sites, i.e., regions con-
tained in other regions. In the example just described, SMoT+ is able to identify
stops in the city c, and also in neighbourhoods, shopping malls, specific shops, and
other interesting sites presenting or not containing relationships with other sites.
Given a set of interesting sites IS (with the possibility of nested sites) and a set
of trajectories, SMoT+ can detect stops in any interesting site s ∈ IS, in spite of
s being within other sites in IS or not. Similarly to the original SMoT algorithm,
SMoT+ traverses each trajectory just once, i.e., it reads each observation point p
from each trajectory t and efficiently finds all the (possibly nested) interesting sites
that p is within. SMoT+ takes advantage of knowledge about the containment rela-
tionships between interesting sites to infer the intersection of a point p with all the
interesting sites containing the smallest interesting site that intersects p. Then, it
uses this information to calculate the total time that the moving object spends in
each interesting site in the upper levels of the containment hierarchy. Thus SMoT+
can efficiently discover all the stops in any site s, provided that the MSC holds for
consecutive observations inside s.

Experiments with real data show the effectiveness and the efficiency of the pro-
posed method. Our implementation of SMoT+ has detected stops in nested regions
that are not detected by the original SMoT algorithm. Furthermore, our SMoT+ im-
plementation has presented slightly higher processing time than the original SMoT
algorithm to discover stops in nested regions. For disjoint interesting sites, the per-
formance loss of SMoT+ due to additional processing to cope with the possibility
of nested regions is lower than for processing nested sites.

The rest of this article is organized as follows. Section 2 discusses some related
works. Section 3 describes the SMoT+ algorithm. Section 4 reports results of
an evaluation of SMoT+ in a case study. Finally, Section 5 concludes the article
and suggests directions for future research.



330 F. Moreno, A. Pineda, R. Fileto, V. Bogorny

2 RELATED WORKS

Several works have been trying to extract information from trajectories. Works
like [6, 7, 8, 10, 11, 12, 15] have developed data mining methods to extract patterns
from groups of trajectories. These methods consider the density of the observations
to extract behavior patterns from large collections of trajectories.

Another group of works is trying to give more meaning to trajectories [1, 2, 5,
9, 13, 14, 16] considering, apart from space and time information:

1. contextual data such as relevant elements of the geographic space where the
trajectories occur,

2. information about the application domain, and

3. metadata that help to enrich trajectory data with more semantic information.

Most of these works deal with patterns of a single trajectory instead of trajectory
groups.

Ashbrook in [2], for instance, identifies as stops the portions of a raw trajectory
of a car where the signal fails (e.g. the GPS is set off or the car enters a garage) or
the speed is zero for a given temporal interval (e.g. the car is parked).

Cao [4, 5] presents an interesting method for finding important places in trajec-
tories. It generates semantic trajectories, considering GPS gaps with missing points
that satisfy a minimal time condition. The first step is to find the stay points (stops),
which also represent the gaps where the GPS is turned off. The first point of the
trajectory after the GPS is turned on and the last point before the GPS is turned off
represent the starting and ending point of a stay, respectively. The time duration
of the gap must be higher than a given threshold. In the second step, the location
of the starting point of the gap is mapped to a street address (using Google Maps).
The next step is to search for this address in the yellow pages to give a meaning
to the address (e.g. if the address of the trajectory point corresponds to a hotel,
this stay point will be labeled with the name of the hotel). According to Cao, the
yellow pages service returns a list of semantic locations that are near the queried
street address, and one of them may match exactly the given street address of the
stay point of the trajectory. The last step is to generate the list of places (locations)
visited by the trajectories, based on the duration and the frequency of the visits.
The main problem of this approach is that for several applications and depending
on the amount of data, the on-line Google mapping is not trivial, and yellow pages
information may not be available. In an animal tracking application, for instance,
no yellow pages information may be available. This solution is interesting when the
trajectory stop can be mapped to a street, but it fails because several important
places (stops) may be missed when a trajectory keeps recording the points without
generating gaps.

In the method proposed in [9] the user manually annotates trajectories with
semantic information, a task that is only feasible for a few trajectories and if the
background information is known. In [14], a different approach has been presented



SMoT+: Extending the SMoT Algorithm 331

to compute stops of trajectories in interesting sites. This algorithm has two main
steps. The first step evaluates each single trajectory separately, generating trajec-
tory segments (sub-trajectories) whose average speed is lower than the average speed
of the whole trajectory. The second step performs the same process as the SMoT
algorithm, for the trajectory segments with average speed below the general aver-
age, identified in the previous step. It checks if the trajectory low speed segments
intersect disjoint geographic sites. Each portion of a low speed trajectory segment
intersecting an interesting site and satisfying the MSC is labeled with the name of
the geographic site; otherwise, it is labeled as an unknown stop.

The approach of Baglioni [3] uses an inference engine to automatically classify
semantic trajectories with annotated stops and moves into activity categories. Stops
and moves are annotated based on a domain ontology. This approach uses the
concept of stops, but it does not care about how stops are computed.

More recently, Manso [13] developed an algorithm that computes stops of trajec-
tories based on the variation of the direction of the trajectory. All sub-trajectories of
an individual trajectory that have a direction variation higher than a given threshold
are considered as stops. Then the SMoT algorithm can be applied to check if such
sub-trajectories intersect disjoint geographic sites or not.

The SMoT algorithm [1], which we extend in this article, identifies the stops
and moves of a trajectory based on the intersection of the trajectory with a set of
interesting geographic places, each one with an associated minimal stay duration
to be considered a stop. Hereafter we call this set of interesting sites IS. A sub-
trajectory must intersect an interesting site of IS for a minimal amount of time ∆s.
The MSC is used by SMoT to determine the stops in these sites. For instance,
a hotel will be a stop when the trajectory intersects its location for, say, at least
∆s = 5 hours. As far as we know, the SMoT method is the only one that uses real
geographic locations for generating stops if the trajectory intersects a location for
a minimal amount of time. We strongly believe that this is the best way to give real
meaning to trajectories.

Nevertheless, one main problem with SMoT is that it only generates stops for
disjoint geographic sites. In case there are several nested interesting sites, what
is very common in the real world (e.g. cities contain districts, districts contains
streets, districts are crossed by rivers, districts may contain schools, hospitals and
so on), only the first discovered site is recorded. For instance, if SMoT discovers
that a street is a stop, it will not look to which district and city this street belongs
to, or, if there is a stop at a university, SMoT will not discover in which rooms
or places of the university that stop is located. The following section details our
proposed extension of SMoT to cope with nested interesting sites.

3 SMOT+: AN EXTENSION OF THE SMOT ALGORITHM

This section presents the SMoT+ algorithm, an extension of SMoT that generates
all stops in nested interesting sites. Let us consider the example shown in Fig-



332 F. Moreno, A. Pineda, R. Fileto, V. Bogorny

ure 1 where, for instance, the interesting site s4 is inside s3, which in turn is in-
side s1.

	  

 

S1	   S2	  

S5	  

	  	  S6	  

S4	  
S3	  

Figure 1. A set of non-disjoint interesting sites with nesting relationships

Similarly to SMoT, SMoT+ identifies the stops and moves of each trajectory T ,
by traversing T just once. SMoT+ stores temporal information associated to eve-
ry interesting site in a set of interesting sites IS in an array called dataNodeArr ,
which helps to identify the stops. Each element in dataNodeArr is an ordered pair
(startObs , endObs), where startObs is the sequential number of the observation when
T went inside an interesting site s, and endObs is the number of the observation
when T went outside s.

The algorithm SMoT+ uses as input a knowledge base, representing a hierar-
chy H, of containment relationships among the interesting sites from the set IS.
Figure 2 shows the corresponding hierarchy of containment relationships for the
sites of Figure 1 (e.g. s1, for instance, at level 1 of H, contains sites s3, s6 and s4).
Note that the dummy site with id = 0 (s0) on the hierarchy top covers the whole
geographic space, and consequently all sites from the set IS. 

	  

	  

	  S0	  

	  S1	  

	  

	  S2 

	  
	  S3	  

	  

	  S6	  

	  

	  S5	  

	  
	  S4	  

	  

Level	  3	  

Level	  2	  

Level	  1	  

Level	  0	  
Dummy	  site	  

Figure 2. Hierarchy of containment relationships among sites shown in Figure 1



SMoT+: Extending the SMoT Algorithm 333

Listing 1 presents the SMoT+ algorithm, which works as follows. Each trajec-
tory T is traversed from its first to its last observation using variable i (line 9).
Variable currentSIS keeps the smallest site intersected by the current observation
of T . It is initially set to zero (the dummy interesting site covering all the other
sites) (line 7). The set currentIntersectedIS keeps the subset of identifiers of inter-
esting sites intersected by the current observation of T , and previousIntersectedIS
represents the subset of identifiers of interesting sites intersected by the previous
observation of T .

When a trajectory intersects one or several sites (subset currentIntersectedIS ),
the variable smallestIntersectedSite is assigned the identifier of the most nested
(smallest) site in the set currentIntersectedIS (line 11). If the value of smallestIn-
tersectedSite is different from currentSIS then currentSIS is assigned the value of
smallestIntersectedSite (lines 12 and 13), and the following actions are performed:

• For each interesting site in IS (lines 14–16), where the trajectory has just gone in-
side (set currentIntersectedIS–previousIntersectedIS ), the attribute startObs (of its
dataNode) stores the number of the current observation of the trajectory (line 15).

• For each interesting site in IS (lines 17–24), where the trajectory has just gone outside
(set previousIntersectedIS–currentIntersectedIS ), the attribute endObs (of its data-
Node) stores the number of the previous observation of the trajectory (line 18). Next,
the algorithm finds the staying time in each interesting site, by computing the differ-
ence between the time of endObs and the time of startObs (line 19). The algorithm
checks if this time is greater than or equal to the staying time threshold of the inter-
esting site (line 20), and if so, the algorithm has found a stop (lines 21–22).

ALGORITHM SMoT+

INPUT: T // Set of trajectories

IS // Set of interesting sites {s1 = (Rs1,∆s1), . . . , sn = (Rsn,∆sn)}
H // Hierarchy of containments among the sites from IS

OUTPUT: S // Set of stops

M // Set of moves

1. BEGIN

2. S = φ; M = φ;

3. dataNodeArr[0, n]; // Array of n+ 1 dataNodes

4. currentIntersectedIS = φ; // Set of site ids

5. previousIntersectedIS = φ; // Set of site ids

6. FOR each trajectory T ∈ T LOOP

7. currentSIS = 0; // Smallest site intersected by the current obs.

8. i = 1; // First obs. of T

9. WHILE (i ≤ size(T )) DO // Traverse T

/* Find the set of site ids intersected by point(T [i]),

point function extracts the coordinates x and y of T [i] */

10. currentIntersectedIS = intersectedIS(point(T [i]), H);

11. smallestIntersectedSite = id of the smallest intersected

site in currentIntersectedIS ;

12. IF smallestIntersectedSite 6= currentSIS THEN



334 F. Moreno, A. Pineda, R. Fileto, V. Bogorny

13. currentSIS = smallestIntersectedSite;

// Sites where obs. i of T just went inside
14. FOR each siteId ∈ (currentIntersectedIS− previousIntersectedIS) LOOP
15. dataNodeArr[siteId].startObs = i;
16. END FOR

// Sites where obs. i of T just went outside
17. FOR each siteId ∈ (previousIntersectedIS− currentIntersectedIS) LOOP
18. dataNodeArr[siteId].endObs = i− 1;
19. elapsedtime = time(T [dataNodeArr[siteId].endObs])

− time(T [dataNodeArr[siteId].startObs]);
20. IF (elapsedtime ≥ ∆ssiteId ) THEN // A stop of T in siteId was found
21. Stop = (T, siteId, time(T [dataNodeArr[siteId].startObs]), time(T [i− 1]));
22. S.add(Stop);
23. END IF
24. END FOR
25. END IF
26. previousIntersectedIS = currentIntersectedIS;
27. i++; // Next obs. of T
28. END WHILE
29. Add to M a new move with each maximal set of consecutive

observations of T that are not part of any stop.
30. END FOR
31. END

Listing 1. The SMoT+ algorithm

FUNCTION intersectedIS(p,H)
INPUT: p // Spatial point (x, y)
OUTPUT: IntersectedIS // ids of interesting sites intersected by p
1. BEGIN
2. found = FALSE;
3. currentLevel = H.numberOfLevels(); // Height of H
4. WHILE NOT found DO
5. FOR each siteId ∈ H‖H.level(siteId) = currentLevelLOOP
6. IF (p intersects RssiteId) THEN
7. found = TRUE;
8. BREAK; // Exit FOR
9. END IF;
10. END FOR;
11. currentLevel–; // Go to the next level of H
12. END WHILE;
13. RETURN {siteId} ∪H.ancestors(siteId);
14. END

Listing 2. Function intersectedIS



SMoT+: Extending the SMoT Algorithm 335

The function intersectedIS, see Listing 2, returns the identifiers of the interesting sites
(subset currentIntersectedIS ) that a trajectory intersects with its point p of its current
observation. It begins by searching for the most nested sites in H, located in its deepest
level (line 5). Whenever there is no site intersecting the point p in a level, it proceeds
to the immediate upper level (line 11). When it finds a site intersected by p (line 6),
the function immediately returns the identifier of this site along with the identifiers of
all of its ancestors (line 13). In this way, the function avoids unnecesary checking for
intersections. For example, consider observation 5 in Figure 4. As the smallest intersected
site by observation 5 is s3, the function returns the identifiers of the intersected sites
{3, 1, 0}, as shown in Figure 3.

Note that if a trajectory point does not intersect any region, it still intersects the
dummy site (with id = 0) and thus the function intersectedIS returns {0}.

 

	  

	  	  0	  

	   1	   	  	  2	  

	  	  3	   	  	  6	   	  	  5	  

	  	  4	  

Subset	  of	  
intersected	  
sites	  

Smallest	  
intersected	  site	  

Figure 3. Subset of intersected sites by observation 5 of the trajectory of Figure 4

4 SMOT+: A RUNNING EXAMPLE

Let us consider the set of interesting sites IS = {(s1, 10 min), (s2, 20 min), (s3, 20 min),
(s4, 10 min), (s5, 5 min), (s6, 10 min)}, and a trajectory T with observations at every 5 mi-
nutes, starting at observation 1 and ending in observation 29, as shown in Figure 4.

The SMoT+ algorithm begins with observation 1 and proceeds to observations 2 and 3.
When it finds out that T intersects s1 at observation 3, it makes the following assignments
currentIntersectedIS = {1}, smallestIntersectedSite = 1, and currentSIS = 1. The at-
tribute dataNode.startObs for site 1 is set to the number of the current observation (3), and
previousIntersectedIS = currentIntersectedIS = {1}. When the algorithm reaches observa-
tion 4, smallestIntersectedSite does not change, but when it reaches observation 5, the fol-
lowing assignments occur: currentIntersectedIS = {1, 3} and smallestIntersectedSite = 3.
Then, because smallestIntersectedSite 6= currentSIS, SMoT+ stores the number of the
current observation (5) in each site where T just entered, i.e., currentIntersectedIS −
previousIntersectedIS = {1, 3} − {1} = {3}. In addition, because previousIntersectedIS −
currentIntersectedIS = {3}− {1, 3} = φ, we know that T has not gone outside of any site.



336 F. Moreno, A. Pineda, R. Fileto, V. Bogorny 

 

 

Imagen	  4	  

S1	  

S2	  

S5	  

S6	  

S4	  

S3	  
1	  

2	   3	  

4	  

5	  

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6	  

7
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6	  

8	  
9	  

10	  

11	   12	  
13	  

14	   15	  
16	  

17	   18	  

19	   20	  

21	  

22	   23	  

24	  

25	  
26	  

27	  

28	  
29	  

Figure 4. A set of non-disjoint interesting sites and a trajectory

When the algorithm reaches observation 7, currentIntersectedIS = {1, 3, 4}. Therefore,
T just went inside the site s4. The attribute dataNode.startObs of this site is set to the
number of the current observation (7). At observations 8 and 9, T has not entered new
sites and has not gone outside any site.

Now when the algorithm reaches observation 10, currentIntersectedIS = {1} and
previousIntersectedIS = {1, 3, 4}. Then, because currentIntersectedIS− previousIntersect-
edIS = φ, SMoT+ detects that T has not gone inside other sites. However, because
previousIntersectedIS − currentIntersectedIS = {1, 3, 4} − {1} = {3, 4} (sites from which
the trajectory has just gone outside); SMoT+ stores the number of the previous observa-
tion (9) in each of the sites {3, 4} and checks stops in these sites.

Table 1 summarises the results obtained by applying SMoT and SMoT+ to the tra-
jectories and the sites presented in Figure 4 with the minimum staying times specified in
IS. Note that only SMoT+ detected the stops in the nested sites s3, s4, s5, and s6, shown
in gray in Table 1.

SMoT SMoT+

Observation Type
Interesting

site
Observation Type

Interesting
site

(3–14) Stop s1 (3–14) Stop s1
(18–27) Stop s2 (5–9) Stop s3

(7–9) Stop s4
(12–14) Stop s6
(18–20) Stop s5
(25–26) Stop s5
(18-27) Stop s2

(1–3) Move (1–3) Move

(14–18) Move (14–18) Move

(27–29) Move (27–29) Move

Table 1. Results of SMoT and SMoT+



SMoT+: Extending the SMoT Algorithm 337

5 EXPERIMENTS

Experiments were performed on a set of a 100 real GPS trajectories of vehicles, collected
in the city of Rio de Janeiro. The total number of observations of the trajectories was
268,900. The trajectories cross four regions called localities (Madureira, Mier, Realengo,
and Vila Isabel) and 137 neighbourhoods of Rio de Janeiro. A total of 57 neighbourhoods
are inside (nested neighbourhoods) of the four localities, so we have four sites with several
smaller regions inside, and 80 are outside (non-nested neighbourhoods). Figure 5 shows
a map of Rio de Janeiro and two trajectories. The big regions represent the four localities
and the smaller regions are the nested sites (nested neighbourhoods).

In summary we have the following hierarchy: level 0 – Rio de Janeiro city, level 1 –
the four localities, and level 3 – the neighbourhoods.

stop stop 

stop 

Loca%on	  border	  

Neighborhood	  border	  

Trajectory	  

Stop	  found	  by	  SMoT+	  

Vila Isabel 

Madureira 

Realengo 

Méier 

Rio de Janeiro City - Brazil 

Legend:	  

Figure 5. Stops discovered by SMoT+ in four of Rio’s localities and their nested neigh-
bourhoods crossed by two trajectories

Both algorithms were tested with a minimal duration of 7 and 10 minutes for a region
to be considered an interesting site. Figure 6 summarizes the results. Note that the
number of stops identified with both algorithms decreases as the threshold increases. The
SMoT algorithm identified much less stops than SMoT+, and the reason is because SMoT
cannot identify stops in nested neighbourhoods. Indeed, by applying the SMoT algorithm
with a threshold of 7 minutes, stops were only identified in the four localities and in the
80 non-nested neigborhoods, i.e., SMoT was unable to identify the 19 stops that occurred
in the 57 nested neighbourhoods and that were identified by SMoT+. In a similar way, by



338 F. Moreno, A. Pineda, R. Fileto, V. Bogorny

applying the SMoT algorithm with a threshold of 10 minutes, it only identified 43 stops
and was unable to identify the 10 stops that occurred in the 57 nested neighbourhoods.

	  
	   	  

74	  
55	   53	  

43	  

0	  
20	  
40	  
60	  
80	  

SMoT+	   SMoT	   SMoT+	   SMoT	  	  

7	  min	   10	  min	  

Figure 6. Summary of identified stops with minimal times: 7 minutes and 10 minutes

Figure 7 shows the running time of both algorithms considering the dataset with
nested sites. The running time of SMoT+ is a little higher because of the set operations
and the exploration of the hierarchy of containments.

	  
	   	  

1:40:07	  

0:49:36	  

1:42:04	  

0:46:54	  

0:00:00	  

0:30:00	  

1:00:00	  

1:30:00	  

2:00:00	  

SMoT+	   SMoT	   SMoT+	   SMoT	  	  

7	  min	   10	  min	  

Figure 7. Running time of SMoT and SMoT+ with nested IS

Figure 8 shows an experiment of SMoT and SMoT+ on a dataset without nested
sites. In this case, the performance of SMoT in relation to SMoT+ is better, but the time
difference is not so high. Although we show the running time comparison, the objective of
this article is not on proposing a more efficient method, but an algorithm that finds better
results, adding more semantics to trajectories. Performance issues is a general problem in
trajectory data analysis, but so far, trajectory data analysis and mining proposals have not
focused on efficiency, but rather on efficacy of the discovery methods and more meaningful
patterns.



SMoT+: Extending the SMoT Algorithm 339

	  

1:35:11	  

1:03:03	  

1:38:09	  

0:59:12	  

0:00:00	  

0:30:00	  

1:00:00	  

1:30:00	  

2:00:00	  

SMoT+	   SMoT	   SMoT+	   SMoT	  	  

7	  min	   10	  min	  

Figure 8. Running time of SMoT and SMoT+ without nested sites

6 CONCLUSIONS AND FUTURE WORK

Semantic enrichment of trajectories is becoming a very important issue, since the infor-
mation contained in raw trajectories is limited and difficult to interpret. In addition, real
trajectory data can be related to geographical features, such as sites (e.g., regions) of
interest. Trajectories can cross and/or stop within these sites for some amount of time,
and this information can be crucial for understanding trajectories. However, only a few
works in the literature consider the integration of trajectories with geographic informa-
tion.

The well-known SMoT algorithm is one of the few ones proposed by now to consider
geographic information for trajectory analysis. However, a major problem of SMoT is that
it considers that a trajectory may intersect only disjoint geographic regions, while in the
real world many geographic regions are nested or present some topological relation with
other regions (contains, inside, overlaps, etc).

In this paper, we presented an extension of the SMoT algorithm, called SMoT+, to
discover stops of trajectories in nested geographic sites. SMoT+ is able to identify all stops
in these sites, even those stops that share observation points that intersect distinct nested
regions. In a similar way, as the original SMoT algorithm, the SMoT+ time traverses each
trajectory and considers each trajectory observation point only once. In addition, SMoT+
uses knowledge about the containment hierarchy among interesting sites to efficiently
determine all the interesting sites that intersect each trajectory point, by starting with
the smallest sites in the hierarchy, and inferring intersections with all sites containing
a smaller intersected site. Thus, it can generate stops within any site, including nested
sites, while minimizing the number of computations of intersections between observation
points and interesting sites.

Experiments with real data and a running prototype of SMoT+ have shown that it
finds more detailed results than the original SMoT algorithm, by discovering stops in
nested sites. Therefore it contributes more to the semantic enrichment and understanding



340 F. Moreno, A. Pineda, R. Fileto, V. Bogorny

of trajectories in different levels of the geographic regions hierarchy. Furthermore, its
running time is just lightly higher than that of the original SMoT algorithm.

As future works we plan the following directions:

• Analysing semantic trajectories in different granularity levels: SMoT+ enables seman-
tic trajectory representation in different spatial granularities. Thus, it can be used, for
example, to build trajectories data warehouses that allow drill-down to more detailed
trajectory representations, by considering stops in finer grained regions.

• Discovering of proximities: a trajectory might pass near interesting sites without going
inside them. For example, a tourist might pass near a hotel or a restaurant, a vehicle
might pass near a dangerous zone. The detection of these proximities could help to
attract more customers or to prevent accidents.

• Identification of non-continuos stops: a trajectory can satisfy the minimal time condi-
tion in an interesting site with some gaps. For example, consider a shop with a MSC
of 30 minutes. Suppose that a customer enters the shop, stays 20 minutes. Then s/he
goes out and 5 minutes later s/he comes back and stays for another 20 minutes. Thus,
the customer stayed in the shop for 40 minutes in total, but with a gap of 5 minutes.

Acknowledgments

The authors would like to thank CNPQ that partially provided support for this research.

REFERENCES

[1] Alvares, L.O.—Bogorny, V.—Kuijpers, B.—de Macedo, J.A.—Moe-
lans, B.—Vaisman, A.: A Model for Enriching Trajectories With Semantic Geo-
graphical Information. In Proceedings ACM-GIS, ACM Press 2007, pp. 162–169.

[2] Ashbrook, D.—Starner, T.: Using GPS to Learn Significant Locations and Pre-
dict Movement Across Multiple Users. Personal Ubiquitous Computing, Vol. 7, 2003,
pp. 275–286.

[3] Baglioni, M.—de Macedo, J.A.—Renso, C.—Trasarti, R.—Wacho-
wicz, M.: Towards Semantic Interpretation of Movement Behavior. AG-ILE Confer-
ence 2009, pp. 271–288.

[4] Cao, H.—Mamoulis, N.—Cheung, D.W.: Discovery of Periodic Patterns in
Spatiotemporal Sequences. IEEE Transactions on Knowledge and Data Engineering,
2007, pp. 453–467.

[5] Cao, X.—Cong, G.—Jensen, S. C.: Mining Significant Semantic Locations from
GPS Data. 2010, pp. 1009–1020.

[6] Djordjevic, B.—Gudmundsson, J.—Pham, A.—Wolle, T.: Detecting Regu-
lar Visit Patterns. Algorithmica 2011, pp. 829–852.

[7] Dodge, S.—Weibel, R.—Laube, P.: Exploring Movement-Similarity Analysis of
Moving Objects. SIGSPATIAL Special 2009, pp. 11–16.

[8] Giannotti, F.—Nanni, M.—Pinelli, F.—Pedreschi, D.: Trajectory Pattern
Mining. ACM 2007, pp. 330–339.



SMoT+: Extending the SMoT Algorithm 341

[9] Guc, B.—May, M.—Saygin, Y.—Korner, C.: Semantic Annotation of GPS
Trajectories. Conference on Geographic Information Science, Gerona 2008.

[10] Laube, P.—van Kreveld, M.—Imfeld, S.: Discovering Relative Motion Patterns
in Groups of Moving Point Objects. International Journal of Geographical Informa-
tion Science, Vol. 19, 2005, No. 6, pp. 639–668.

[11] Lee, J.G.—Han, J.—Whang, K.Y.: Trajectory Clustering: A Partition-and-
Group Framework. ACM Conference 2007, pp. 593–604.

[12] Lee, J.G.—Han, J.—Li, X.—Gonzalez, H.: TraClass: Trajectory Classifica-
tion Using Hierarchical Region-Based and Trajectory-Based Clustering, Conference,
VLDB ’08, 2008, pp. 779–790.

[13] Manso, J.A.—Times, V.C.—Oliveira, G.—Alvares, L.O.—Bogorny, V.:
A Direction-Based Spatio-Temporal Clustering Method. IEEE, Conference on intel-
ligent systems, 2010.

[14] Palma, A.T.—Bogorny, V.—Kuijpers, B.—Alvares, L.O.: A Clustering-
Based Approach for Discovering Interesting Places in Trajectories. ACM Press, New
York 2008, pp. 863–868.

[15] Sakr, M.—Andrienko, G.—Behr, T.—Andrienko, N.—Hartmut, R.—
Hurter, C.: Exploring Spatiotemporal Patterns by Integrating Visual Analytics
With a Moving Objects Database System. Proceedings of the 19th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems,
2011, pp. 505–508.

[16] Spaccapietra, S.—Parent, C.—Damiani, M. L.—Macedo, J.A.—Por-
to, F.—Vangenot, C.: A Conceptual View on Trajectories. Data & Knowledge
Engineering, 2008, pp. 126–146.

Francisco Javier Moreno Arboleda holds a Ph. D. and
a M. Sc. in Engineering Systems from Universidad Nacional de
Colombia. He currently works as an associate professor at Uni-
versidad Nacional de Colombia, sede Medelĺın. His research
areas are datawarehouses and spatiotemporal databases.

Andrés Pineda holds a degree in Engineering Systems from
Universidad Nacional de Colombia. He currently works as an in-
dependant consultant and is finishing his M. Sc. studies at Uni-
versidad Nacional de Colombia, sede Medelĺın. His research
areas are algorithms and spatiotemporal databases.



342 F. Moreno, A. Pineda, R. Fileto, V. Bogorny

Renato Fileto holds Ph. D. and M. Sc. degrees in computer
science from Campinas State University (1992–1994,
1999–2003), with internship at Georgia Institute of Technology
(2002), and a Bachelor degree in computer science from Federal
University of Uberlândia (1988–1992). His research carrier has
been intertwined with activities in the industry. Since 2006, he
is a Permanent Professor at the Department of Informatics and
Statistics of Santa Catarina Federal University, Florianópolis,
Brazil. He is the author of more than 50 publications and has
been reviewer for several conferences. His research area covers

databases, with focus in complex data indexing and retrieval, data semantics, spatiotem-
poral data warehousing, and workflows for data integration and information analysis.

Vania Bogorny is professor at Departamento de Informática
e Estat́ıstica of Universidade Federal de Santa Catarina (UFSC)
Brazil. She received her M. Sc. (2001) and Ph. D. (2006) in Com-
puter Science from Universidade Federal do Rio Grande do Sul,
Porto Alegre/Brazil. During the Ph. D. program she was visitor
scholar at University of Minnesota, USA (September/2004 to
March/2005), with Prof. Shashi Shekhar’s group. From Novem-
ber 2006 to January 2008 she joined the research staff of the
Theoretical Computer Science Group, of Hasselt University, Bel-
gium, to work in the context of the European project GeoPKDD.

In 2007, she received the Best Ph. D. thesis Award from the Brazilian Computer Society.
She has published in refereed journals and conference proceedings, such as the Interna-
tional Conference on Data Mining (IEEE ICDM), International Symposium on Advances
in Geographic Information Systems (ACMGIS), International Conference on Intelligent
Systems (IEEE IS), Geoinformática, Transactions in GIS and International Journal of Geo-
graphical Information Science (IJGIS). She has served as reviewer of international journals
as IJGIS, Transportation Research Part C, Geoinformatica, TKDE, DKE, Transactions in
GIS and DMKD. Her general areas of interest are databases, spatial and spatiotemporal
data mining, spatial data modeling, and geographic information systems.


