Computing and Informatics, Vol. 29, 2010, 719-740

DBT-5: AN OPEN-SOURCE TPC-E IMPLEMENTATION
FOR GLOBAL PERFORMANCE MEASUREMENT
OF COMPUTER SYSTEMS

Rilson O. NASCIMENTO, Paulo R. M. MACIEL

Centro de Informdtica

Universidade Federal de Pernambuco
Caiza Postal 7851 CDU — 50.732-970
Recife, PE, Brazil

e-mail: {rilson, prmm}@cin.ufpe.br

Manuscript received 2 June 2008; revised 8 December 2008
Communicated by Wtodzimierz Funika

Abstract. TPC-E is the new benchmark approved by the TPC council. It is de-
signed to exercise a brokerage firm workload, which is representative of current
On-Line Transaction Processing workloads. In this paper we present DBT-5, a fair
usage open-source implementation of the TPC-E benchmark. In addition to re-
porting about the design and implementation of the tool, experimental results from
a system running a database engine are also described. The significance of this work
is that it provides an environment where recent innovations in the OLTP workload
field can be evaluated.

Keywords: Performance evaluation, benchmarks, TPC-E, database workload

Mathematics Subject Classification 2000: 68M20

1 INTRODUCTION

Performance is a significant facet of any transaction processing system. The response
time is critical for end users as much as transaction throughput is important for
system administrators. In this typical corporative scenario, companies cannot waste
money on systems that are unable of sustaining satisfactorily their business with

720 R. O. Nascimento, P. R. M. Maciel

scalability and performance. Therefore, the companies need instruments that report
system performance in a way that rational comparisons can be made among different
systems, that finally can lead to support the decision making process.

In order to answer to this need, hardware and software vendors formed an inde-
pendent consortium called the Transaction Processing Performance Council (TPC),
which defines representative transaction processing systems workloads that can be
used to make such coherent comparisons [1].

The TPC Benchmark E (TPC-E) [7] is intended to model a complex online
transaction processing (OLTP) workload. It is patterned after a brokerage firm
workload, with multiple transaction types, balanced mixture of disk input/output
and processor usage. Like its predecessor TPC-C, the workload also specifies skewed
or non-uniform access to the tables, which better simulates the OLTP activity. The
TPC-E aims at replacing the aging TPC-C benchmark, becoming one of the TPC
mainstream benchmarks together with TPC-DS.

The DBT-5 [16] performance tool was based on the release 1.0.0 of the TPC-E
specification. As of writing this paper, 1.6.0 is the current version of the specifi-
cation. According to the TPC Policies [8], test results on different versions of the
benchmark are considered comparable within the same major revision (the leftmost
position of the version number); for instance, test results on 1.0.0, 1.5.0, 1.5.1, and
1.6.0 are all comparable. We plan to update DBT-5 to adhere to the next major
release of TPC-E (2.0.0).

In addition to their commercial purpose, the TPC benchmarks have been ex-
tensively used in research. Llanos implemented the TPC-C workload to be used
in parallel and distributed systems [2]; Leutenegger and Dias modeled the TPC-C
benchmark [6] to study access patterns; Sivasubramaniam created a synthetic work-
load generator for TPC-H [4]; among other papers. It is important that the scientific
community and the industry proceed in their efforts to improve the existing systems
by counting on a tool that implements recent innovations in the OLTP workload
simulation field. The aim of DBT-5 is to provide an environment where these in-
novations can be measured, modeled, and characterized, so that new advancements
might take place.

While DBT-5 is a compliant TPC-E implementation, as we will demonstrate
in later sections, its results or metrics should not be compared to those found in
official results published by TPC. DBT-5 is a fair-use TPC-E implementation, thus,
its commercial use is prohibited. However, the use for non-commercial purposes
is valid and encouraged. The primary metric reported by the DBT-5 workload is
the number of trade-result transactions executed per second, which is expressed as
Trade-Result Transactions per Second (TRTPS).

The rest of this paper is organized as follows. In the next section we provide
a synopsis of the TPC-E workload, intending to let this paper be plausibly self-
contained. Section 3 discusses DBT-5’s performance metric. Overall design and
implementation of the tool is presented in Section 4. After that, we present the
validation of our tool against the TPC-E specification, followed by an example of
application. Concluding remarks appear in the last section.

DBT-5 721

2 TPC-E WORKLOAD SYNOPSIS

This section provides an outline of the TPC-E benchmark. For detailed information
about the benchmark and the TPC, please see the TPC-E specification [7], and the
TPC web site: http://www.tpc.org. The TPC-E benchmark exercises a variety of
on-line transactions, simulating current OLTP applications. Due to this fact, some
TPC-E features, like the database schema and the transactions, are more complex
than those of its predecessor, the TPC-C benchmark. The main system component
was tested is the central database engine, where the transactions run.

TPC-E models a brokerage firm that interacts with customers and with the
market exchange. The customers can trade requests and inquire the brokerage
house; the market can send feedback from triggered orders. The central database
is the repository from these three entities, Customer, Brokerage House and Mar-
ket. The database consists of 33 relations, organized in four sets: Market, Cus-
tomer, Broker and Dimension. The Dimension set contains ancillary data used
by the other relations, like tax rates, addresses and zip codes. The database size
is defined as a function of the cardinality of the Customer relation, i.e., all other
relations must increase according to the size of the Customer table. The maxi-
mum throughput attainable also depends upon the Customer’s cardinality. There-
fore, to get a desired throughput, the Customers table must be sized appropria-
tely.

Transaction type Weight Access | Mix% | 90% Response Time
Constraint

Trade-Order Heavy R/W 10.1 2s
Trade-Result Heavy R/W 10 2s
Trade-Lookup Medium R/O 8 3s
Trade-Update Medium R/W 2 3s
Trade-Status Light R/O 19 1s
Customer Position | Mid-Heavy | R/O 13 3s
Broker Volume Mid-Heavy | R/O 4.9 3s
Security Detail Medium R/O 14 3s
Market Feed Medium R/W 1 2s
Market Watch Medium R/O 18 3s
Data Maintenance Light R/W - -
Trade-Cleanup Medium R/W - -

Table 1. TPC-E transactions

The TPC-E benchmark defines twelve transactions; ten of them have a specific
mix to be observed during a run. The transactions differ with respect to the type of
access (read-only or read-write) and the load it imposes on the system, as depicted
in Table 1. The weight attribute provides a means for characterizing the load that
each transaction imposes on the system in terms of I/O and CPU. During a workload

722 R. O. Nascimento, P. R. M. Maciel

run, at least 90 % of each transaction type must have a response time less than or
equal to the constraint specified in Table 1.

To publish an official TPC-E result the test sponsors must include the primary
metrics that the specification requires: the throughput rating, expressed in tpsE;
the price/tpsE ratio, which takes into account the cost of the pre-configured system
evaluated; and the availability date, which states when all products used in the
test will be commercially available. tpsE represents the number of trade-result
transactions executed per second during a run. Unlike TPC-C, the TPC-E workload
defines neither display layouts nor thinking/keying times. The absence of these
characteristics leads to simplifications in the user emulation.

EGen is a TPC provided software package that accompanies TPC-E and it is
designed to facilitate its implementation. The main components of EGen are EGen-
Loader, EGenDriver and EGenTxnHarness. EGenLoader is used to generate data
for the database; it has two built-in loaders, one that generates output flat files,
and another that loads a Microsoft SQL Server database; EGenLoader can be ex-
tended to support direct loading of other databases. We extended EGenLoader to
support PostgreSQL, as we will show in the next section. EGenDriver facilitates
the implementation of a driver; it has the following components: EGenDriverCE
(Customer Emulator), EGenDriverMEE (Market Exchange Emulator) and EGen-
DriverDM (Data Maintenance). EGenTxnHarness is a TPC provided C++ class
that defines the transaction logic, such class is not allowed to be changed by the
sponsors. This logic is used together with the transactions defined on the database
server.

With the goal of accurately representing today’s real-world OLTP systems, the
TPC-E database is populated with data distributions based on the 2000 U.S. and
Canada census and actual listings on the New York Stock Exchange [9] and Nas-
daq [10]. Tt is also important to mention that TPC-E was designed to ensure a level
playing field between participants, by defining a common software package that
all players should use to implement the benchmark. This is an important step to
ensure that a fair testing process is in place, avoiding the misleading and biased
benchmarking games [3).

Besides evaluating the performance of the system under test, our tool might be
also used to analyze some aspects of the benchmark itself. The TPC-E benchmark
assumes skewed access to the rows, i.e., within a table some rows are referenced
more frequently than others. For example, in the Customer table, it is expected
some customers are more exercised than others in order to model the behavior of
a real OLTP application.

In order to verify that, we collected one million occurrences of the Customer 1D
field generated by the workload during a test run. These numbers were created
by the non-uniform random number generator, as specified by the TPC-E EGen
software package [7]. In Figure 1 we plot the frequency distribution of Customer ID.
The non-uniformity of access with respect to the Customer ID is visible whereas
some IDs are more accessed than others.

DBT-5 723

7000

6000

0 130 260 390 520 650 780 910
Customer ID

Fig. 1. Frequency distribution of Customer ID

3 PERFORMANCE METRICS

The primary metric reported by the workload is the number of trade-result trans-
actions executed per second, which is expressed as Trade-Result Transactions per
Second (TRTPS). This metric is calculated by the following expression:

)= MR
t

where nrgr denotes the number of completed trade-result transactions executed dur-
ing the test run, and ¢ is the time length in seconds of the test run.

Given the required mix, complexity and types of transactions, this metric closely
simulates a complete business activity. For this reason, TRTPS is considered a busi-
ness throughput. The importance of reporting performance with a single number [5]
is that it is easy to understand and easy to be used for apple-to-apple comparisons
between different systems, regardless of hardware, operating system or transaction
processing system used. In addition, it might be used for comparing alternative
configurations on the same system.

4 DESIGN AND IMPLEMENTATION

The workload was written mostly in C++4 and PL/pgSQL, which is a loadable
procedural language for the PostgreSQL database system. It was used to create the
functions that defined the TPC-E transactions. C++ was used to code the servers,
the emulators, the transaction tester and the extended database loader. Figure 2
depicts the modules of DBT-5. The other components were coded in scripting
languages. Currently, the software only supports Linux as runtime environment.

724 R. O. Nascimento, P. R. M. Maciel

DBT-5 can be freely downloaded from the internet (a subversion client is needed):
https://svn.sourceforge.net/svnroot/osdldbt/trunk/dbt5.

Database Loader ..>

Customer
Emulator v

Brokerage House PostgreSQL
(server) [“®| Database Engine
Market Exchange *

v ® Emulator (server) |

: : : Transaction
! tee H Tester

! 1

--®
'

E System
| o= @
[Test Controller

: Post-processing

[Petorcesi] SE

+++> File access
---@ Signals
<> TCP/IP Socket

Fig. 2. DBT-5 architecture

Five main modules collaborate to provide the activities that run the workload.
The modules are:

Test Controller — This module controls the other components and launches a per-
formance run. This is the main interface available for the user to interact with
the workload. It is an optional piece since the other modules can be deployed
individually. However, its utilization simplifies and automates the test.

Customer Emulator — A key piece of the driver system. It is responsible for
emulating customers’ activity: it requests trades, provides input and dispatch
transactions. It also collects and logs the transactions’ response times.

Market Exchange Emulator — It is part of the driver system. It is responsible
for emulating the stock market: it receives trade requests from the Brokerage
House, executes the trades, sends transaction data, receives replies, and mea-
sures and logs transactions’ response times.

Brokerage House — This component represents the multi-threaded server host-

ed in the brokerage firm. It receives the transaction requests from the drivers,
communicates with the database engine and sends replies back to the drivers.

Database loader — The database loader is part of TPC-E EGen. Our loader is
an extension of the base loader and can generate and load data directly into
a PostgreSQL database.

The following subsections describe the modules in more detail as well as the
communication process between modules.

DBT-5 725
4.1 Test Controller

The Test Controller is a bash script responsible for launching a DBT-5 test. Its
main parameters are: number of customers, duration of the test, number of users
and seed. The other seven options have defaults defined. This module performs the
test in four stages:

1. Brokerage House server activation;

2. Market Exchange Server activation;

3. Customer Emulator activation (driver); and
4

. Test results processing.

One of the limitations of the Test Controller is that it cannot operate in a multi-
machine environment; it can only start the other modules when they are all on the
same machine.

4.2 Customer Emulator

The Customer Emulator (CE) is a two-fold component: the core part is provided by
EGen (EGenDriverCE), the rest is implemented by the sponsor. In a TPC-E com-
pliant driver, EGenDriverCE must be used when implementing the CE. The sponsor
implements the platform-specific features, like the driver-database communication
process and response time logging, while EGenDriverCE is responsible for the core
functions of the emulator, which involves deciding which transaction to perform next
(following the transaction mix), and generating data for the transaction. Both the
CE and the Market Exchange Emulator log the transaction response times in a file
to be evaluated at a later time by the Post-processing analyzer.

4.3 Market Exchange Emulator

The Market Exchange Emulator (MEE) follows the same design and implementation
of the Customer Emulator. It is divided into two parts, one part provided by EGen
(EGenDriverMEE) and the other part implemented by the test sponsor.

It is important to notice that unlike the CE, the MEE is not only an emulator,
but also a server. Since it represents the Market, it receives and performs trade
requests from the Brokerage House. The MEE is an executable file, implemented as
a multi-threaded server that listens on a user-defined port.

4.4 Brokerage House

The Brokerage House (BH) is composed of the following parts: Driver-System Under
Test(SUT) connector, EGenTxnHarness, Frame Implementation and the database
interface. EGenTxnHarness is provided by the TPC and calls the sponsor’s im-
plementation of the transaction frames. The Frame Implementation provides the

726 R. O. Nascimento, P. R. M. Maciel

transaction functionality that is off the database; the database interface is used in
the communication with the database server. We used libpgxx as the client API
for PostgreSQL. The BH is implemented as a multi-threaded server that listens on
a user-defined port.

4.5 Database Loader

The Database Loader produces and loads data into the test database. It generates
the correct number of rows for each table based on defined rules in the TPC-E.
EGenLoader is part of EGen; it was designed to generate all data necessary to
a test while still allowing sponsors the freedom to customize how the data gets
loaded into the database. As a result, it can be extended to populate different
database management systems.

EGen provides a C++ template class, named CBaseLoader, which can be used
to extend the base loader, while the generator element remains unchanged. We
implemented a CPGSQLLoader class derived from the base loader to support direct
loading of a PostgreSQL database. The flat file loader that accompanies EGen can
still be used to populate any database via text files.

4.6 System Monitor and Post-processing Analyzer

The System Monitor is responsible for collecting performance data from the system
resources, including disks, memory and processors during the test. The gathered
data is stored in files in raw format, which are later processed to generate plots and
reports. These plots provide useful information to analyze system performance; it
helps the tester understand the system behavior during the workload, find bottle-
necks and tune the system. This module is written in scripting language and uses
gnuplot to generate the graphs; other Linux tools are used to collect performance
data from the system, namely vmstat, iostat and OProfile.

OProfile is used for system-wide profiling. It profiles the Linux kernel as well as
all user applications running on the system to generate: a symbol summary including
libraries, call-graph output, and annotated mixed source and assembly. The data
is useful in determining what the system is doing in userspace or kernel spaces and
the code path exercised.

The Post-processing Analyzer assimilates the log files generated by the emu-
lators during the test. It performs statistical computations from the transactions
response times, generating graphs that describe the transactions behavior. In ad-
dition, a throughput graph is produced that portrays the main DBT-5 metric all
over the test phase. This module is written in perl and uses gnuplot to generate the
graphs.

DBT-5 727

4.7 Communication

TCP/IP sockets are used to enable the communication between the server (Bro-
kerage House) and the emulators (Customer and Market), and between the server
and the database engine. The binaries created for these components do not need
to be hosted on the same machine because they can communicate over the net-
work. Therefore, it is possible to create different scenarios for performance testing.
A current limitation of the Test Controller, however, is that it can only control the
components when they are present on the same machine. However, it is possible to
launch and run the test without the controller when you have a more complex, dis-
tributed testing environment. At the programming level, the TPC-E specification
defines interfaces that must be used to derive C++ classes; these classes govern the
communication between emulators and servers. The TPC-provided interface classes
are: CCESUTInterface, CMEESUTInterface and CDMSUTInterface. We derived
CCESUT, CMEESUT and CDMSUT classes from these interfaces, which are used
by the Customer Emulator, the Market Emulator and the Data-Maintenance trans-
action, respectively.

In comparison with TPCC-UVa [2], which is a software tool that implements the
TPC-C benchmark, our architecture provides an important facet. TPCC-Uva uses
shared-memory for inter-module communication. It enables efficient communication
but it also encloses all modules on a single host. DBT-5’s client/server approach
enables the creation of a networked testing environment, via TCP/IP sockets, where
the modules can reside on different machines. This networked testbed includes the
following benefits: alleviation of the interference of the workload’s instrumentation in
the SUT, thus providing more reliable results; improved characterization of a typical
database application environment, due to the presence of the network itself.

Response Time (s)

Transaction % Average : 90th % Total Rollbacks %
Trade Order 10.10 0.072 : 0.057 7490 74 1.00
Trade Result 10.08 0.151 : 0.113 7416 0 0.00
Trade Lookup 8.10 0.655 : 0.696 6006 0 0.00
Trade Update 2.15 0.405 : 0.417 1594 0 0.00
Trade Status 18.94 0.137 : 0.132 14045 0 0.00
Customer Position 12.84 0.492 : 0.479 9522 0 0.00
Broker Volume 4.95 0.026 : 0.016 3670 0 0.00
Security Detail 13.84 0.117 : 0.084 10263 0 0.00
Market Feed 1.00 0.269 : 0.262 741 0 0.00
Market Watch 17.94 0.116 : 0.154 13304 0 0.00
Data Maintenance —— 0.143 : 0.226 59 0 0.00

2.06 trade-result transactions per second (TRTIPS
40.0 minute duration

0 total unknown errors

5 second(s) ramping up

Fig. 3. DBT-5’s main report

728 R. O. Nascimento, P. R. M. Maciel

5 VALIDATION

As per the TPC-E specification, an official TPC-E result must be reviewed by
a TPC-certified, independent auditor. The TPC organization certifies an auditor by
reviewing his/her qualification through a process that assesses the ability to verify
compliance of a benchmark result against the specification. More details about the
auditor certification process can be found in a TPC document called TPC Policies,
that can be freely downloaded from the TPC site [8].

Although our workload does not allow publishing official TPC-E results, we can
take advantage of the audit requirements present in the specification to validate
our work. Our intent is not to certify a particular result; the objective is to gather
representative evidence that allows us to say, to the best extent possible, that our
workload is anchored in the specification.

Our validation can be divided into five parts: database validation, transactions
validation, driver validation, and execution rules validation. Part of the validation
is based on the results and part on the workload itself. A formal validation has
not been required by the TPC due to the fact that our intent is to create a non-
commercial implementation of the TPC-E benchmark.

5.1 Requirement verification — Database

e The database is populated using data generated by EGenLoader. EGenLoader
was extended to provide a direct loading of a PostgreSQL database, which is
allowed by the specification.

e The tables’ cardinality meets the requirements of the specification. We created
and populated a 5000-customer database and verified that the cardinality of
each table meets the initial size required by the specification.

o All primary keys, foreign keys and all check constraints are maintained by the
database.

e The 9 tables in the Customer set have all of the specified attributes, as described
in the TPC-E specification, clause 2.2.4 [7].

e The 11 tables in the Market set have all of the specified attributes, as described
in the TPC-E specification, clause 2.2.6 [7].

e The 4 tables in the Dimension set have all of the specified attributes, as described
in the TPC-E specification, clause 2.2.7 [7].

e The data types used to implement the attributes meet the requirements stated
in the specification.

e Each attribute is logically discrete and independently accessible.

DBT-5 729

e The implementation of LOB was carried out by inserting a text! attribute into
the Newsltem table.

5.2 Requirement Verification — Transactions

e The implementation of each transaction is compliant with its respective input
parameters, output parameters, database footprint, and frame implementation
requirements.

e All frames are implemented without circumventing any specified database refe-
rences to static or infrequently changing data elements.

e All frames do not exchange data outside of the specified input and output pa-
rameters used to communicate with EGenTxnHarness.

e The implementation of each frame is functionally equivalent to the pseudo-code
provided for that frame. We can prove this by executing each transaction indi-
vidually and comparing the output of our implementation with the pseudo-code
output given the same input data. The input data was generated by the follow-
ing parts of EGenDriver: EGenDriverCE, which provides user input data ge-
neration; EGenDriverMEE, which provides market input data generation; and
EGenDriverDM, which provides input data for the Data-Maintenance trans-
action. A 5000-customer, 5-ITD (Initial Trade Day) database was created and
loaded for this verification. All output values presented were found to be correct
when compared to the specification pseudo-code. The result of the verification
test is presented here together with the seed integer used to generate the in-
put data. For the sake of space we present only the results for Broker-Volume,
Trade-Order, Trade-Result and Trade-Status.

Broker-Volume: Seed = 1974393655

Input Output
Field Value Field Value
broker list Terry R. Vowell, list_len 0
[1..10] Arthur O. Devan, Maudie U. Shear, | broker_name[0]
Imelda T. Jadlowiec, Donna I. Frie, | volume|0] 0
Alphonso T. Hilgert, status 0
Christopher N. Simley, Ida T. Chu,
Melissa V. Attard, Eugene T. Belzer
sector name | Transportation

! To fully adhere to the specification, with respect to the use of a binary data type for
the NILITEM field of the NewslItem table, we plan to use bytea (PostgreSQL binary data
type) instead of text for the next release of DBT-5.

730

R. O. Nascimento, P. R. M. Maciel

Trade-Order: Seed = 160710 521
Frame 1:
Input Output
Field Value || Field Value
acct id | 3341 acct name John Hance Emergency Expenses

broker name
cust f name
cust id

cust 1 name
cust tier

tax id

tax status
status

Arthur O. Devan
John

335

Hance

2
276FV7250IH330
1

0

Frame 2: This frame is conditionally executed when the transaction executor’s
first name, last name, and tax id do not match the customer first name, customer
last name, and customer tax id returned in Frame 1. For the seed used, executor’s
data match customer’s data. Thus, this frame was not executed.

Frame 3:
Input Output
Field Value Field Value
acct id 3341 CO name Atalanta Sosnoff
cust id 335 Capital Corporate
cust tier 2 requested price | 23.02
is lifo 0 symbol ATL
issue buy value 0
st pending id PNDG | charge amount | 4.5
st submitted id | SBMT | comm rate 0.32
tax status 1 cust assets 0
trade qty 400 market price 23.02
trade type id TMS S name COMMON of Atalanta
type is margin | 0 Sosnoff Capital Corporate
co name sell value 0
requested price | 23.44 status id SBMT
symbol ATL tax amount 0
type is market | 1
type is sell 1
status 0

DBT-5 731

Frame 4:
Input Output
Field Value Field Value
acct id 3341 trade id | 1454535
charge amount | 4.5 status 0
comm amount 29.47
exec name John Hance
is cash 1
is lifo 0
requested price | 23.02
status id SBMT
symbol ATL
trade qty 400
trade type id TMS
type is market | 1

Frame 62: This Frame has no input parameters. It was executed successfully
(status output field returned zero).

Input Output
Field | Value | Field Value
status | O

Trade-Result: Seed = 160710521

Frame 1:
Input Output

Field Value Field Value

trade id | 1454535 || acct id 3341
acct id 3341
charge 4.5
hs qty 0
is lifo 0
symbol ATL
trade is cash 1
trade gty 400
type id TMS
type is market | 1
type is sell 1
type name Market-Sell
status 0

2 Frame 5 and Frame 6 are mutually exclusive. Frame 5 exercises the rollback function-
ality; by design, 1 % of Trade-Orders rollback. Frame 6 executes a commit transaction
command.

732

Frame 2:

R. O. Nascimento, P. R. M. Maciel

Input Output
Field Value Field Value
acct id 3341 broker id 10
hs qty 0 buy value | 0
is lifo 0 cust id 335
symbol ATL sell value | 0
trade id 1454535 || tax status | 1
trade price | 23.09 trade dts | 2007-12-1 12:18:23
trade qty 400 status 0
type is sell | 1

Frame 3: This frame is only executed if the customer is liquidating existing
holdings, and the liquidation has resulted in a gain, and the customer’s tax status
is either 1 or 2. For this seed, the customer is not under these conditions, thus the
frame was not executed.

Frame 4:
Input Output
Field Value | Field Value
cust id 335 comm rate | 0.32
symbol ATL s_name COMMON of Atalanta Sosnoff
trade qty | 400 Capital Corporate
type id TMS | status 0
Frame 5:
Input Output
Field Value Field | Value
broker id 10 status | 0
comm amount 29.56
st completed id | CMPT
trade dts 2007-12-1 12:18:23
trade id 1454535
trade price 23.09

DBT-5

733
Frame 6:
Input Output
Field Value Field Value
acct id 3341 acct bal | 3.08497e+06
due date 2007-12-3 12:18:23 status 0
s_name COMMON of Atalanta Sosnoff
Capital Corporate
se amount 9201.94
trade dts 2007-12-1 12:18:23
trade id 1454535
trade is cash | 1
trade qty 400
type name Market-Sell
Trade-Status: Seed = 352 098 087
Frame 1:
Input Output
Field Value | Field Value
acct id | 9812 cust 1 name Mangram
cust f name Derrick
broker name Arthur O. Devan
charge[0] 5

exec name[0]
ex name[0]

s name|0]
status name[0]
symbol[0]
trade dts[0]
trade id[0]
trade qty[0]
type namel0]
status

Derrick Mangram

Pacific Exchange

COMMON of Badger Paper Mills, Inc.
Completed

BPMI

2005/1/7 15:47:57

282086

200

Limit-Buy

0

5.3 Requirement Verification — Driver

Our implementation uses EGenTxnHarness (code provided by TPC).

The Customer Emulator was implemented using EGenDriverCE (code provided

by TPC).

The Market-Exchange Emulator was implemented using EGenDriverMEE (code

provided by TPC).

No routing was used within the frame implementation.

The Data-Maintenance transaction was implemented using EGenDriverDM (co-

de provided by TPC).

734 R. O. Nascimento, P. R. M. Maciel
5.4 Requirement Verification — Execution Rules

It is required that the mix of transactions over a test run meets the requirements
stated in the specification. We can demonstrate that via a real test by showing the
percentages presented at the end of the test.

We used an Intel Xeon CPU 3.00GHz, 3 GB of RAM, running Gentoo 2006.1
on kernel 2.6.19-r5, and PostgreSQL 8.2.1. After running the workload for forty
minutes, on a database loaded with 1000 customers, scale factor 500, the Test Con-
troller gathered all outputs in a numbered directory which is automatically assigned
for each performance run. The main report is presented in Figure 3. It shows the
average response time and the 90th percentile for each transaction, together with the
total number of transactions executed and the number of rolled back transactions.
1% of the Trade Orders transactions rollback by design. The transaction mix is
also showed in the % column. By reviewing Table 1, and comparing the equivalent
columns in Figure 3, we can conclude our test is within the required range for each
transaction with respect to % (Transaction Mix) and 90th percentile.

6 EXPERIMENTAL RESULTS

In this section, we present the results of two experiments performed with DBT-5.
The first study empirically evaluates the performance of some Linux File Systems
regarding all Linux 2.6 I/O schedulers. The second one traces the workload’s I/O
activity and replays it in a disk simulator.

6.1 File Systems Performance

We used a Pentium D 3.40GHz, running Gentoo 2007 i686, kernel 2.6.23 on a single-
disk database setup; the test implemented is CPU intensive rather than I/O inten-
sive. A brief introduction to the file systems and I/O schedulers is provided before
presenting the performance results. Similar studies were conducted using data ware-
housing workloads [12] and mail, web and file server workloads [11].

Linux File Systems. The first File System (FS) implemented on Linux was the
Minix FS. It had a 64 MB file system and filenames were limited to 14 characters.
Ext FS replaced Minix in 1992. It had 2 GB but suffered from low performance
problems and poor implementation of inode. As a result, Ext2 was created and
became the standard FS for Linux for many years due to its improved overall
performance and size limit of 4 GB. However, Ext2 did not support online file
system growth and journaling. As a solution to these problems Ext3 was created.
The journaling support provided fast reboots and a greater level of reliability. Its
compatibility with Ext2 led to increasing adoption among Ext2 users. ReiserF'S
is also a journaled F'S, it was designed to be a general-purpose FS capable of
handling small files efficiently.

DBT-5 735

I/0 Schedulers. I/O or disk scheduling is the technique of sorting I/O operations
before submitting them to the I/O sub-system. It is the interlocutor between
the block layer and the low-level device drivers. From an I/O scheduler perspec-
tive, the block layer is the producer of I/O requests and the device drivers are
labeled as the actual consumers [11]. The I/O scheduler is not a mandatory com-
ponent of the operating system. Instead, performance is the I/O scheduler’s sole
purpose [13]. The current Linux 2.6 kernel provides four I/O schedulers, being
possible to determine which one to use during boot time by using the elevator
kernel flag. The Deadline I/O scheduler has this name because it assigns to
each read request a specific deadline. Its logic ensures that the read requests
will be serviced within the allotted time. While the write requests do not have
associated deadlines, the scheduler’s aim is also to ensure that the queued write
requests do not starve. The Anticipatory (as) I/O scheduler primary criterion is
to reduce seek operations. It introduces a controlled delay component into the
dispatching equation [11]. The basic idea is, by the principle of locality, to delay
a read request allowing that the producer thread lines up more read requests.
Thus, this micro-delay, in the order of a few milliseconds, would avoid additional
seek operations by waiting for contiguous requests. The noop scheduler works
by placing all requests into a simple, unordered FIFO queue and implements
only request merging. It assumes performance of the I/O has been or will be
optimized at the block device or with an intelligent HBA or externally attached
controller [15]. The Complete Fair Queueing (CFQ) I/O scheduler’s main objec-
tive is to ensure fair allocation of I/O bandwidth among the I/O requests since
kernel 2.6.18 is the default Linux I/O scheduler.

Figure 4 shows the performance comparison between the three file systems and
the four I/O schedulers. Three test runs were performed for each pair of the Carte-
sian product of the 3-element set of File Systems ({Ext2, Ext3, ReiserF'S}) and the
4-element set of I/O Schedulers ({Anticipatory, noop, Deadline, CFQ}). The lines
in the top of the chart represent the average throughput of the three runs per 1/0
scheduler. The dashed line represents EXT3, the continuous line EXT2, and the
pointed line ReiserF'S. The highest performance was achieved by the tuple EXT3,
deadline. ReiserF'S performed the worst among file systems tested. ReiserF'S was
designed to have good performance when handling small files, it cannot efficiently
treat large files, which is the case in these tests. The test database has 2.5GB in
size, 83 % of the data is contained in 10 files of more than 200MB in size on ave-
rage. EXT3 surpassed EXT2 by 8% and ReiserF'S by 18 % among the four I/O
schedulers. A test performed by Oracle, using an OLTP workload, presented similar
results between EXT2 and EXT3 [14]. Among I/O schedulers the results were close;
Deadline is only 2% above CFQ, 3% above AS and 4 % above no-op.

Figure 5 shows the response time in seconds per transaction and I/O scheduler
for EXT2 and EXT3 File Systems; for a better visualization we divided the results
between light and heavy transactions. EXT3 performed better than EXT2 also in
terms of RT. The average RT among the three runs, all transactions considered,

736 R. O. Nascimento, P. R. M. Maciel

with respect to the I/O schedulers, as shown in Table 2, has drawn a different result
of the throughput, possibly because the throughput result take into account just
Trade-Result. The result for EXT3 agrees with that presented in [11] where a test
with a single Disk — single CPU was performed against different workloads.

I/O Scheduler | RT(all) | RT(EXT3)
CFQ 0.573 0.522
Deadline 0.580 0.537
no-op 0.612 0.563
AS 0.618 0.566

Table 2. Average response time(s) — I/O schedulers

0,4500
0,4000 -
0,3500
0,3000 -
0,2500 DEXT2
BEXT3
0,2000 - H |OReiserFS
0,1500
0,1000 -
0,0500 - s
0,0000 +-HEL L L
~— o o« — o () — (2N @ — o (o)
** ** ** ** ** F* ** ** ** ** ** F*
Q Q Q 12} 12} 12 o o o Q Q o
£ £ £ © © s 35 5 B 8 8 8
S 3% 3 g 2 ¢
[5) (7] (5]
© © ©
Fig. 4. Throughput. Trade-result transactions per second
6.2 Tracing

In this experiment we used three main software components: a database workload,
a tracer and a disk simulator. The blktrace [18] was chosen to be the low-level I/O
tracer due to its integration with the Linux kernel 2.6 since version 2.6.17. Before
blktrace we tested lltrace and the lttng [19] package; the former only works in the
2.4 kernel and it is not maintained, while the latter did not work in our environment
even though we tried to troubleshoot it together with the package creator. The

DBT-5 737

0,250
3,000

2,500 0,200

2000
0,150
1,500
0,100
AT
clqe2 cfq #3
1,000 ciq# cfg
pu_ ofg #1
0,050 Ll

0,500

Daadine #2 0,000 Deadline #3
Deadine #2 LV Deadine 72
Deadline #1 =

Deadline #1

0,000

0,250

0,200

0,150

1,500

0.100

A ciq #2
AL

ctq#l

0,050 as#3

as #1
0,500

noop #2

0,000

Deadline #3

Deadine #2

Deadline #1
Deadine #2 =Y .
Deadlin #1

Fig. 5. Response time — EXT2: a) light transactions, b) heavy transactions; EXT3: c¢)
light transactions, d) heavy transactions

738 R. O. Nascimento, P. R. M. Maciel

blktrace tool runs at the block-level, it captures an ample spectre of I/O operations
and commands of all processes running on the system for a determined device. We
had to change blktrace’s output format in order to match DiskSim’s input format.
DiskSim [17] is a powerful highly-configurable disk system simulator that can be
used in place of a real I/O subsystem, given its accuracy and effciency.

The three components were used in a producer-consumer paradigm: the work-
load feeds the tracer, that in its turn feeds the disk simulator. The test consisted
of running our workload in a real system while capturing I/O activity with the help
of a backgrounded blktrace process. During the execution of the workload, blk-
trace captured more than 40000 read/write operations. In fact there is a fourth
component which is the database system, a PostgreSQL database; the target of the
workload was the database process, thus the tracer was configured to capture its
I/O activity. Once the tracing was finished we configured DiskSim to accept a trace
file as input and place the simulator to digest the trace and to generate the output
metrics. The scatter plot in Figure 6 presents the I/O requisitions response time as
observed by DiskSim during its run.

This experiment demonstrates how an interested researcher can use our workload
to study the I/O behavior of current online transactional processing systems. In this
work we traced and replayed only the original activity; however, this work can be
continued in order to synthesize the workload’s I/O signature and eventually to
compare the response time plot of both original and synthesized traces.

1,04

0,84

0,64

0,4

0,24

Requisitions Fraction

0,0 4
0 50 100 150 200 250 300

Response Time (ms)

Fig. 6. I/O requisitions response time

DBT-5 739
7 CONCLUSIONS

In this paper we described DBT-5, a fair usage open-source implementation of the
TPC-E benchmark. The workload exercises a modern OLTP system, which simu-
lates an environment for performance evaluation of computer systems. An outline
of the TPC-E specification was also presented, together with a description of the
DBT-5 architecture and implementation and an example of application. To the best
of our knowledge this is the first FOSS (free open-source software) implementation
of the TPC-E specification.

The significance of this work is that it provides an environment where recent
innovations in the OLTP workload field can be studied. The open source database
community can use it to engineer and benchmark their databases. Since the work-
load characterizes modern and representative database work, it can be useful to
improve engines performance. Currently the workload supports only PostgreSQL
but it was designed to allow a relatively easy port to other databases.

As future work, we want to simulate the I/O of the TPC-E at the disk drive
level by tracing and characterizing the arrival and access patterns during execution
of our workload. We plan to update DBT-5 for every major release of the TPC-E
specification and port DBT-5 to other Database Management Systems. Finally,
we will update the Test Controller module so it can work in a distributed test
environment.

REFERENCES

[1] BERNSTEIN, A.P.—NEWCOMER, E.: Principles of Transaction Processing for the
Systems Professional. Morgan Kaufmann, 1997.

[2] Lranos, D.R.—Parop, B.: TPCC-UVa: An Open-Source TPC-C Implementation
for Parallel and Distributed Systems. IEEE 6" International Workshop on Perfor-
mance Modeling, Evaluation, and Optimization of Parallel and Distributed Systems,
2006.

[3] RaJ, J.: The Art of Computer Systems Performance Analysis Techniques For Experi-
mental Design Measurements Simulation And Modeling. Wiley Computer Publishing,
John Wiley & Sons, Inc, 1991.

[4] ZuANG, J.—SIVASUBRAMANIAM, A.—FRANKE, H.—GAUTAM, N.—ZHANG, Y.—
NAGAR, S.: Synthesizing Representative I/OWorkloads for TPC-H. Proceedings
of the 10*" International Symposium on High Performance Computer Architecture,
2004.

[5] JouN, K.—EECKHOUT, L.: Performance Evaluation and Benchmarking. CRC Tay-
lor & Francis Group, 2006.

[6] LEUTENEGGER, S.T.—Di1as, D.: A Modeling Study of the TPC-C Benchmark.
ACM SIGMOD, 2003.

[7] Transaction Processing Performance Council: TPC BenchmarkTME, 1.3.0, 2007.

[8] Transaction Processing Performance Council. Available on: http://www.tpc.org.

740

[9]
(10]
(11]

(12]

R. O. Nascimento, P. R. M. Maciel

New York Stock Exchange web site. Available on: http://www.nyse.com/.

The NASDAQ Stock Market web site. Available on: http://www.nasdaq.com/.
PrRATT, S. L.—HEGER, D. A.: Workload Dependent Performance Evaluation of the
Linux 2.6 I/O Schedulers. Proceedings of the Linux Symposium, 2004.

WonNG, P. W. Y.—HENDRICKSON, R.—Ri1zvi, H.—PRATT, S.: Performance Eval-
uation of Linux File Systems for Data Warehousing Workloads. Proceedings of the
First International Conference on Scalable Information Systems, 2006.

ROBERT, L.: The Linux Journal, Kernel Korner — I/O Schedulers. Available on:
http://www.linuxjournal.com/article/6931, 2008.

Oracle White Paper: Linux Filesystem Performance Comparison for OLTP with Ext2,
Ext3, Raw, and OCFS on Direct-Attached Disks using Oracle 91 Release 2, 2004.
Wikipedia, Noop scheduler. Available on: http://en.wikipedia.com/noop_
scheduler.

Do NasCIMENTO, R.O.—MACcIEL, P. R. M.—WonNG, M.: DBT-5: A Fair Usage
Open-Source TPC-E Implementation for Performance Evaluation of Computer Sys-
tems. Proceedings of the 27" SBC-WPerformance, 2007.

GANGER, G.R.—WORTHINGTON, B.L.—PATT, Y.N.: The Disksim Simulation
Environment. Technical report CSE-TR-358-98, Dept. of Electrical Engineering and
Computer Science, Univ. of Michigan, 1998.

Jens Axboe. Block 10 Tracing. Available on: http://www.kernel.org/git/7p=
linux/kernel/git/axboe/blktrace.git.

DESNOYERS, M.: The LTTng Usertrace Package. Available on: http://1tt.
polymtl.ca/svn/ltt-usertrace/README, 2006.

Rilson NASCIMENTO works as Performance Engineer at Ingres.
He is also a Masters candidate in the Federal Unversity of Per-
nambuco. He graduated in computer science in 1998 from the
Catholic University of Pernambuco. His research interests in-
clude performance evaluation of database systems and database
benchmarks.

Paulo MACIEL graduated in electronic engineering in 1987 and
received his M. Sc. and Ph.D. in electric engineering and com-
puter science, respectively from Univesidade Federal de Pernam-
buco. He was faculty member of the Electric Engineering De-
partment of Universidade de Pernambuco from 1989 to 2003.
Since 2001 he has been a member of the Informatics Center
of Universidade Federal de Pernambuco, where he is currently
Associate Professor. His research interests include Petri nets,
performance and reliability evaluation, and embedded system
design.

