
Computing and Informatics, Vol. 29, 2010, 783–800

ON THE DISRUPTION-LEVEL OF POLYNOMIAL
MUTATION FOR EVOLUTIONARY
MULTI-OBJECTIVE OPTIMISATION ALGORITHMS

Mohammad Hamdan

Department of Computer Science

Faculty of IT, Yarmouk University

Irbid 21163, Jordan

e-mail: hamdan@yu.edu.jo

Manuscript received 5 March 2009; revised 26 August 2009

Communicated by Vladimı́r Kvasnička

Abstract. This paper looks at two variants of polynomial mutation used in va-
rious evolutionary optimisation algorithms for mutliobjective problems. The first
is a non-highly disruptive and the second is a highly disruptive mutation. Both
are used for problems with box constraints. A new hybrid polynomial mutation
that combines the benefits of both is proposed and implemented. The experi-
ments with three evolutionary multi-objective algorithms on well-known multi-
objective optimisation problems show the difference in terms of generational dis-
tance, hypervolume, convergence speed and hit rate metrics. The hybrid poly-
nomial mutation in general retains the advantages of both versions in the same
algorithm.

Keywords: Multi-objective optimisation, evolutionary algorithms, polynomial mu-
tation

1 INTRODUCTION

There are many objectives to be optimised at the same time when dealing with real
world problems. Normally, the objectives are conflicting and make it difficut to solve
the problem. Such problems are known as Multiobjective Optimisation Problems
(MOPs) [1] and can be formally (for a minimisation problem) defined as

784 M. Hamdan

min[f1(
−→x), f2(

−→x), . . . , fd(
−→x)]

where −→x ∈ Ω ⊆ ℜn is a vector of decision variables. Finding a single solution
vector −→x that minimises all objectives at the same time is a difficult task. For such
problems, the solution is a set called non-dominated solutions. The main property of
this set is that no solution dominates other solutions. A dominance relation denoted
by “≺” can be defined as follows [1]:

(−→x1 ≺
−→x2)⇔ ∀i ∈ {1, . . . , d} , fi(

−→x1) ≤ fi(
−→x2)

and ∃i ∈ {1, . . . , d} , fi(
−→x1) < fi(

−→x2).

Using the Pareto dominance relation, the minimal elements are called Pareto-
optimal. The set of Pareto-optimal vectors are known as Pareto-optimal set. When
plotted in the objective space they define the true Pareto-Front (PFtrue). The goal
of algorithms solving MOPs is to generate PFknown that is a good approximation of
PFtrue.

One of the well known-methods for optimisation is taken from the concepts of
evolutionary systems (ES) [9] called genetic algorithms (GAs) [11]. They simu-
late the natural selection process in biological systems using three major operators:
selection, crossover and mutation.

Due to the success of GAs in solving single objective optimisation problems,
they have been extended for solving MOPs. The nature of GAs of being population-
based fits well the needs of MOPs since each individual in the population can define
a non-dominated solution in the Pareto-optimal set. It is worth noting that most
of evolutionary-based algorithms solving MOPs use the simulated binary (SBX) [3]
and polynomial [4] as crossover and mutation operators, respectively. Both operators
were first introduced and implemented in Non-dominated Sorting Genetic Algorithm
(NSGA) and NSGA-II [5].

However, the polynomial mutation for box constraints in the published literature
has two different implementations under a single name. The difference is in the
amount of disruptions they can make to a decision variable when mutated.

In this study, we need to investigate the effect of both versions of polynomial mu-
tation on the behaviour of selected algorithms when solving well-known test MOPs.
To control the disruptions, a new version of polynomial mutation is introduced en-
abling the user to manage disruption levels. The new version combines the benefits
of both implementations.

The rest of the paper is structured as follows. In Section 2, a complete de-
scription of both versions of polynomial mutation is given and the proposed hybrid
polynomial mutation is presented. The experimental environment is presented in
Section 3. In Section 4, the results are shown and, finally, Section 5 concludes the
paper and outlines future work.

On the Disruption-Level of Polynomial Mutation for EMOAs 785

2 POLYNOMIAL MUTATION

In biological systems, mutation could happen due to errors in copying DNA material
during the exchange of chromosomes and is introduced in the optimisation algorithm
by perturbing the solution variable using a certain probability.

In traditional GAs, mutation has been introduced in various forms. It depends
on the representation used in GA such as binary or real values. For example, the
possible mutation implementations could be flip-bit, uniform and non-uniform [12].
For GAs solving MOPs, a more specialised implementation was introduced called
polynomial mutation. This operator was first proposed in [3], used in NSGA [15]
then later improved in [6].

The original polynomial mutation [4, 2] is presented in Algorithm 1. Mutation
probability is set by the variable Pm, n is number of decision variables and ηm is
distribution index which can take any non-negative value. For each decision vari-
able xi, box constraints are defined in [xLower

i , xUpper
i]. Each decision variable has

a probability Pm to be perturbed. For each decision variable, a random value r is
drawn. If (r < Pm) then using the procedure described in Algorithm 1 a mutated
variables gets its new value. The procedure first finds the difference between the
variable and both (lower and upper) boundaries. The smallest difference divided by
(XUpper −XLower) is called δ. Another random value is drawn. The procedure sam-
ples to the left hand side of the variable (region between Xi and XLower) if random
value is ≤ 0.5; otherwise it samples to the right hand side (region between Xi and
XUpper). The procedure calculates the δq value to be used in getting the variable
its new value. The probability distribution function is polynomial and its shape is
controlled by ηm. Large values of ηm give higher probabilities of creating offspring
within the vicinity of the parent and small values allow distant solution to be cre-
ated. The distribution index ηm produces a perturbation of the order O(1/ηm) in
the normalised decision variable.

The problem with this version is shown in Figure 1. If the value of the decision
variable to be mutated is close to one of the boundaries (i.e. the δ value is very
small) then the mutation becomes useless and the algorithm could get trapped in
local optima especially in multi-modal problems. This version has been used in
NSGA [15], early versions of NSGA-II [5] and in the DEME project [10]. This can
be determined by analysing the available source code of various algorithms solving
MOPs that use polynomial as mutation operator.

The modified polynomial mutation [6] is shown in Algorithm 2. It is similar
to original polynomial mutation described in Algorithm 1. The only difference is
in the choice of δ. As illustrated in Figure 1, the mutation can sample the entire
search space of the decision variable even though the value to be mutated is close to
one of the boundaries. It allows big jumps in the search space of decision variable.
In summary, this version is highly disruptive, gives better chances of escaping from
local optima and can modify a solution when on the boundary. However, such kind
of disruptions might not be good for smooth approximation to Pareto front. For
example, if a solution is near the optimal solution then large jumps in the decision

786 M. Hamdan

X_Lower X X_Upper

X_Lower X X_Upper

X_Lower X X_Upper

Sample to Left Sample to Right

X_Lower X X_Upper

X_Lower X X_Upper

X_Lower X X_Upper

Sample to Left Sample to Right

a) b)

Fig. 1. The sampling space for the non-highly a) and highly disruptive polynomial muta-
tions. The y-axis is the probability distribution (spread)

space might not be very useful. It has been used in the jMetal Toolkit [8] and in
the latest version of NSGA-II [5].

i ← 0
repeat

r ← U[0,1]
if r ≤ Pm then

δ ←
min{XUpper

i
−Xi,Xi−XLower

i }
X

Upper
i −XLower

i

r ← U[0,1]

δq ←



















[(2r) + (1− 2r)∗

(1− δ)ηm+1]
1

ηm+1 − 1 if r ≤ 0.5
1− [2(1− r) + 2(r − 0.5)∗

(1− δ)ηm+1]
1

ηm+1 otherwise

Xi ← Xi + δq.(X
Upper
i −XLower

i)

until i++ == n
Algorithm 1: Non-highly disruptive polynomial mutation

In Algorithm 1, δ = min[xi − xLower
i , xUpper

i − xi]/(x
Upper
i − xLower

i). In Algo-
rithm 2, δ = (xi− xLower

i)/(xUpper
i − xLower

i) or (xUpper
i − xi)/(x

Upper
i − xLower

i) which
depends on which side to sample (left or right hand sides of the mutated variable).

On the Disruption-Level of Polynomial Mutation for EMOAs 787

To decide which side, a random value r is drawn. If r ≤ 0.5 then sample to the left
hand side; otherwise to the right hand side.

i ← 0
repeat

r ← U[0,1]
if r ≤ Pm then

δ1 ←
Xi−XLower

i

X
Upper
i −XLower

i

δ2 ←
X

Upper
i

−Xi

X
Upper
i

−XLower
i

r ← U[0,1]

δq ←



















[(2r) + (1− 2r)∗

(1− δ1)
ηm+1]

1

ηm+1 − 1 if r ≤ 0.5
1− [2(1− r) + 2.(r − 0.5)∗

(1− δ2)
ηm+1]

1

ηm+1 otherwise

Xi ← Xi + δq.(X
Upper
i −XLower

i)

until i++ == n
Algorithm 2: Highly disruptive polynomial mutation

In Algorithm 3, a hybridisation of both versions is proposed. Using different
p values, the EMOA can specify the disruptions level of mutation. It works as
follows: with probability 1 − p use the non-highly disruptive polynomial mutation
(illustrated in Algorithm 1) and with probability p use the highly disruptive version
(described in Algorithm 2).

In the new hybrid polynomial mutation, the disruptions level can be quantified
using different p values. When p = 0.0 then only the non-highly disruptive poly-
nomial mutation is used. When setting p = 1.0 then only the highly disruptive is
used. The best p value can be determined after experimental evaluation of different
p values for various algorithms and problems.

3 EXPERIMENTAL ENVIRONMENT

3.1 Parameter Setup

The jMetal [8] toolkit1 has been used to test the different p values for the proposed
polynomial mutation. It is a Java based framework for multiobjective optimisations.
Other researchers have also used the toolkit for studying multiobjective metaheuris-
tics [7]. The jMetal toolkit provides implementations for the Nondominated Sorting
Genetic Algorithm II (NSGA-II) [5], the Strength Pareto Evolutionary Algorithm
(SPEA2) [18] and the MultiObjective Cellular Genetic Algorithm (MOCell) [13].

1 Can be downloaded from http://mallba10.lcc.uma.es/wiki/index.php/JMetal.

788 M. Hamdan

p ← User specified value in the range [0,1]
u ← U[0,1]
if u > p then

mut ← 1
else

mut ← 2
i ← 0
repeat

r ← U[0,1]
if r ≤ Pm then

δ1 ←
Xi−XLower

i

X
Upper
i

−XLower
i

δ2 ←
X

Upper
i

−Xi

X
Upper
i −XLower

i

r ← U[0,1]
if u > p then

δ ← min {δ1, δ2}

else

δ ←

{

δ1 if r ≤ 0.5
δ2 otherwise

δq ←



















[(2r) + (1− 2r)∗

(1− δ)ηm+1]
1

ηm+1 − 1 if r ≤ 0.5
1− [2(1− r) + 2.(r − 0.5)∗

(1− δ)ηm+1]
1

ηm+1 otherwise

Xi ← Xi + δq.(X
Upper
i −XLower

i)

until i++ == n
Algorithm 3: Proposed hybrid polynomial mutation

These algorithms are well known for solving MOPs and are used for the experimen-
tal study. All of the genetic algorithms use binary tournament, simulated binary
crossover (SBX) [3] and polynomial mutation as selection, crossover and mutation
operators, respectively. It is worth noting that polynomial mutation was first intro-
duced and used in NSGA and NSGA-II.

The new hybrid mutation presented in Algorithm 3 has been integrated with
the jMetal toolkit and can be used as follows:

mutation = MutationFactory.getMutation-

Operator("HybridPolynomialMutation");

mutation.setParameter("probability",

1.0/problem.getNumberOfVariables());

mutation.setParameter("p", 0.2);

The crossover probability is Pc = 0.9 and mutation probability is Pm = 1/n,
where n is the number of decision variables. The distribution indices for the crossover

On the Disruption-Level of Polynomial Mutation for EMOAs 789

and mutation operators are ηc = 20 and ηm = 20, respectively. Population size is
set to 100, using 25 000 function evaluations with 100 independent runs.

3.2 The Test Problems

The Zitzler-Deb-Theile (ZDT) test suite [17] is widely used for evaluating algo-
rithms solving MOPs. The following five bi-objective MOPs named ZDT1, ZDT2,
ZDT3, ZDT4 and ZDT6 were used for evaluating the disruptions level of polynomial
mutation. They are well understood and their Pareto front shapes are convex, non-
convex, disconnected, multi-modal and non-uniformly spaced. ZDT1, ZDT2 and
ZDT3 use 30 decision variables while ZDT4 and ZDT6 use 10 decision variables.
The test functions are described in the Appendix.

3.3 The Performance Metrics

The Generational Distance (GD) [16] is a standard metrics for measuring how far
the solutions generated by an algorithm (PFknown) are from those in the Pareto
optimal set (PFtrue). It is defined as:

GD =

√
∑n

i=1 d
2
i

n
(1)

where n is the number of solutions in PFknown and di is the Euclidean distance
between each member in PFknown and the nearest member in PFtrue. The aim is to
minimise the GD value.

The hypervolume (HV) metrics [19] measures the hypervolume (hyperarea in
case of 2 objectives) of dominated space by the set of non-dominated solutions in
PFknown. Higher values of HV are desirable. Assume solution set S that contains
the non-dominated solutions generated by an algorithm. For a given reference point
W (selected by the user or chosen from the worst solution vectors), a hypercube vi
is constructed for every non-dominated solutions in S using W and vi as the dia-
gonal corners of the hypercube. The union of all hypercubes and the corresponding
hypervolume (HV) can be calculated as follows:

HV = volume





|S|
⋃

i=1

vi



 . (2)

Using the HV metrics it is possible to measure the convergence speed metrics [7]
at run-time. If HV (PFknown) ≥ 98%∗HV (PFtrue) then an execution is successful as
long as the algorithm did not reach the maximum number of function evaluations.
This feature is implemented in jMetal and it checks for the hypervolume of the
current Pareto front after each function evaluation/iteration. It returns the number
of function evaluations used so far once the hypervolume of current Pareto front

790 M. Hamdan

reaches at least 98% of the hypervolume of the PFtrue. However, this requires the
availability of PFtrue for the test problem and this is available for the ZDT test
problems. Moreover, the hit rate metrics [7] can be used to indicate the percentage
of successful executions.

4 RESULTS

The results reported in this section address two objectives:

1. the convergence speed and success (i.e. hit rate) of obtaining acceptable appro-
ximation of PFtrue using different p values, and

2. the quality of the final obtained solution using the GD and HV metrics for
different p values.

To provide results with confidence a non-parametric statistical test was per-
formed on the results to find if the differences are statistically significant. The
Wilcoxon rank sum test [14] was performed with significance level of p2 < 0.05.

Tables 1, 2 and 3 show the median x̃ and interquartile range (IQR) for the
needed function evaluations (x̃IQR) (i.e. convergence speed) to generate an acceptable
Pareto front for ZDT test functions using different p values when using NSGA-II,
MOCell and SPEA2, respectively. The hit rate is shown in Tables 4, 5 and 6 for
NSGA-II, MOCell and SPEA2, respectively. In addition, the box plots for the GD
and HV metrics are shown in Figures 2, 3 and 4 for NSGA-II, MOCell and SPEA2,
respectively.

p ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

0.0 12100900 190501200 11150700 222005400 232001200
0.1 12200800 193001200 11200900 210505000 237001100
0.2 123001000 199001300 11400900 222005500 24350900
0.3 12700800 203501200 11600700 218004600 24750800
0.4 12800900 208001100 11800800 215505000 25000300
0.5 13100800 214001400 11900900 216505700 -
0.6 133001100 219001400 12200900 218505900 -
0.7 134501100 226001800 124001000 235004900 -
0.8 13800900 231501200 12450800 232505200 -
0.9 138001000 240001200 12700900 213504700 -
1.0 142001000 243501600 128001200 220005500 -

Table 1. Function evaluations (x̃IQR) for NSGA-II solving ZDT MOPs using different
values of p

• ZDT1: All algorithms converge faster (minimum number of function evalua-
tions) when the non-highly disruptive polynomial mutation (i.e. p = 0.0) is

2
p is the error in this context.

On the Disruption-Level of Polynomial Mutation for EMOAs 791

p ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

0.0 102501100 1415013600 108001300 1845010500 15600900
0.1 10600900 106004000 108001200 165004700 159001100
0.2 11000900 121005100 111501400 162004300 16550900
0.3 112001000 111005700 114001400 165505500 170001100
0.4 11300900 128004700 116501200 170505000 177501100
0.5 116001300 114006000 118001300 176505100 18400900
0.6 118001000 124004500 118001300 169004600 189001300
0.7 122001300 135005400 123001200 168006400 196001400
0.8 124001000 141005800 124501300 159003900 204001400
0.9 129001300 146005100 126001500 170504600 208001200
1.0 13000800 156505500 130001400 176505700 217001400

Table 2. Function evaluations (x̃IQR) for MOCell solving ZDTMOPs using different values
of p

p ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
0.0 13800800 207001400 135001000 240504200 -
0.1 140501100 208001200 13650900 237003900 -
0.2 14100900 212001400 139501100 234003400 -
0.3 14300900 216501500 139501000 239503800 -
0.4 14400900 221001400 142001000 238503500 -
0.5 14700900 224001200 145001000 237004000 -
0.6 151001000 230501600 145001200 238503200 -
0.7 15300700 236001400 14800800 245503600 -
0.8 155001100 240501200 151001100 237003900 -
0.9 159501000 247001000 152001100 240503400 -

1.0 16000900 24900700 155001000 242003200 -

Table 3. Function evaluations (x̃IQR) for SPEA2 solving ZDT MOPs using different values
of p

used. The convergence speed progressively decrease (linearly) as p increases to-
wards 1.0. The hit rate is identical for all algorithms and p values. The “X”
symbol indicates that the problem was solved in the 100 independent runs exe-
cuted. Regarding the GD and HV metrics it is clear that the best result is
achieved when p = 0.0.

• ZDT2: For NSGA-II and SPEA2 the convergence speed decreases progressively
as p increases. However, MOCell gave different speeds for p values from 0.0
to 0.5. As p increases beyond 0.5 then speed decreases progressively. The hit rate
for NSGA-II is 100% success for p = 0.1 . . .0.6, then it decreases progressively
as p increases. However, for p = 0.0 it is 0.98 which is almost a 100% success
but observing the GD and HV box plots in Figure 2 shows few outliers. This
could be caused by failing in escaping from a local optima or the convergence of
the entire population to one point. For p ≥ 0.1 the GD and HV metrics decrease
as p increases. This suggests that the non-highly disruptive polynomial (with

792 M. Hamdan

p ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
0.0 X 0.98 X 0.76 X

0.1 X X X 0.8 0.97
0.2 X X X 0.7 0.85
0.3 X X X 0.81 0.69

0.4 X X X 0.77 0.42
0.5 X X X 0.75 0.23
0.6 X X X 0.73 0.04
0.7 X 0.99 X 0.65 0.01
0.8 X 0.95 X 0.64 -
0.9 X 0.85 X 0.82 -
1.0 X 0.68 X 0.74 -

Table 4. Hit rate for NSGA-II solving ZDT MOPs using different values of p

p ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
0.0 X 0.61 X 0.65 X

0.1 X X 0.99 0.96 X

0.2 X X 0.99 0.99 X

0.3 X X 0.99 0.99 X

0.4 X X 0.99 0.94 X

0.5 X X X 0.96 X

0.6 X X X 0.95 X

0.7 X X X 0.94 X

0.8 X X 0.99 X X

0.9 X X 0.97 X X

1.0 X X 0.99 0.95 X

Table 5. Hit rate for MOCell solving ZDT MOPs using different values of p

p ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
0.0 X 0.85 0.99 0.57 0.03
0.1 X 0.99 X 0.65 0
0.2 X X 0.99 0.63 0
0.3 X 0.99 X 0.61 0
0.4 X 0.96 X 0.63 0
0.5 X 0.99 X 0.59 0
0.6 X 0.98 X 0.59 0
0.7 X 0.9 X 0.58 0
0.8 X 0.9 X 0.63 0
0.9 X 0.59 X 0.58 0
1.0 X 0.54 X 0.65 0

Table 6. Hit rate for SPEA2 solving ZDT MOPs using different values of p

On the Disruption-Level of Polynomial Mutation for EMOAs 793

p = 0.0) is neither resilient to local optima nor prone to premature convergence.
In fact this is even clearer for MOCell and SPEA2 as their hit rates for p = 0.0
are 0.61 and 0.85, respectively. It seems that MOCell is very sensitive to the
non-highly disruptive mutation and prefers big jumps in the decision variable
space which is possible when using p ≥ 0.1. The box plots for GD and HV
metrics shown in Figure 3 confirm this as there are many outlier values when
using p = 0.0. SPEA2 also has problems with p = 0.0 as shown in Figure 4.

• ZDT3: Again as in ZDT1, the non-highly disruptive polynomial mutation (p =
0.0) achieves the fastest convergence speed and best GD and HV metrics for all
algorithms. The hit rate is 100% for NSGA-II and almost 100% for MOCell and
SPEA2 for all p values. In summary, all algorithms for the convergence speed,
GD and HV metrics progressively decrease as p increases.

• ZDT4: This is a multi-modal problem and large jumps in the decision space are
desirable. By studying the convergence speed and hit rate no major difference
can be inferred for p ≥ 0.1 for all algorithms. However, for p = 0.0 MOCell’s
speed is worst and best when p = 0.2. Also the hit rate is worst when p = 0.0.
There is a clear difference between p = 0.0 and p ≥ 0.1. This observation
can only be understood after studying the box plots for all algorithms. When
p = 0.0 there are few outlier values which is an indication of falling in local
optima and of premature convergence. In other words, all algorithms failed in
solving ZDT4 using the non-highly disruptive polynomial mutation in few of
the 100 independent executions. Nonetheless, observing the high IQR values
for the function evaluations with p = 0.0 in Table 2 indicate that MOCell had
problems with ZDT4 using the non-highly disruptive mutation.

• ZDT6: The “-” symbol indicates that it was not possible to generate an accept-
able front with the given function evaluations. This was the case for ZDT6 only
when using p = 0.4 . . .1.0 for NSGA-II and for all p values for SPEA2. Also
regarding the GD and HV metrics both progressively decrease for NSGA2 and
SPEA2 as p increases. MOCell managed to have a 100% success for all p values;
it is interesting how function evaluations increase as p values increase. For ex-
ample the median of needed FEs to generate an acceptable PFknown for p = 0.0
and 1.0 were 15 600 and 21 700, respectively. This indicates that MOCell needed
another 6 000 FEs when it used the highly-disruptive polynomial mutation to
be able to generate an acceptable PFknown.

In summary, the non-highly disruptive outperformed the highly disruptive poly-
nomial mutation but has a high risk of failed runs as seen in ZDT2 and ZDT4. The
difference in performance is substantial. The proposed hybrid polynomial mutation
can generate very competitive results to the non-highly disruptive mutation and at
the same it is prone to local optima and more resilient to premature convergence.

794 M. Hamdan

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g
e
n
e
r
a
t
i
o
n
a
l

d
i
s
t
a
n
c
e

p

ZDT1 NSGA-II

 0.6585

 0.659

 0.6595

 0.66

 0.6605

 0.661

 0.6615

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h
y
p
e
r
v
o
l
u
m
e

p

ZDT1 NSGA-II

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g
e
n
e
r
a
t
i
o
n
a
l

d
i
s
t
a
n
c
e

p

ZDT2 NSGA-II

 0.32

 0.321

 0.322

 0.323

 0.324

 0.325

 0.326

 0.327

 0.328

 0.329

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h
y
p
e
r
v
o
l
u
m
e

p

ZDT2 NSGA-II

 0.00016

 0.00018

 0.0002

 0.00022

 0.00024

 0.00026

 0.00028

 0.0003

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g
e
n
e
r
a
t
i
o
n
a
l

d
i
s
t
a
n
c
e

p

ZDT3 NSGA-II

 0.5146

 0.5148

 0.515

 0.5152

 0.5154

 0.5156

 0.5158

 0.516

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h
y
p
e
r
v
o
l
u
m
e

p

ZDT3 NSGA-II

 0

 0.0005

 0.001

 0.0015

 0.002

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g
e
n
e
r
a
t
i
o
n
a
l

d
i
s
t
a
n
c
e

p

ZDT4 NSGA-II

 0.63

 0.635

 0.64

 0.645

 0.65

 0.655

 0.66

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h
y
p
e
r
v
o
l
u
m
e

p

ZDT4 NSGA-II

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g
e
n
e
r
a
t
i
o
n
a
l

d
i
s
t
a
n
c
e

p

ZDT6 NSGA-II

 0.382

 0.384

 0.386

 0.388

 0.39

 0.392

 0.394

 0.396

 0.398

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h
y
p
e
r
v
o
l
u
m
e

p

ZDT6 NSGA-II

Fig. 2. Box plots for the generational distance (left) and hypervolume metrics using
NSGA-II

On the Disruption-Level of Polynomial Mutation for EMOAs 795

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0.0002

 0.00022

 0.00024

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g
e
n
e
r
a
t
i
o
n
a
l

d
i
s
t
a
n
c
e

p

ZDT1 MOCELL

 0.66

 0.6605

 0.661

 0.6615

 0.662

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h
y
p
e
r
v
o
l
u
m
e

p

ZDT1 MOCELL

 5e-05

 6e-05

 7e-05

 8e-05

 9e-05

 0.0001

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g
e
n
e
r
a
t
i
o
n
a
l

d
i
s
t
a
n
c
e

p

ZDT2 MOCELL

 0.3276

 0.3278

 0.328

 0.3282

 0.3284

 0.3286

 0.3288

 0.329

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h
y
p
e
r
v
o
l
u
m
e

p

ZDT2 MOCELL

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g
e
n
e
r
a
t
i
o
n
a
l

d
i
s
t
a
n
c
e

p

ZDT3 MOCELL

 0.51

 0.511

 0.512

 0.513

 0.514

 0.515

 0.516

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h
y
p
e
r
v
o
l
u
m
e

p

ZDT3 MOCELL

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g
e
n
e
r
a
t
i
o
n
a
l

d
i
s
t
a
n
c
e

p

ZDT4 MOCELL

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

 0.66

 0.67

 0.68

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h
y
p
e
r
v
o
l
u
m
e

p

ZDT4 MOCELL

 0.0005

 0.00055

 0.0006

 0.00065

 0.0007

 0.00075

 0.0008

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g
e
n
e
r
a
t
i
o
n
a
l

d
i
s
t
a
n
c
e

p

ZDT6 MOCELL

 0.394

 0.395

 0.396

 0.397

 0.398

 0.399

 0.4

 0.401

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h
y
p
e
r
v
o
l
u
m
e

p

ZDT6 MOCELL

Fig. 3. Box plots for the generational distance (left) and hypervolume metrics using
MOCELL

796 M. Hamdan

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 0.0006

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g
e
n
e
r
a
t
i
o
n
a
l

d
i
s
t
a
n
c
e

p

ZDT1 SPEA2

 0.658

 0.659

 0.66

 0.661

 0.662

 0.663

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h
y
p
e
r
v
o
l
u
m
e

p

ZDT1 SPEA2

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g
e
n
e
r
a
t
i
o
n
a
l

d
i
s
t
a
n
c
e

p

ZDT2 SPEA2

 0.31

 0.315

 0.32

 0.325

 0.33

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h
y
p
e
r
v
o
l
u
m
e

p

ZDT2 SPEA2

 0.00018

 0.0002

 0.00022

 0.00024

 0.00026

 0.00028

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g
e
n
e
r
a
t
i
o
n
a
l

d
i
s
t
a
n
c
e

p

ZDT3 SPEA2

 0.51

 0.511

 0.512

 0.513

 0.514

 0.515

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h
y
p
e
r
v
o
l
u
m
e

p

ZDT3 SPEA2

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g
e
n
e
r
a
t
i
o
n
a
l

d
i
s
t
a
n
c
e

p

ZDT4 SPEA2

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h
y
p
e
r
v
o
l
u
m
e

p

ZDT4 SPEA2

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0.0022

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g
e
n
e
r
a
t
i
o
n
a
l

d
i
s
t
a
n
c
e

p

ZDT6 SPEA2

 0.375

 0.38

 0.385

 0.39

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h
y
p
e
r
v
o
l
u
m
e

p

ZDT6 SPEA2

Fig. 4. Box plots for the generational distance (left) and hypervolume metrics using SPEA2

On the Disruption-Level of Polynomial Mutation for EMOAs 797

5 CONCLUSIONS

The study in the paper has looked at two well known variants of polynomial muta-
tion used by various researchers interchangeably. The benefits of both variants are
proposed in a hybrid mutation where the disruptive-level can be managed by the
user. The original implementation of polynomial mutation (non-highly disruptive)
can improve all performance metrics of all algorithms used in this study significantly
for 4 out of 5 of the test problems used. However, it suffers from premature con-
vergence as seen in ZDT2 and ZDT4. Therefore, it is better to use the new hybrid
polynomial mutation with 0.2 ≤ p ≤ 0.4. This will give better chances of escaping
from local optima and guaranteeing the best possible convergence and hypervolume
metrics. This means that the mutation will normally use small jumps but occa-
sionally enables large jumps to be able to escape from local optima and make the
algorithm less prone to premature convergence.

In future work, it might be possible to look at how to choose the p value at
run-time according to the performance of the system. This requires collecting the
population metrics such as hypervolume and checking for improvement every few
iterations. If there is no improvement, then the algorithm changes the p value.

6 APPENDIX

• ZDT1:

f1(x) = x1

f2(x) = g(x)
[

1−
√

x1/g(x)
]

g(x) = 1 + 9
n

∑

i=2

xi/(n− 1)

0 ≤ xi ≤ 1, i = 1, . . . , 30

• ZDT2:

f1(x) = x1

f2(x) = g(x)
[

1− (x1/g(x))
2
]

g(x) = 1 + 9

n
∑

i=2

xi/(n− 1)

0 ≤ xi ≤ 1, i = 1, . . . , 30

798 M. Hamdan

• ZDT3:

f1(x) = x1

f2(x) = g(x)
[

1−
√

x1/g(x)− (x1/g(x)) sin(10πx1)
]

g(x) = 1 + 9

n
∑

i=2

xi/(n− 1)

0 ≤ xi ≤ 1, i = 1, . . . , 30

• ZDT4:

f1(x) = x1

f2(x) = g(x)
[

1−
√

x1/g(x)
]

g(x) = 1 + 10(n− 1) +

n
∑

i=2

[xi
2 − 10 cos(4πxi)]

x1 ∈ [0, 1],−5 ≤ xi ≤ 5, i = 2, . . . , 30

• ZDT6:

f1(x) = 1− exp(−4πx1) sin
6(4πx1)

f2(x) = g(x)
[

1− (x1/g(x))
2
]

g(x) = 1 + 9

[

n
∑

i=2

xi/(n− 1)

]0.25

0 ≤ xi ≤ 1, i = 1, . . . , 30

Acknowledgment

The author would like to thank DFG for supporting the research visit.

REFERENCES

[1] Coello, C.—van Veldhuizen, D.—Lamont, G.: Evolutionary Algorithms for
Solving Multi-Objective Problems. Kluwer Academic Publishers, New York, May
2002. ISBN 0-3064-6762-3.

[2] Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
Chichester, UK, 2001.

[3] Deb, K.—Agrawal, R.: Simulated Binary Crossover for Continuous Search Space.
Complex Systems, Vol. 9, 1995, pp. 115–148.

On the Disruption-Level of Polynomial Mutation for EMOAs 799

[4] Deb, K.—Goyal, M.: A Combined Genetic Adaptive Search (Geneas) for Engi-

neering Design. Computer Science and Informatics, Vol. 26, 1996, No. 4, pp. 30–45.

[5] Deb, K.—Pratap, A.—Agarwal, S.—Meyarivan, T.: A Fast and Elitist Mul-
tiobjective Genetic Algorithm: NSGA, II. IEEE Transactions on Evolutionary Com-
putation, Vol. 6, April 2002, No. 2, pp. 182–197.

[6] Deb, K.—Tiwari, S.: Omni-Optimizer: A Generic Evolutionary Algorithm for
Single and Multi-Objective Optimization. European Journal of Operational Research,
Vol. 185, 2008.

[7] Durillo, J.—Nebro, A.—Coello, C.—Luna, F.—Alba, E.: A Comparative
Study of the Effect of Parameter Scalability in Multi-Objective Metaheuristics. In
IEEE Congress on Evolutionary Computing, Hong Kong, June 2008.

[8] Durillo, J.—Nebro, A.—Luna, F.—Dorronsoro, B.—Alba, E.: jMetal: A
Java Framework for Developing Multi-Objective Optimization Metaheuristics. Tech-
nical Report ITI-2006-10, Departamento de Lenguajes y Ciencias de la Computación,
University of Málaga, E.T.S.I. Informática, Campus de Teatinos, December 2006.

[9] Eiben, A. E.—Smith, J. E.:. Introduction to Evolutionary Computing. Springer,
Natural Computing Series, 2nd edition, 2007.

[10] Nebro, A. et al.: The Deme Project. [URL] http://neo.lcc.uma.es/Software/
deme/html/. Accessed December 2008.

[11] Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Publishing Company, Inc., 1989.

[12] Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, Berlin, 3rd Edition, 1996.

[13] Nebro, A.—Durillo, J.—Luna, F.—Dorronsoro, B.—Alba, E.: A Cellular
Genetic Algorithm for Multiobjective Optimization. In David A. Pelta and Natalio
Krasnogor (Eds.): Proceedings of the Workshop on Nature Inspired Cooperative
Strategies for Optimization (NICSO 2006), pp. 25–36, Granada, Spain 2006.

[14] Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Procedures.
CRC Press, 4th edition, 2007.

[15] Srinivas, N.—Deb, K.: Multi-Objective Function Optimization Using Non-
dominated Sorting Genetic Algorithms. Evolutionary Computation, Vol. 2, 1995,
pp. 221–248.

[16] van Veldhuizen, D.—Lamont, G.: Multiobjective Evolutionary Algorithm Re-
search: A History and Analysis. Technical Report TR-98-03, Department of Electri-
cal and Computer Engineering, Air Force Institute of Technology, Wright-Patterson
AFB, Ohio, 1998.

[17] Zitzler, E.—Deb, K.—Thiele, L.: Comparison of Multiobjective Evolution-
ary Algorithms: Empirical Results. Evolutionary Computing, Vol. 8, 2000, No. 2,
pp. 173–195.

[18] Zitzler, E.—Laumanns, M.—Thiele, L.: Spea2: Improving the Strength Pareto
Evolutionary Algorithm. Technical Report 103, Computer Engineering and Networks
Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich (Switzerland)
2001.

800 M. Hamdan

[19] Zitzler, E.—Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative

Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary
Computation, Vol. 3, November 1999, No. 4, pp. 257–271.

Mohammad Hamdan received his Ph.D. in computer science
from Heriot-Watt University/UK in 2000. He also obtained
an M. Sc. in knowledge based systems from same university in
1994. Both degrees were supported by a grant from British
Council. Was appointed as an Assistant Professor in the De-
partment of Computer Science at Yarmouk University in Jordan
in July 2000. In September 2002 he became the Assistant Dean
in the Faculty of Information Technology. In September 2005
he became the Chairman of Computer Science Department. He
is a senior member in IEEE. Since January 2002 he became the

Activity Secretary for Jordan IEEE executive committee and in May 2006 he became
the chair for IEEE Computer/Computational Intelligence Chapter in Jordan. Worked as
project coordinator for TEMPUS JEP project from September 2007 till December 2009.
Also he is the programme coordinator for joint M. Sc. programmes between Yarmouk
and Sunderland Universities since October 2002. He became an Associate Professor of
Computer Science in August 2010.

