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1 INTRODUCTION

Web service composition has emerged as a technique in the context of component-
based architectures as it provides the means for satisfying complex service requests
by reusing existing atomic/composite services. By composing existing services, in
contrast with building new composite services from scratch, the development costs
are significantly reduced. Due to the large number of services providing similar
functionality that may be involved in Web service composition, the selection of
the composition solution that satisfies best the non-functional user requirements
may be modeled as an optimization problem. Some of the most suitable search
strategies applicable in solving such optimization problems are the bio-inspired meta-
heuristics as they identify the optimal or a near-optimal solution in a short time and
without processing the entire search space. The bio-inspired meta-heuristics (e.g.
Ant Colony Optimization, Particle Swarm Optimization, Bee Colony Optimization)
model the collective intelligence of insects, birds and animals that enables them to
solve complex life problems (e.g. foraging, migration).

In this paper we explore how the Ant Colony Optimization (ACO) meta-heuris-
tic [3] can be adapted to identify the optimal or a near optimal solution in semantic
Web service composition. The methodology used for adapting ACO includes the
following steps: modeling the ACO entities, relationships and processes to fit the
problem of selecting the optimal composition solution and adapting an algorithm
proposed by the ACO meta-heuristic for solving the service selection problem. In
addition, for improving the performance of the traditional ACO algorithm we define
a 1-OPT heuristic which expands the search space in a controlled way so as to avoid
the stagnation on local optimal solutions. By using this methodology we have deve-
loped an ant-inspired selection method which is applied on an Enhanced Planning
Graph (EPG), dynamically built according to the user request. The EPG extends
the classical planning graph [12] structure with the concepts of cluster of services
and cluster of service input/output parameters. To identify the optimal or a near
optimal solution encoded in the EPG we define a fitness function which uses the QoS
attributes and the semantic quality as selection criteria. The ant-inspired selection
method has been evaluated on a set of scenarios having different complexities and
comparatively analyzed with a cuckoo-inspired and a bee-inspired selection method.

The paper is organized as follows. Section 2 presents related work. Section 3
presents the ant-inspired selection method, while Section 4 evaluates its perfor-
mance. The paper ends with conclusions.

2 RELATED WORK

This section presents the state of the art in Ant Colony Optimization-based me-
thods for selecting the optimal or a near-optimal solution in Web service composi-
tion. Most of these approaches model Web service composition as an abstract graph
of tasks, each task having associated a set of concrete services. The services are
described by their QoS attributes.
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In [9], authors propose an ACO-based method for selecting the optimal Web ser-
vice composition solution. In each iteration, each ant builds a composition solution
starting from the graph origin by probabilistically choosing candidate services to be
added to its current partial solution. The probability of choosing a candidate ser-
vice depends on the pheromone level associated to the edge in the abstract workflow
connecting the current service to the candidate service and on heuristic information
(the weighted sum of normalized QoS attributes values). The importance of the
two components is given by two parameters experimentally tuned according to the
specific optimization problem. The pheromone laid by an ant is defined as a k-tuple,
where a tuple element represents the pheromone quantity associated to a problem
objective such as response time, cost, etc. After an ant completes the construction
of a composition solution, the pheromone associated to each edge part of the solu-
tion is updated. The update is a two-step process which consists of decreasing the
pheromone level associated to each edge by means of an evaporation strategy and of
increasing the pheromone level associated to each edge part of a promising solution.
The pheromone evaporation strategy is applied only after a predefined number of
iterations, to avoid the situation in which the pheromone level increases too much.
The pheromone level associated to the edge parts of promising solutions is increased
proportionally with the value of a utility function. The function measures how close
is the quality of the current solution to the quality of the optimal solution in terms
of the QoS attributes.

In [7], the heuristic information used in the ant’s probabilistic decision is in-
versely proportional to the square root of the sum of the considered QoS attributes
square values. In this approach, initially, all pheromones have the same constant
value which is continuously updated after each ant builds its solution. The update
is performed in a single step and depends on a pheromone evaporation rate, the
current pheromone level and a chaos operator. The chaos operator aims to improve
the convergence speed of the algorithm.

In [10], authors propose an algorithm for selecting the optimal solution in Web
service composition which combines Ant Colony Optimization (ACO) and genetic
algorithms. ACO is used to find the optimal solution, while the genetic algorithm is
used to identify the optimal values of ACO’s adjustable parameters. In an iteration,
each ant builds a composition solution by choosing probabilistically a new service to
add to its partial solution. The choice of a new service depends on the pheromone
concentration, on a heuristic factor and on whether the candidate service is tabu or
not. In the genetic algorithm, a chromosome represents a set of adjustable param-
eters combination for ACO. The steps of the genetic algorithm for identifying the
optimal configuration of adjustable parameters are as follows:

1. a set of chromosomes is randomly generated,

2. four chromosomes are randomly selected for the next steps,

3. the fitness of the chosen chromosomes is computed as the fitness of the opti-
mal solution obtained by running the ACO-based selection algorithm for each
chromosome,
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4. the best two chromosomes are selected and crossover and mutation operators
are applied on them,

5. the two chromosomes resulted from step 4 replace the worst two chromosomes
identified in step 2 [10].

Similar to [10], in the approach presented in [11], each ant builds a composi-
tion solution starting from the graph origin by probabilistically choosing candidate
services to be added to its partial solution. In this case, the heuristic information
used in the probabilistic decision is inversely proportional to the weighted sum of
the considered QoS attributes values. Each ant maintains a history with the visited
abstract services and the chosen concrete service associated to each visited abstract
service. The pheromone laid by an ant on a graph edge is a numerical value re-
flecting the global QoS value of a service. The pheromone evaporation is performed
by decreasing the pheromone level of an edge based on an evaporation rate and
on the former pheromone level associated to that edge. After the evaporation is
completed, the pheromone level associated to the edges of promising solutions is
increased by adding a value which is inversely proportional to the QoS value of the
selected service.

3 THE ANT-INSPIRED SELECTION METHOD

This section presents the ant-inspired method for identifying the optimal or a near-
optimal composition solution best satisfying a user request in terms of QoS and
semantic quality. The ant-inspired method adapts and enhances the Ant Colony Op-
timization (ACO) meta-heuristic [3]. The search space of the ant-inspired method
is modeled as an Enhanced Planning Graph (EPG) we previously introduced in [8].
The EPG is a multi-layered graph in which each layer consists of a set of services or-
ganized in service clusters and a set of input/output service parameters organized in
parameter clusters. A service/parameter cluster groups similar services/parameters,
the similarity being established based on the semantic matching between the service
/parameter descriptions.

3.1 Overview of Ant Colony Optimization

ACO is a meta-heuristic which relies on a set of artificial ants which communicate
with each other to solve optimization problems. The behavior of artificial ants
is modeled according to the behavior of real ants in nature, which search for the
shortest route to a food source and communicate indirectly with each other by means
of the pheromone they lay on their route. The meta-heuristic consists of three steps
which are repeated until a stopping condition is fulfilled (see Figure 1).

Before these steps are iteratively performed, ants are initialized by setting them
in a position of the search space. Then, (1) in the first step each artificial ant
builds a solution by deciding probabilistically to add a new solution component to
its partial solution, (2) in the second step, a local search is performed optionally
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Figure 1. The steps of the Ant Colony Optimization meta-heuristic

by each ant aiming to improve their associated solutions, (3) in the third step, the
pheromone level of each solution is updated (increased or decreased) based on the
quality of each solution which is evaluated with a fitness function [13].

3.2 Mapping the Behavior of Ants to the Problem of Selecting
the Optimal Service Composition

The first step in adapting the ACO meta-heuristic to select the optimal Web ser-
vice composition implies modeling the ACO entities, relationships and processes to
fit the considered problem. Consequently, just as in ACO, in the optimal service
composition selection problem we have a number of artificial ants that cooperate
with each other by indirectly exchanging information (i.e. the pheromone in nature)
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to identify the optimal or a near-optimal service composition solution (i.e. the food
source in nature). In our case, the search space (i.e. the environment in which real
ants live) encoding the composition solutions is represented by the EPG.

We formally define an artificial ant as follows:

ant = (sol , score) (1)

where sol is a composition solution associated to the artificial ant, and score is the
quality of sol. A composition solution consists of a set of services such that exactly
one service is selected from each cluster of each layer from the EPG. To evaluate
the score of a composition solution, we define a fitness function QF which considers
the QoS attributes of the associated services as well as the semantic quality of the
connections between these services:

QF =
wQoS ∗QoS(sol) + wSem ∗ Sem(sol)

wQoS + wSem
(2)

where

• QoS(sol) is the QoS score of the composition solution sol [8];

• Sem(sol) is the semantic quality score of the composition solution sol [8];

• wQoS and wSem are the weights corresponding to user preferences related to the
relevance of QoS and semantic quality.

When building a composition solution, each ant is guided by the pheromone-
based information associated to each service encoded in the EPG.

3.3 The Ant-Inspired Selection Algorithm

A prerequisite of the ant-inspired selection algorithm is to establish the number of
ants that will be used in the search process so as to obtain the optimal solution
in a short time interval and without processing the entire search space. We have
defined the number of ants as being dependent of the total number of composition
solutions encoded in the EPG:

noAnts = Round
(

n
√

noSol
)

(3)

where

• noSol is the number of possible composition solutions computed by multiplying
the numbers of services in each cluster of the EPG;

• n ∈ N∗ is experimentally determined.

In our experiments we have considered several formulas for computing the num-
ber of ants and the experimental results demonstrated that the most feasible one
is Equation (3). Another formula for computing the number of ants that we have
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considered applied fixed division factors on the number of solutions. Because the
solution domain grows exponentially, scaling the number of ants linearly will make
the algorithm suboptimal time-wise independent of the EPG size. This is why we
reached the conclusion that the number of ants must be scaled exponentially so we
have applied a higher order root on the number of solutions.

The inputs of the ant-inspired selection algorithm (Algorithm 1) are as follows:

1. the EPG structure resulted from the Web service composition process,

2. the weights wSem and wQoS which state the relevance of a solution’s semantic
quality compared to its QoS quality, and

3. a number noAnts (see Equation (3)) of artificial ants used in the search for the
best composition solution.

Algorithm 1 Ant-inspired Web Service Selection

Input: EPG – the enhanced planning graph; wQoS, wSem – weights for the QoS
attributes and the semantic quality; noAnts – number of ants;
Output: Sol – an ordered set of the best composition solutions found in each
algorithm iteration;
begin
Initialize Pheromone Levels(EPG, τ0)
while (!Stopping Condition()) do
Reset(Ants , noAnts)
Ants = Generate Solutions(EPG ,Ants)
Ants = 1-OPT(Ants)
solBest = Get Best Solution(Ants , solBest)
Sol = Sol

⋃
solBest

Ants = Global Pheromone Update(Ants)
end while
return Sol

end

Due to the iterative nature of the selection algorithm, its output consists of
an ordered set Sol of high quality composition solutions, each added solution being
the best one obtained in its iteration. The first position in Sol corresponds to the
best composition solution obtained so far. Before performing the actual search, the
pheromone for each service in the EPG is set to an initial value, τ0, experimen-
tally determined (Initialize Pheromone Levels). Then, a number of iterations are
performed until a stopping condition is fulfilled (Stopping Condition).

As stopping criterion for the ant-inspired selection method we considered the
number noStagnations of consecutive iterations in which the algorithm stagnates on
the same optimal solution. Based on a set of preliminary experimental results we
have defined the following formula for computing the number of stagnations:

noStagnations = Round
(

m
√

noSol
)
. (4)
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In each iteration, the artificial ants are repositioned in the origin of the EPG
(Reset) from where they start building solutions in an incremental way (Gener-
ate Solutions).

An ant with a current partial solution solp selects its next service sk from the
set of possible services contained in a cluster sc EPG as follows [6]:

sk =

 si ∈ sc|∀sj ∈ sc, τ(si) ∗ [QF (sol ′p)]
β > τ(sj) ∗ [QF (sol ′′p)]

β, if q ≤ q0

Rand(sc), otherwise

where

• τ(s) is the pheromone level of the service s;

• QF (sol ′p) is the quality of the partial solution solp to which a service si is added;

• β weights the relative importance of the quality value compared to the phero-
mone level;

• q ∈ [0, 1] is a random value, while q0 ∈ [0, 1] is an experimentally established
threshold that influences how the next service is chosen;

• Rand(sc) is a function used to select the next service based on the following
probability [6]:

P (s) =
τ(s) ∗ [QF (sol sp)]

β∑
s′∈SC τ(s′) ∗ [QF (sol s

′

p )]β
. (5)

After an ant chooses a service and adds it to its solution, it (locally) updates
the pheromone of the service according to the following formula [6]:

τ(s) = (1− ρ) ∗ τ(s) + ρ ∗ τ0 (6)

where

• τ(s) is the pheromone level of the service s;

• ρ ∈ (0, 1] represents the pheromone evaporation rate determined experimentally;

• τ0 represents the initial pheromone level, which is a small constant value used
for keeping the pheromone level from dropping too low.

After each ant has associated a new solution, a 1-OPT local search heuristic is
applied (1-Opt) on each of the solutions to prevent local optimum stagnancy and
help a faster convergence to the global optimum. The 1-OPT heuristic is inspired
from the general K-OPT graph heuristics which remove k edges from the solution
graph and find the best possible replacements for those edges. Our approach takes
out one service from each layer of the current solution and finds its best replacement
with another service from its cluster based on the fitness function. The next step
identifies the global best solution (Get Best Solution). Finally, the global pheromone
update is performed according to Equation (7) (Global Pheromone Update):

τ(s) = (1− α) ∗ τ(s) + α ∗QF (sol) (7)
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where

• τ(s) is the pheromone level of the service s;

• α ∈ (0, 1] represents the pheromone decay coefficient, that is the rate at which
the old pheromone evaporates compared to the addition of the new one;

• QF (sol) is the quality of the solution evaluated with Equation (2).

Initially, we have applied the methods for global pheromone update used in the
Ant System (AS) [5] and Ant Colony System (ACS) [4] algorithms and we have come
to the conclusion that they all perform well (AS) or very well (ACS) on small graphs,
but on larger ones local stagnancy becomes a major problem. In the case of AS,
because the update is done for all solutions in an uncontrolled manner the amount of
pheromone deposited on the services belonging to multiple solutions is very high. In
time, this causes all the ants to pick the same high pheromone services and stagnate
on the same solution composed by them, even if it is a local optimum. For ACS the
fact that only one solution is used for the global update leads to very few services
taking advantage of this update. The pheromone for these services will then drop
very fast in the next iteration, causing the exploitation part of the algorithm to
be useless for most of the ants. As a result, most of the work will be done by the
exploration function, which, being random, can sometimes fail to find the optimal
solution, especially for large graphs. Taking these aspects into consideration we have
come up to a compromise between the two methods, which performs much better
than both. Our method consists of applying the update rule from ACS by adding
pheromone on the services from a number of the best solutions. The amount of
pheromone added is directly proportional to the quality of the solution for which
the update is made. The number of solutions subject to the pheromone update is
a percentage of the number of ants, µ, experimentally determined. This method
prevents local stagnancy because the number of services with pheromone updates
increases, making exploitation more useful. Also, by using the ACS rule with small
values of α, the pheromone levels for services belonging to multiple solutions will
increase compared to the ones belonging to only one solution, but in a slower and
controlled manner, preventing all services from being overused and diversifying the
search. In addition, by applying the update rule for the solutions in order from
worst to best will cause the best solution to have the greatest impact on the services
belonging to multiple solutions. This causes the services belonging to the best
solutions to have the best overall pheromone after the update, thus the algorithm
converges to the global optimum.

4 PERFORMANCE EVALUATION

This section presents the methodology for evaluating the ant-inspired selection al-
gorithm as well as an analysis of the experimental results obtained by running the
proposed algorithm on different Enhanced Planning Graph topologies.
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4.1 Evaluation Methodology

The convergence of an optimization algorithm towards the optimal solution is influ-
enced by a set of adjustable parameters specific to the algorithm. We consider that
a proper methodology for evaluating an optimization algorithm should consist of
two steps: one step for establishing the optimal values of the adjustable parameters,
and another step for evaluating the algorithm using the optimal configuration of the
adjustable parameters. To establish the optimal values of the adjustable parameters
the following three steps need to be addressed. In the first step, an exhaustive search
in the composition model should be performed to identify the score of the optimal
composition solution. This score is further used to identify the most appropriate
configuration of the adjustable parameters which ensures that the optimal or a near-
optimal composition solution is obtained without processing the entire search space.
In the second step, an initial configuration of the adjustable parameters should be
identified based on a set of preliminary assumptions. These assumptions will be va-
lidated by experiments. In the third step, the initial configuration of the adjustable
parameters is fine-tuned iteratively to identify their optimal values. During these
experiments, the execution time and the standard deviation of the optimal solution
returned by the algorithm is compared with the execution time and the optimal
solution returned by the exhaustive search. The last two steps should be repeated
for composition requests having different complexities and the results should be
analyzed to identify the optimal configuration of the adjustable parameters.

4.2 Experimental Results

We have tested our approach on three scenarios with different complexities. In
Table I we present the information about the Enhanced Planning Graphs for each
considered scenario, where:

1. code is the scenario code,

2. graph configuration illustrates the number of layers (given by the number of
subsets), the number of clusters from each layer (given by the cardinality of
each subset) and the number of services per cluster (given by the value of each
element in a subset),

3. noSol is the total number of possible solutions for the considered scenarion,

4. fitOpt is the optimal fitness value for the considered scenario,

5. time is the time measured in minutes and seconds required to identify the opti-
mal solution through exhaustive search.

Tables 2–4 present some fragments (top 31 configurations out of 100 configu-
rations for each scenario) of the best experimental results (average optimal fitness
fitOpt , average execution time Tavg , average standard deviation stD) obtained when
varying the values of the adjustable parameters in the case of each scenario.
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Code Graph configuration noSol fitopt Time (min:sec)

S {4 5 6} {6 4 6} {4 6 5} 2 073 600 6.456 3:8

M {3 5 4 6} {6 4 6 5} {4 6} 6 220 800 7.482 15:57

L {4 4 5 4} {5 4 5 4} {6 5 5} 19 200 000 7.577 56:18

Table 1. The configuration of EPG for each scenario

The algorithm’s adjustable parameters are as follows: the number n used for
computing the number of ants, the number m used for computing the number
of stagnations, the relative importance β of the fitness function compared to the
pheromone level, the threshold q0 that influences how the next service is chosen,
the pheromone decay coefficient α, the pheromone evaporation rate ρ, the initial
pheromone level τ0, and the percentage of ants whose solutions are subject to the
global pheromone update µ. Each row includes the average experimental results
obtained after running the algorithm for 100 times on the same configuration of
adjustable parameters.

For the configurations from Table 2, the algorithm provides the optimal solution
in most of the cases (the maximum standard deviation is 0.031) in a short time
(time ∈ [0.3, 1.06] seconds) for scenario S. The configuration that provides the best
results is highlighted with grey.

For the configurations presented in Table 3, the algorithm provides near-optimal
composition solutions in most of the cases (the maximum standard deviation is
0.106) in a short time (time ∈ [0.64, 2.8] seconds) for scenario M. The configura-
tion that provides the best results (best compromise between fitness and time) is
highlighted with grey.

For the configurations presented in Table 4, the algorithm provides near-optimal
composition solutions in most of the cases (the maximum standard deviation is
0.065) in a short time (time ∈ [0.7, 4.06] seconds) for scenario L. The configura-
tion that provides the best results (best compromise between fitness and time) is
highlighted with grey.

In conclusion, based on the experimental results we can observe that for scenarios
involving a smaller search space (see Table 2), the ant-inspired algorithm identifies
the optimal solution in most of the cases in a short time, while for scenarios involving
a larger search space (see Tables 3 and 4), the algorithm provides near-optimal
solutions in most of the cases in a short time. However, a configuration of adjustable
parameters that provides good results, in terms of fitness value and time, for all the
considered scenarios is for n = 4, m = 8, β = 2, q0 = 0.3, α = 0.05, ρ = 0.1,
τ0 = 0.1, and µ = 25% (see line 13 in Tables 2, 3 and 4).

4.3 Comparative Analysis

To assess the performance of the ant-inspired selection algorithm we have compared
it with two bio-inspired selection algorithms: the cuckoo-inspired algorithm [1] and
the bee-inspired selection algorithm [2]. The three selection algorithms have been
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# n m β q0 α ρ τ0 µ(%) fitavg Tavg(s) Std

1 4 6 2 0.3 0.05 0.05 0.1 40 6.456 1 0

2 4 6 2 0.3 0.05 0.15 0.1 40 6.456 0.98 0

3 4 6 2 0.3 0.1 0.05 0.1 100 6.456 1.06 0

4 4 6 2 0.3 0.1 0.1 0.1 25 6.456 1 0

5 4 6 2 0.3 0.15 0.05 0.1 1 6.452 1.02 0.004

6 4 6 2 0.3 0.15 0.05 0.1 40 6.456 0.96 0

7 4 6 2 0.3 0.15 0.1 0.1 1 6.456 1.02 0

8 4 7 2 0.3 0.1 0.1 0.1 40 6.456 0.7 0

9 4 7 2 0.3 0.1 0.1 0.1 100 6.455 0.84 0.001

10 4 7 2 0.5 0.1 0.15 0.1 100 6.456 0.66 0

11 4 7 2 0.5 0.15 0.15 0.1 1 6.456 0.64 0

12 4 8 2 0.3 0.05 0.1 0.1 1 6.456 0.66 0

13 4 8 2 0.3 0.05 0.1 0.1 25 6.456 0.62 0

14 4 8 2 0.3 0.1 0.05 0.1 1 6.456 0.64 0

15 4 8 2 0.3 0.1 0.05 0.1 25 6.454 0.62 0.002

16 4 8 2 0.3 0.15 0.1 0.1 100 6.444 0.74 0.012

17 5 6 2 0.3 0.15 0.05 0.1 100 6.456 0.54 0

18 5 6 2 0.3 0.15 0.15 0.1 33 6.454 0.5 0.002

19 5 6 2 0.4 0.1 0.1 0.1 33 6.448 0.48 0.008

20 5 6 2 0.5 0.1 0.15 0.1 33 6.456 0.46 0

21 5 7 2 0.3 0.05 0.15 0.1 25 6.454 0.38 0.002

22 5 7 2 0.3 0.15 0.1 0.1 25 6.450 0.36 0.006

23 5 7 2 0.4 0.1 0.05 0.1 1 6.425 0.36 0.031

24 5 7 2 0.4 0.15 0.15 0.1 40 6.456 0.34 0

25 5 7 2 0.5 0.05 0.1 0.1 33 6.452 0.32 0.004

26 5 7 2 0.5 0.1 0.1 0.1 1 6.441 0.32 0.015

27 5 7 2 0.5 0.15 0.1 0.1 33 6.452 0.32 0.004

28 5 8 2 0.3 0.05 0.1 0.1 100 6.456 0.38 0

29 5 8 2 0.3 0.1 0.1 0.1 100 6.456 0.38 0

30 5 8 2 0.5 0.15 0.05 0.1 33 6.438 0.3 0.018

31 5 8 2 0.5 0.15 0.15 0.1 100 6.456 0.3 0

Table 2. Fragment of the best experimental results for scenario S

comparatively evaluated according to the following criteria: the average number of
processed solutions, the average percentage of explored search space, the average
simulation time, and the average fitness value. The optimal configurations of ad-
justable parameters have been considered for each algorithm in the case of each
scenario.

As can be seen in the average results presented in Tables 5, 6 and 7, the ant-
inspired selection algorithm performs best, followed by the cuckoo-inspired algorithm
and the bee-inspired algorithm for scenarios S and M. However, in the case of sce-
nario L, the ant-inspired algorithm is closely outperformed in terms of time and
explored search space by the cuckoo-inspired algorithm.
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# n m β q0 α ρ τ0 µ(%) fitavg Tavg(s) Std

1 4 6 2 0.3 0.05 0.05 0.1 40 7.482 2.6 0

2 4 6 2 0.3 0.05 0.15 0.1 40 7.482 2.64 0

3 4 6 2 0.3 0.1 0.05 0.1 100 7.462 2.8 0.020

4 4 6 2 0.3 0.1 0.1 0.1 25 7.482 2.46 0

5 4 6 2 0.3 0.15 0.05 0.1 1 7.460 2.34 0.022

6 4 6 2 0.3 0.15 0.05 0.1 40 7.482 2.54 0

7 4 6 2 0.3 0.15 0.1 0.1 1 7.470 2.3 0.012

8 4 7 2 0.3 0.1 0.1 0.1 40 7.482 2.06 0

9 4 7 2 0.3 0.1 0.1 0.1 100 7.428 2.04 0.054

10 4 7 2 0.5 0.1 0.15 0.1 100 7.449 1.84 0.033

11 4 7 2 0.5 0.15 0.15 0.1 1 7.420 1.52 0.062

12 4 8 2 0.3 0.05 0.1 0.1 1 7.462 1.46 0.020

13 4 8 2 0.3 0.05 0.1 0.1 25 7.482 1.6 0

14 4 8 2 0.3 0.1 0.05 0.1 1 7.454 1.42 0.028

15 4 8 2 0.3 0.1 0.05 0.1 25 7.481 1.58 0.001

16 4 8 2 0.3 0.15 0.1 0.1 100 7.395 1.5 0.087

17 5 6 2 0.3 0.15 0.05 0.1 100 7.465 1.52 0.017

18 5 6 2 0.3 0.15 0.15 0.1 33 7.480 1.04 0.002

19 5 6 2 0.4 0.1 0.1 0.1 33 7.477 1.1 0.005

20 5 6 2 0.5 0.1 0.15 0.1 33 7.479 0.98 0.003

21 5 7 2 0.3 0.05 0.15 0.1 25 7.480 0.86 0.002

22 5 7 2 0.3 0.15 0.1 0.1 25 7.470 0.78 0.012

23 5 7 2 0.4 0.1 0.05 0.1 1 7.376 0.64 0.106

24 5 7 2 0.4 0.15 0.15 0.1 40 7.481 0.86 0.001

25 5 7 2 0.5 0.05 0.1 0.1 33 7.470 0.8 0.012

26 5 7 2 0.5 0.1 0.1 0.1 1 7.398 0.74 0.084

27 5 7 2 0.5 0.15 0.1 0.1 33 7.468 0.8 0.014

28 5 8 2 0.3 0.05 0.1 0.1 100 7.439 0.86 0.043

29 5 8 2 0.3 0.1 0.1 0.1 100 7.428 0.8 0.054

30 5 8 2 0.5 0.15 0.05 0.1 33 7.439 0.7 0.043

31 5 8 2 0.5 0.15 0.15 0.1 100 7.436 0.74 0.046

Table 3. Fragment of the best experimental results for scenario M

The good performance of the ant and cuckoo-inspired selection algorithms is due
to the proper balance between exploration and exploitation which ensures that a so-
lution close to the global optimal one is reached in most of the cases. The drawback
of the bee-inspired selection algorithm is that it focuses more on exploitation rather
than on exploration. As a result, the chances that it stagnates on a local optimum,
not close to the global one, increase.
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# n m β q0 α ρ τ0 µ(%) fitavg Tavg(s) Std

1 4 6 2 0.3 0.05 0.05 0.1 40 7.577 3.1 0

2 4 6 2 0.3 0.05 0.15 0.1 40 7.577 3.66 0

3 4 6 2 0.3 0.1 0.05 0.1 100 7.567 4.06 0.010

4 4 6 2 0.3 0.1 0.1 0.1 25 7.577 3.16 0

5 4 6 2 0.3 0.15 0.05 0.1 1 7.560 3.3 0.017

6 4 6 2 0.3 0.15 0.05 0.1 40 7.577 3.3 0

7 4 6 2 0.3 0.15 0.1 0.1 1 7.571 3.44 0.006

8 4 7 2 0.3 0.1 0.1 0.1 40 7.577 2.46 0

9 4 7 2 0.3 0.1 0.1 0.1 100 7.539 2.6 0.038

10 4 7 2 0.5 0.1 0.15 0.1 100 7.565 2.5 0.012

11 4 7 2 0.5 0.15 0.15 0.1 1 7.553 2.22 0.024

12 4 8 2 0.3 0.05 0.1 0.1 1 7.568 1.98 0.009

13 4 8 2 0.3 0.05 0.1 0.1 25 7.577 1.86 0

14 4 8 2 0.3 0.1 0.05 0.1 1 7.561 1.96 0.016

15 4 8 2 0.3 0.1 0.05 0.1 25 7.577 1.7 0

16 4 8 2 0.3 0.15 0.1 0.1 100 7.526 2.14 0.051

17 5 6 2 0.3 0.15 0.05 0.1 100 7.573 1.78 0.004

18 5 6 2 0.3 0.15 0.15 0.1 33 7.576 1.36 0.001

19 5 6 2 0.4 0.1 0.1 0.1 33 7.572 1.28 0.005

20 5 6 2 0.5 0.1 0.15 0.1 33 7.575 1.22 0.002

21 5 7 2 0.3 0.05 0.15 0.1 25 7.572 0.98 0.005

22 5 7 2 0.3 0.15 0.1 0.1 25 7.561 0.9 0.016

23 5 7 2 0.4 0.1 0.05 0.1 1 7.512 0.94 0.065

24 5 7 2 0.4 0.15 0.15 0.1 40 7.576 0.92 0.001

25 5 7 2 0.5 0.05 0.1 0.1 33 7.567 0.86 0.010

26 5 7 2 0.5 0.1 0.1 0.1 1 7.541 0.88 0.036

27 5 7 2 0.5 0.15 0.1 0.1 33 7.575 0.86 0.002

28 5 8 2 0.3 0.05 0.1 0.1 100 7.560 1.04 0.017

29 5 8 2 0.3 0.1 0.1 0.1 100 7.549 1.08 0.028

30 5 8 2 0.5 0.15 0.05 0.1 33 7.563 0.7 0.014

31 5 8 2 0.5 0.15 0.15 0.1 100 7.562 0.98 0.015

Table 4. Fragment of the best experimental results for scenario L

5 CONCLUSIONS

In this paper we have proposed a method for identifying the optimal solution in se-
mantic Web service composition, inspired by the foraging behavior of ants. The pro-
posed method optimizes the selection process without considering the entire search
space and avoids the local optimum stagnancy problem. The search space is encoded
as an Enhanced Planning Graph which is dynamically built for each user request.
We have tested and evaluated our ant-inspired selection method on a set of sce-
narios involving Enhanced Planning Graphs with different complexities. First, we
performed a series of experiments to adjust the parameters’ values of the selection
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Algorithm Explored search space (%) Time (sec) Fitness Standard deviation

Ant 0.008 0.3 6.456 0

Bee 0.0604 2.24 6.455 0.001

Cuckoo 0.129 3.9 6.455 0.001

Table 5. Comparison between Ant, Bee and Cuckoo inspired algorithms for scenario S

Algorithm Explored search space (%) Time (sec) Fitness Standard deviation

Ant 0.012 1.6 7.482 0

Bee 0.0304 4.26 7.477 0.005

Cuckoo 0.059 6.6 7.481 0.001

Table 6. Comparison between Ant, Bee and Cuckoo inspired algorithms for scenario M

Algorithm Explored search space (%) Time (sec) Fitness Standard deviation

Ant 0.004 1.7 7.577 0

Bee 0.0178 7.56 7.572 0.005

Cuckoo 0.003 1.25 7.577 0

Table 7. Comparison between Ant, Bee and Cuckoo inspired algorithms for scenario L

method so that the algorithm provides the optimal or a near-optimal composition
solution in a small number of iterations and without processing the entire search
space. Then, using the optimal values of the adjustable parameters we conducted
a series of experiments to comparatively analyze the performance of our method with
a cuckoo-inspired method and a bee-inspired method. Based on the obtained re-
sults, we conclude that the ant-inspired method performs best, very closely followed
by the cuckoo-inspired method.
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