
Computing and Informatics, Vol. 29, 2010, 741–756

ISSDC: DIGRAM CODING BASED LOSSLESS DATA
COMPRESSION ALGORITHM

Altan Mesut, Aydin Carus

Computer Engineering Department

Trakya University

Ahmet Karadeniz Yerleskesi

Edirne, Turkey

e-mail: {altanmesut, aydinc}@trakya.edu.tr

Manuscript received 18 August 2008; revised 14 January 2009

Communicated by Jacek Kitowski

Abstract. In this paper, a new lossless data compression method that is based on
digram coding is introduced. This data compression method uses semi-static dic-
tionaries: All of the used characters and most frequently used two character blocks
(digrams) in the source are found and inserted into a dictionary in the first pass,

compression is performed in the second pass. This two-pass structure is repeated
several times and in every iteration particular number of elements is inserted in
the dictionary until the dictionary is filled. This algorithm (ISSDC: Iterative Semi-
Static Digram Coding) also includes some mechanisms that can decide about total
number of iterations and dictionary size whenever these values are not given by the
user. Our experiments show that ISSDC is better than LZW/GIF and BPE in com-
pression ratio. It is worse than DEFLATE in compression of text and binary data,
but better than PNG (which uses DEFLATE compression) in lossless compression
of simple images.

Keywords: Lossless data compression, dictionary-based compression, semi-static
dictionary, digram coding

1 INTRODUCTION

Lossy and lossless data compression techniques are widely used to increase capacity
of data storage devices and to transfer data faster on networks. Lossy data com-

742 A. Mesut, A. Carus

pression reduces the size of the source data by permanently eliminating redundant
information. When the file is uncompressed, only a part of the original information
is retrieved. Lossy data compression techniques are generally used for photo, video
and audio compression, where a certain amount of information loss will not be de-
tected by most users. Lossless data compression is used when it is important that the
original and the decompressed data should be exactly identical. Typical examples
are represented by text documents, executable programs and source codes. Loss-
less compression techniques are generally classified into two groups: entropy based
coding and dictionary based coding.

In entropy based coding, compression takes place based on the frequency of input
characters or character groups. The symbols that occur more frequently are coded
with shorter codewords. For this reason this method is also known as variable length
coding (VLC). A VLC technique can be combined with other compression techniques
to improve compression ratio and it is generally used at the end of the compression
process. The best known entropy based techniques are Huffman Coding [8, 10] and
Arithmetic Coding [11, 20].

In dictionary based coding, frequently used symbol groups (characters, pixels
or any other type of binary data) are replaced with related indexes of a dictionary.
Dictionary-based techniques can be divided into three categories. In static dictio-
nary scheme, the dictionary is the same for all inputs. In semi-static dictionary
scheme, distributions of the symbols in the input sequence are learned in the first
pass, compression of the data is made in the second pass by using a dictionary de-
rived from the distribution learned. In adaptive (dynamic) dictionary scheme, the
dictionary is built on the fly (or it needs not to be built at all, it exists only implicitly)
using the source seen so far. Static dictionary scheme is the fastest in compression
time, but it is only appropriate when considerable prior knowledge about the source
is available. If there is not sufficient prior knowledge about the source, using adap-
tive or semi-static schemes is more effective. In semi-static dictionary scheme, the
dictionary must be sent as side information with the compressed source. For this
reason, it is not suitable for small files. Adaptive techniques are generally faster
than semi-static techniques; because of their capability of doing all of the jobs in
one pass.

Most adaptive dictionary-based techniques have their roots in two landmark
papers by Jacob Ziv and Abraham Lempel. The first paper has been published in
1977 [21], and for this reason the algorithm that is presented in this paper is known
as LZ77. The LZ77 algorithm works by keeping a history window of the most re-
cently seen data and comparing the current data being encoded with the data in the
history window. What is actually placed into the compressed stream are references
to the position in the history window, and the length of the match. A slightly mo-
dified version of LZ77 that provides better compression ratio is described by Storer
and Szymanski [17] in 1982 (LZSS). LZ77 family algorithms are generally combined
with a VLC algorithm to improve compression ratio. For example DEFLATE al-
gorithm [6], which is used in Gzip data compressor and PNG image file format, is
a combination of the LZSS Algorithm and Huffman Coding. The second paper by

ISSDC Data Compression Algorithm 743

Lempel and Ziv has been published in 1978 [22] and the algorithm in this paper
(LZ78) works by entering phrases into a dictionary and then, when a reoccurrence
of that particular phrase is found, outputting the dictionary index instead of the
phrase. There are many modifications of LZ78 algorithm and the most well known
one is Terry Welch’s LZW Algorithm [19]. LZW is more commonly used to compress
binary data, such as bitmaps. UNIX compress and GIF image compression format
are both based on LZW.

Digram coding is one of the best known static dictionary encoder that has been
proposed several times in different forms [3, 4, 9, 15, 16, 18]. In this paper, static
and semi-static forms of digram coding are explained in Section 2. Our algorithm,
which improves the compression ratio of semi-static digram coding by repeating the
encoding process several times, is described in Section 3. Experimental results and
the evaluation of our algorithm are given in Section 4 and Conclusion is given in
Section 5.

2 DIGRAM CODING

Digram coding is a static dictionary technique that is less specific to source data.
In digram coding, the dictionary consists of all letters of the source alphabet fol-
lowed by as many pairs of letters, called digrams, as can be accommodated by the
dictionary [14].

The Digram Encoder reads a pair from the source and searches the dictionary
to see if this pair exists in the dictionary. If it does, the corresponding index is
encoded and the encoder reads another pair from the source for the next step. If
it does not, the first character of the pair is encoded, the second character of the
pair then becomes the first character of the next digram and the encoder reads
another character to complete this digram. This search and replace procedure is
repeated until the end of the source. The algorithm of the digram encoder is given
in Figure 1.

Chr1 = Read a character from the source
Do until end of source {

Chr2 = Read a character from the source
If the digram exist in dictionary {
 The corresponding dictionary index is encoded
 Chr2 = Read a character from the source
}
Else {
 Chr1 is encoded
}
Chr1 = Chr2

}

Fig. 1. The algorithm of the digram encoder

A semi-static implementation of digram coding should contain a two-pass me-
chanism. In the first pass, all of the individual characters and digrams that are used

744 A. Mesut, A. Carus

in the source are found. All of the individual characters are added to the first part
of the dictionary and the most frequently used digrams are added to the second part
of the dictionary. If the source contains n individual characters, and the dictionary
size is d, then the number of digrams that can be added to the dictionary is d− n.
The decoder must know this n value to determine the length of the first and the
second parts of the dictionary. The n and d values and the dictionary that contains
n individual characters and d − n digrams should be written in the destination
file (or sent to receiver) as side information. The size of the dictionary is given in
Equation (1). The second pass of the compression process is similar to the static
digram coding.

dictionary size = 2 + [n+ 2(d− n)] = 2d− n+ 2bytes (1)

The decompression process is also similar in both static and semi-static imple-
mentations. The semi-static implementation uses a one-pass decoding algorithm like
the static one. The main difference between them is that the semi-static implemen-
tation obtains the dictionary (with the n and d values) before the decoding while
the static one has it already. After the dictionary is obtained, all of the elements of
the compressed data are changed with their dictionary meanings in the decompres-
sion process. This simple decoding algorithm runs much faster than the encoding
algorithm.

BPE (Byte Pair Encoding), which is developed by Philip Gage [7], is a multi-
pass digram coding algorithm. The algorithm compresses data by finding the most
frequently occurring pairs of adjacent bytes in the data and replacing all instances
of the pair with a byte that was not in the original data. This process is repeated
until no further compression is possible, either because there are no more frequently
occurring pairs or there are no more unused bytes to represent pairs. The table of
pair substitutions is written before the data is packed. The idea behind ISSDC is
similar with the idea of BPE. However, the encoding process of ISSDC is entirely
different from BPE (Section 3.3) and ISSDC is able to compress more than BPE
(Table 3).

3 ITERATIVE SEMI-STATIC DIGRAM CODING (ISSDC)

We developed an algorithm that is based on semi-static digram coding and we used
an iterative approach in this algorithm to improve the compression ratio. This multi-
pass algorithm does not fill all of the second part of the dictionary in one pass. The
second part is divided by the number of iterations and each iteration fills its own
free space. A digram which is added in the nth iteration will become a character in
the (n+ 1)th iteration.

In most English texts, the ‘e’ character pair (e and space) is the most frequently
occurring digram. For example, book2 file of the Calgary Compression Corpus [1, 2],
which is 610 856 bytes in size, contains 15 219 ‘e’ pairs. This means that if we can
encode only this pair with 1 byte instead of 2 bytes, the file size will be decreased

ISSDC Data Compression Algorithm 745

to 595 637 bytes. The 10 most frequently occuring pairs in this file are given in
Table 1.

Pair ASCII Occurrence
Number

e 101 32 15 219

t 32 116 11 205

t h 116 104 10 226

s 115 32 9 591

h e 104 101 8 854

a 32 97 8 391

i n 105 110 7 779

s 32 115 7 341

e r 101 114 7 030

o n 111 110 6 837

Total 92 473

Table 1. The 10 most frequently occuring pairs in book2 file

If the 10 most frequently occuring pairs in Table 1 are added to a dictionary and
digram coding is performed with this dictionary to compress book2 file, some words
can be encoded in different ways. For example, if the space character before ‘the’
word was compressed together with the character before it, then the ‘the’ word will
be compressed with ‘th’ and ‘e’ digrams. Otherwise, it will be compressed with ‘t’
and ‘he’ digrams. This means that the compression gains of these digrams will be
less than their occurrence numbers and the decrease in file size will not be 92 473
bytes (it will be 72 960 bytes).

ISSDC algorithm eliminates some digrams to avoid this inconsistency. A di-
gram is eliminated if its first character is equal to the second character – or its
second character is equal to the first character - of one of the digrams that are al-
ready added in the current iteration. Therefore, if we use ISSDC algorithm, the ‘t’,
‘he’, ‘a’ and ‘s’ digrams in Table 1 will not be added to the dictionary in the first
iteration.

The book2 file contains 96 individual characters and there are 160 codes left
for representing digrams. If the iteration number parameter of ISSDC is set as 16,
every iteration adds 10 most frequently occuring pairs (except eliminated ones) to
the dictionary. The pairs that are added to the dictionary in the first iteration are
given in Table 2. In this table, dictionary indexes start at index 96, because the
0–95 interval is used for representing the individual characters of the source. After
the digram coding is performed with this dictionary on book2 file, the file size is
decreased by 76 762 bytes and the new file contains 106 individual characters. If
the ‘97,96’ digram is added to the dictionary in the next iteration, the ‘the’ word
and the space character after it can be encoded as a number between 106 and 115
(4 characters compressed to 1 byte).

746 A. Mesut, A. Carus

Dictionary Pair ASCII Occurrence
Index Number

96 e 101 32 15 219

97 t h 116 104 10 226

98 s 115 32 9 591

99 i n 105 110 7 779

100 e r 101 114 7 030

101 o n 111 110 6 837

102 t 116 32 6 238

103 o r 111 114 4 772

104 e n 101 110 4 583

105 LF . 10 46 4 487

Total 76 762

Table 2. The pairs that are added to the dictionary in the first iteration

3.1 Compression Algorithm

The compression algorithm copies the source file into RAM to avoid large amount
of file I/O operations. During this copy process, the characters that are used by the
source are also found. These characters and the total number of them (n) are stored
to form the first part of the dictionary. The real codes of the characters (ASCII
codes) in RAM are changed with dictionary indexes of these characters.

If the number of iterations (i) and the length of the dictionary (d) are given, the
second part of the dictionary is divided into i equal parts. Thus, in every iteration
(d − n)/i digrams are added to the second part of the dictionary. After that, the
copy of the source file in RAM is compressed by the digram encoder.

ISSDC algorithm also contains mechanisms that can decide about the number
of iterations and the length of the dictionary automatically when they are not given.
If the number of iterations is given, but the dictionary size is not, dictionary size
is accepted as 1 024, and the algorithm works similarly as explained above. If the
dictionary size is given, but the number of iterations is not, each iteration step
continues until the repeat number of the most frequently used digram that is found
in current iteration is halved. This means that, in each iteration step, the repeat
number of the digrams that are added to the dictionary must be larger than or
equal to half that of the first added one. So, the iteration number and the number
of digrams that are added in each iteration are not known at the beginning.

If both the number of iterations and the dictionary size are not given, the al-
gorithm runs in automatic decision mode. The initial dictionary size will be the
smallest integer, which is power of two and larger than 2n. After the initial dictio-
nary size is defined, the method that adds the digrams to the dictionary until most
frequently occurring digram is halved is used; but this time, when the dictionary
is completely filled, a check is made for deciding whether doubling the dictionary
size is necessary or not. Doubling the dictionary size means that one more bit must

ISSDC Data Compression Algorithm 747

be used to represent each character. For example, if we increase the dictionary size
from 256 to 512, we must use 9 bits to represent a character, and this will increase
the source size by 12.5% (percentage of 9/8− 1). Doubling the dictionary size will
not be effective when the compression ratio cannot cover up this expense.

It is hard to predict whether it is valuable or not, before doubling the dictionary
and making the compression. ISSDC uses the repeat number of the digram that is
most frequently occurred in last iteration (m) for making a decision. A threshold is
found with dividing this number by 2 and multiplying by dictionary size. If 12.5%
of the source is smaller than this threshold, the dictionary size is doubled. This
threshold value is defined with the help of many compression test results.

Assume that the repeat number of the most frequently occurring digram is
m = 20. If the dictionary is doubled when d = 256, there will be a free space
in dictionary for 256 new digrams. We can predict that these 256 digrams have an
average repeat number ofm/2 = 10. When we change 10 digrams with 10 characters,
the size of the source is decreased by 10 characters. Therefore, we can say that the
size of the source can be decreased by 256× 10 = 2 560 characters (2 560 bytes) on
average. If 12.5% (1/8) of the source is smaller than 2 560, ISSDC predicts that
doubling the dictionary size can be effective.

It can be easily calculated that, if the dictionary size is increased from 512
to 1 024, the expense in the source size will be 11.1% (percentage of 10/9 − 1),
and if it is increased from 128 to 256, the expense will be 14.3% (percentage of
8/7−1). Although these values are a little far from 12.5%, ISSDC use 12.5% for all
conditions, because this little difference will not affect the success of the prediction
in a large amount. Therefore, the main criterion about increasing the dictionary
size is given in Equation (2).

d×m÷ 2 < File Size÷ 8 (2)

If the m value is too small, even if the criterion given above is true, if the
dictionary size is increased, repeat numbers of digrams might decrease to zero and
cause infinite loop. Therefore, we need an extra criterion to avoid this infinite loop
state. We select this criterion as follows: if the m value is smaller than 8, do
not increase the dictionary size. Another extra criterion is “do not increase the
dictionary size if it is 1 024”. The reason is that when d = 2 048 compression ratio
will not be changed in a large amount and compression time will be increased. The
final criteria are given in Equation (3).

d×m < File Size÷ 4 and d < 1 024 and m > 8 (3)

After all iterations are finished and the dictionary is completely filled, the n
and d values and the dictionary are added to the beginning of the destination file.
ISSDC uses five different dictionary sizes, namely 64, 128, 256, 512 and 1 024. In
order to represent d in 1 byte (256, 512 and 1 024 cannot be represented in 8 bits),
log2 d is used instead of the d value. After the dictionary, the compressed state of

748 A. Mesut, A. Carus

the source file is added and the destination file is closed. Figure 2 shows the parts
of the destination file.

d n n used characters d-n digrams Compressed state of the source

0 1 2 n+2 514-n

[1090-n]

[2370-n]

Fig. 2. Parts of the destination file

If d is greater than 256, the size of the digrams part of the dictionary in the
destination file is not 2(d−n) bytes like given in Equation (1). Because the values of
the digrams in 257–512 interval may be larger than 255 and the values of the digrams
in 513–1 024 interval may be larger than 511, these items must be represented with
9 bits and 10 bits, respectively. The size of the dictionary in destination file when d is
equal to 1 024 is given in Equation (4).

2 + n+ 2(256− n) + 2(256)× 9/8 + 2(512)× 10/8 = 2 370− nbytes (4)

If d is 256, ISSDC uses the standard fputc C function for all parts of the desti-
nation file; but if d is not 256, it uses some other special functions in order to write
smaller 6 bits and 7 bits values and larger 9 bits and 10 bits values. These functions
affected the speed of the algorithm in a negative way.

The dictionary size and the number of iterations can be given as parameters to
ISSDC encoder. If these values are not given as parameters, it is assumed that they
are zero, and the algorithm runs in automatic decision mode. ISSDC algorithm is
given in Figure 3.

An example is given below to clarify the compression process.
Assume to compress abracadabra word with ISSDC. In the first pass 5 characters

that are used in this word (a, b, c, d and r) are found and they are added to
the dictionary. In the second pass (the first pass of the first iteration), the most
frequently used digrams, which are ab, br and ra are found, and they are added to
5th, 6th and 7th places in the dictionary. In the second pass of the first iteration, the
digram encoder compressed the word using the dictionary. In second iteration, the
same process is done for 5(ab), 7(ra) digram. Figure 4 illustrates the compression
process.

3.2 Decompression Algorithm

ISSDC decoder is a one-pass coder and it works very fast. It uses a recursive
approach for obtaining the extraction of a digram quickly. Think about decoding
8(abra) that is given in the previous example. In the first iteration 8 is decompressed
as 5 and 7. These two characters represent digrams, because they are not smaller
than the n value, which is 5. Thus, recursive process must continue for both of

ISSDC Data Compression Algorithm 749

I = number of iterations (given as a parameter)
D = dictionary size (given as a parameter)
Open source and destination files
Find used characters while copying source file to R AM
N = number of used characters
Add used characters to the first part of the dictio nary
While D > N {
 If I and D are given { limit = N + (D - N) / I }
 If I is given but D is not { limit = N + (1024 - N) / I }
 If D is given but I is not { limit = D }
 If I and D are not given{
 D = limit = the smallest integer which is
 power of 2 & greater than 2 * N
 }

 Find digrams and sort them in descending order
 according to # of their occurrance

 M = Occurrence # of the most freq. occurred digram

 If I is given {
 Add (limit – N) most freq. occurred digrams to di ctionary
 } Else {
 Add digrams to dict. while Repeat # of digrams >= M/2
 }

 If D is not given & D < 1024 & D*M > SourceSize/4 & M > 8 {
 D = D * 2
 }

 Perform Digram Coding (source is compressed in RAM)

 N = limit
 If I > 0 { I = I – 1 }
}
Write D, N, dictionary & the source in RAM to desti nation file
Close source and destination files

Fig. 3. The compression algorithm of ISSDC

a
b
c
d
r
0 1
1 4
4 0

0
1
2
3
4
5
6
7

abracadabra

dictionary

5720357

a
b
c
d
r

0
1
2
3
4
5
6
7

5 78

0 1
1 4
4 0

82038

1st pass 1st pass

1st iteration 2nd iteration

2nd pass 2nd pass

ab
br
ra

abra

Fig. 4. Compression process with ISSDC

750 A. Mesut, A. Carus

them. In the second iteration, 5 is decompressed as 0 and 1, and 7 is decompressed
as 4 and 0. All of these values are smaller than 5. This means that they represent
characters, not digrams. As a result, 0140(abra) is extracted. The recursive function
of Digram Decoding used in ISSDC is given in Figure 5.

Digram_Decoding (int source, file dest){
 if (source < n){ // source is an individual char

 write the dictionary meaning of the source to des t
 }
 else { // source is a digram
 Digram_Decoding (1st character of the source, d est);
 Digram_Decoding (2nd character of the source, d est);
 }
}

Fig. 5. The recursive digram decoding procedure used in ISSDC

3.3 Similarities and Differences Between ISSDC and BPE

Both algorithms perform multi-pass digram coding and both of them use the un-
used ASCII codes to represent digrams. However, while BPE cannot change the
dictionary size, ISSDC is able to increase the dictionary size to 512 or 1 024, and
decrease it to 128 or 64 for better compression ratio. There is no need to give any
parameters to ISSDC, it can be run in automatic decision mode. For example, if
the source file is too small and there are very few different symbols, there will be
not much frequently occurring pairs in the source. In this kind of situation, ISSDC
automatically chooses 64 for dictionary size. This means that every symbol in the
source will be represented with 6 bits instead of 8 bits and so the size of the source
will be decrased by 25% even if there are no frequently occurring pairs to compress.

ISSDC compresses the whole source in one loop, while BPE divides the source
into blocks and compresses each block separately. In every iteration of BPE, the
algorithm finds the most frequently occurring pair and replaces the pair throughout
the data buffer with an unused character. However, ISSDC algorithm can handle
more than one frequently occurring pair in the same iteration. Therefore, the number
of iterations in ISSDC is less than the number of iterations in BPE, but the iteration
procedure of ISSDC is larger and slower.

Both algorithms perform expansion in a single-pass mechanism. The difference
between them is the expansion of ISSDC uses a recursive function, while the expan-
sion of BPE includes a stack structure. However, this is not a big difference since
recursive functions use stacks implicitly.

4 EXPERIMENTAL RESULTS

We made two different comparisons to evaluate the performance of ISSDC: The first
one is about the performance of ISSDC on different data types while the second one
is only concerned with the performance of ISSDC on images.

ISSDC Data Compression Algorithm 751

4.1 Evaluation Methodology

In our first comparison, we compared ISSDC with another digram coding based
algorithm (BPE), a traditional dictionary-based algorithm (LZW) and one of the
best dictionary-based algorithms that uses LZSS and Huffman Coding (DEFLATE).
We used Gzip 1.2.4 for DEFLATE, the C code of Mark Nelson for LZW [12]
and the C code of Philip Gage for BPE [7]. Both of these codes were compiled
with GCC compiler with Best Optimization Option (-O3). All algorithms were
used with their maximum compression options: -9 for DEFLATE; BITS = 14
for LZW; BLOCKSIZE = 10 000, HASHSIZE = 8 192, MAXCHARS = 200 and
THRESHOLD = 3 for BPE. The Calgary Compression Corpus [1, 2] was used as
test data for this comparison. This corpus contains 14 files that are 3 141 622 bytes
in size.

In our second comparison, we chose GIF [5] and PNG [13] methods as references.
Both of these widely used lossless image compression methods use dictionary-based
data compression algorithms like ISSDC (GIF uses LZW algorithm and PNG uses
DEFLATE algorithm). For this comparison, we selected 11 organisation logos1

from different internet sites that have a small number of colors and low complexity.
We did not select photographs, because photographs are generally compressed with
lossy techniques. NConvert v4.95 image compression utility is used to perform GIF
and PNG compression. In PNG compression -clevel 9 parameter is used to obtain
maximum compression ratio.

All of these logos were converted first to 8-bit per pixel PCX image format and
then compressed with GIF, PNG and ISSDC algorithms. We choose PCX instead
of BMP because it has smaller overhead, which equals 896 bytes (128 (header) +
768 (map table: 3 × 256) = 896). The overhead of BMP is generally 1 078 bytes
(54 (header) + 1 024 (map table: 4 × 256) = 1 078), but if the image width is not
multiple of 4, it will be larger. ISSDC compresses file header and map table together
with pixel data.

The time measurements in both comparisons were evaluated on a computer that
has Intel Core 2 Duo T5500 1.66GHz CPU and 2GB 667MHz DDR2 RAM.

1 http://conferences.computer.org/icws/2005/images/IEEE-logo.gif,
http://www.ilofip.org/pictures/ilo\textunderscorelogo.gif,
http://blogs.zdnet.com/open-source/images/iso\textunderscorelogo.gif,
http://www.fao.org/sd/2002/img/KN0801fao.gif,
http://www.dalequedale.com/media/LogoUnicef.gif,
http://www.worldbank.org/wbi/qcs-1/logos/Logo-WBank.gif,
http://www.baumholder.army.mil/media/det7/natologo.gif,

http://www2.oecd.org/pwv3/NewLogoOECD.GIF,
http://www.worldatlas.com/webimage/flags/specalty/olympic.gif,
http://www.ioccg.org/news/Feb2008/unesco.gif,
http://www.leb.emro.who.int/search/whologofinal7.bmp.

752 A. Mesut, A. Carus

4.2 Results of Comparisons

The results of compressing The Calgary Compression Corpus with BPE, LZW and
DEFLATE algorithms with their best compression ratio modes and ISSDC with its
automatic decision mode are presented in Table 3. Table 4 has four different ISSDC
results which are different from each other with their parameter combinations. In
both of these tables bold values indicate the best results and compression efficiency
is expressed as output bits per input character.

File Name File Size ISSDC BPE LZW DEFLATE

bib 111 261 43 294 56 631 48 641 34 900

book1 768 771 337 491 415 094 348 412 312 281

book2 610 856 276 044 321 566 293 823 206 158

geo 102 400 62 725 73 707 79 520 68 414
news 377 109 195 837 231 976 201 643 144 400

obj1 21 504 12 722 13 313 15 872 10 320

obj2 246 814 130 155 149 892 208 944 81 087

paper1 53 161 23 482 28 529 26 901 18 543

paper2 82 199 33 760 42 148 38 503 29 667

pic 513 216 61 096 61 833 65 656 52 381

progc 39 611 17 096 20 506 20 966 13 261

progl 71 646 24 494 29 734 28 939 16 164

progp 49 379 16 132 20 872 21 033 11 186

trans 93 695 36 317 44 869 41 777 18 862

Total Size (bytes) 1 270 645 1 510 670 1 440 630 1 017 624

Efficiency (bits/char) 3.24 3.85 3.67 2.59
Compression Time (s) 1.56 1.87 0.35 0.75
Decompression Time (s) 0.16 0.32 0.37 0.46

Table 3. Results of compressing Calgary Corpus

Table 3 shows that ISSDC automatic decision mode is worse than DEFLATE,
but better than the other two algorithms in compression efficiency. In all files of
Calgary Corpus, ISSDC has the second best compression ratio except it has the best
ratio in geo file. Although ISSDC is the best algorithm in decompression speed, it
is only better than BPE in compression speed.

Table 4 shows that compression ratio improves with increasing dictionary size
and total number of iterations. However, the efficiency of increasing the number of
iterations is lowered at a particular point, and after that point the compression ratio
improves a little while the compression time increases linearly. It can be seen from
Table 3 and Table 4 that automatic decision mode can obtain an optimal solution
that has a good compression ratio with an acceptable compression time.

Like with other dictionary-based algorithms, the decompression speed of ISSDC
is faster than the compression speed. It is clearly seen that the decompression time
does not depend on to the total number of iterations in the compression because,

ISSDC Data Compression Algorithm 753

File Name File Size d = 512 d = 512 d = 1 024 d = 1 024
i = 10 i = 20 i = 10 i = 20

bib 111 261 48 805 47 865 43 167 43 355
book1 768 771 366 843 365 074 344 053 339 278

book2 610 856 306 686 308 422 280 097 275 314

geo 102 400 62 807 62 717 64 539 64 167
news 377 109 215 630 212 358 198 217 196 074

obj1 21 504 13 048 12 996 12 757 12 732

obj2 246 814 148 710 148 082 131 300 130 461

paper1 53 161 26 201 25 927 24 171 23 402

paper2 82 199 37 452 37 039 34 539 33 854

pic 513 216 63 773 62 942 63 363 61 237

progc 39 611 19 191 19 015 17 539 17 243

progl 71 646 28 910 29 157 25 266 24 393

progp 49 379 18 901 18 420 16 867 16 206

trans 93 695 42 866 42 538 37 089 35 938

Total Size (bytes) 1 399 823 1 392 552 1 292 964 1 273 654

Efficiency (bits/char) 3.56 3.55 3.29 3.24
Compression Time (s) 1.09 1.33 1.39 1.88
Decompression Time (s) 0.16 0.16 0.16 0.16

Table 4. Results of ISSDC with different parameter combinations

no matter how many iterations are used in the compression, the decompression is
always done in one-pass.

The results of compressing selected images are given in Table 5. In this table bold
values indicate the best results. In this comparison ISSDC was used in automatic
decision mode while PNG was used in its best compression ratio mode and GIF was
used with 89a format. PNG gives the best results only in 2 files while ISSDC is the
best in 9 files. The results show that the compression ratio of ISSDC is very good
when it is used with simple images.

5 CONCLUSION

The dictionary-based compression method presented in this paper can achieve good
compression ratio especially with simple images and good decompression speed for
all types of data. In most cases, the decompression speed is more important than
the compression speed because it is more often used (images are coded once but
viewed many times, files of an application are compressed once when the setup
of this application is prepared, but later, decompression is performed many times
for installation of this software, etc.). For this reason, the decompression speed of
ISSDC algorithm is valuable.

Elimination of unnecessary items from the dictionary may increase compression
ratio, but it may also increase compression time. For instance, in the example of
Section 3.1, ISSDC compressed abra with ab and ra digrams. Therefore br digram

754 A. Mesut, A. Carus

Image Name width height ISSDC PNG GIF

IEEE-logo 458 147 2 395 3 233 4 286
ilo logo 400 377 7 702 9 031 9 775
iso logo 223 205 3 336 3 997 4 609
KN0801fao 473 473 21 349 23 583 23 784
LogoUnicef 295 269 23 128 22 545 25 691
Logo-WBank 510 224 8 436 9 155 11 687
natologo 500 375 9 324 10 462 11 077
NewLogoOECD 228 63 2 293 2 799 3 078
olympic 316 209 5 971 6 130 6 495

unesco 373 292 2 712 3 401 6 187
who logo final 7 383 312 14 706 14 507 16 656

Total Size (bytes) 101 352 108 843 123 325
Compression Time (s) 0.30 0.87 0.21

Table 5. Lossless image compression results

in the 6th place of the dictionary is never used. We developed a mechanism that
can eliminate unused digrams from the dictionary. By using this mechanism the
compression ratio was increased by nearly 3%. However, this implementation was
not very suitable because of its negative effect to the compression time.

REFERENCES

[1] Bell, T.C.—Cleary, J.G.—Witten, I. H.: Text Compression. Prentice Hall,
Englewood Cliffs, NJ, 1990.

[2] Bell, T.C.—Witten, I. H.—Cleary, J.G.: Modeling for Text Compression.
Computing Surveys, Vol. 21, 1989, No. 4, pp. 557–591.

[3] Bookstein, A.—Fouty, G.: A Mathematical Model for Estimating the Effec-
tiveness of Bigram Coding. Information Processing and Management, Vol. 12, 1976,
pp. 111–116.

[4] Cortesi, D.: An Effective Text-Compression Algorithm. Byte, Vol. 7, 1982, No. 1,
pp. 397–403.

[5] CompuServe: Graphics Interchange Format Version 89a. CompuServe Incorporated,
Columbus, Ohio, 1990.

[6] Deutsch, P.: DEFLATE Compressed Data Format Specification Version 1.3. Net-
work Working Group, Request for Comments 1951, 1996.

[7] Gage, P.: A New Algorithm For Data Compression. The C Users Journal, Vol. 12,
1994, No. 2, pp. 23–38.

[8] Huffman, D.A.: A Method for the Construction of Minimum-Redundancy Codes.
Proceedings of the Institute of Radio Engineers, Vol. 40, 1952, pp. 1098–1101.

[9] Jewel, G.C.: Text Compaction for Information Retrieval Systems. IEEE Syst.,
Man and Cybernetics SOC. Newsletter, Vol. 5, 1976, No. 2, pp. 4–7.

ISSDC Data Compression Algorithm 755

[10] Knuth, D.E.: Dynamic Huffman Coding. Journal of Algorithms, Vol. 6, 1985,

pp. 163–180.

[11] Moffat, A.—Neal, R.M.—Witten, I. H.: Arithmetic Coding Revisited. ACM
Transactions on Information Systems, Vol. 16, 1995, pp. 256–294.

[12] Nelson, M.—Gail, J.: The Data Compression Book. M&T Books, 1995.

[13] Randers-Pehrson, G.: PNG (Portable Network Graphics) Specification Version
1.2. PNG Development Group, 1999.

[14] Sayood, K.: Introduction to Data Compression. Morgan Kaufmann, San Francisco,
1996.

[15] Schieber, W.D.—Thomas, G.W.: An Algorithm for Compaction of Alphanu-
meric Data. Journal of Library Automation, Vol. 4, 1971, pp. 198–206.

[16] Snyderman, M.—Hunt, B.: The Myriad Virtues of Text Compaction. Datama-
tion, Vol. 16, 1970, No. 12, pp. 36–40.

[17] Storer, J.A.—Szymanski, T.G.: Data Compression Via Textual Substitution.
Journal of the ACM, Vol. 29, 1982, pp. 928–951.

[18] Svanks, M. I.: Optimizing The Storage of Alphanumeric Data. Canad. Datasystems,
1975, May, pp. 38–40.

[19] Welch, T.A.: A Technique for High-Performance Data Compression. IEEE Com-
puter, Vol. 17, 1984, No. 6, pp. 8–19.

[20] Witten, H.—Neal, R.M.—Cleary, R. J.: Arithmetic Coding for Data Com-
pression. Communications of the ACM, Vol. 30, 1987, pp. 520–540.

[21] Ziv, J.—Lempel, A.: A Universal Algorithm for Sequential Data Compression.
IEEE Transactions on Information Theory, Vol. 23, 1977, pp. 337–343.

[22] Ziv, J.—Lempel, A.: Compression of Individual Sequences via Variable-Rate Cod-
ing. IEEE Transactions on Information Theory, Vol. 24, 1978, pp. 530–536.

Altan Mesut received his B. Sc. degree from Istanbul Univer-
sity, Istanbul, Turkey, in 1998 and his M. Sc. and Ph.D. degrees
from Trakya University, Edirne, Turkey, in 2002 and 2006, re-
spectively, all in computer science. From 1998 to 2005 he was
a research assistant and from 2005 to 2007 a teaching assistant
in Computer Engineering Department of Trakya University. He
has been working as an Assistant Professor in this department
since 2007. His areas of research include data structure, data
compression, data mining and computer graphics.

756 A. Mesut, A. Carus

Aydin Carus received his B. Sc. degree in mathematics in 1991

and his M. Sc. and Ph.D. degrees in computer science in 1994
and 1997, respectively, all from Trakya University, Edirne, Tur-
key. From 1991 to 1996 he worked as a system analyst in Com-
puter Center of Trakya University and from 1996 to 1997 as
a teaching assistant in Computer Engineering Department of
Trakya University. He has been an Assistant Professor in this
department since 1997. His research interests include data struc-
ture, data compression, pattern matching, data mining and soft-
ware engineering.

