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Abstract. In this paper, a hybrid particle swarm evolutionary algorithm is pro-
posed for solving constrained multi-objective optimization. Firstly, in order to keep
some particles with smaller constraint violations, a threshold value is designed, the
updating strategy of particles is revised based on the threshold value; then in or-

der to keep some particles with smaller rank values, an infeasible elitist preservation
strategy is proposed in order to make the infeasible elitists act as bridges connecting
disconnected feasible regions. Secondly, in order to find a set of diverse and well-
distributed Pareto-optimal solutions, a new crowding distance function is designed
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for bi-objective optimization problems. It can assign larger crowding distance func-

tion values not only for the particles located in the sparse region but also for the
particles located near to the boundary of the Pareto front. In this step, the reference
points are given, and the particles which are near to the reference points are kept
no matter how crowded these points are. Thirdly, a new mutation operator with
two phases is proposed. In the first phase, the total force is computed first, then
it is used as a mutation direction, searching along this direction, better particles
will be found. The comparative study shows the proposed algorithm can generate
widely spread and uniformly distributed solutions on the entire Pareto front.

Keywords: Conostrained multi-objective optimization, particle swarm optimiza-
tion, evolutionary algorithm

1 INTRODUCTION

In general, many real-world applications involve complex optimization problems
with variants competing specifications and constraints. Without loss of generality,
we consider a minimization problem with decision space S, which is described as
follows:











minx∈S f(x) = {f1(x), f2(x), . . . , fm(x)}
s.t. gj(x) ≤ 0, j = 1, 2, . . . , s

hj(x) = 0, j = 1, 2, . . . , p,
(1)

where x = (x1, x2, . . . , xn) is the decision vector, S is an n-dimensional rectan-
gle space defined by the parametric constraints lk ≤ xk ≤ uk, k = 1, 2, . . .n. In
constrained multi-objective optimization problems, all equality constraints can be
converted to inequality constraints by |hj(x)| ≤ ε, where ε is a small value. This
allows us to deal with only the inequality constraints. Constraint violation is defined
as Φ(x) =

∑s+p
j=1max(0, gj(x)). f1, f2, . . . , fm are m objectives to be minimized. The

aim of the constrained multi-objective optimization problems (constrained MOPs)
is to find multiple nondominated solutions under constraints. If these nondominated
solutions are uniformly distributed and widely spread along the Pareto front, their
quality is better.

The use of evolutionary algorithms for multi-objective optimization problems
has significantly grown in the last five years [1–4]. As any other research areas,
multi-objective evolutionary algorithms (MOEAs) have presented certain trends.
One of them is to improve the efficiency of both of the algorithms and of the data
structures used to store nondominated vectors. Researchers have produced some
clever techniques to maintain diversity [5], new algorithms that use very small po-
pulations [6]. The most promising ones are nondominated sorting genetic algo-
rithm II (NSGAII) [7], the strength Pareto evolutionary algorithm 2 (SPEA2) [8],
the incrementing MO evolutionary algorithm (IMOEA), etc. Despite all these rapid
developments, there seem to be not enough studies concerning handling constraints.
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Constraint handling is a crucial part of real-world problem solving and it is time
that MOEA researchers focus on solving constrained MOPs [9].

One of the typically algorithms to solve constrained MOPs is NSGAII with
constraint dominance principle [7], which allow each feasible solution has a better
rank than any infeasible one. Obviously, the main drawback of this principle is that
the algorithm probably results in the premature convergence. In order to overcome
the problem, some relevant algorithms are proposed [10, 11]. In these problems, the
infeasible solutions which are located near to the boundary of the feasible region and
have small rank values are kept during the evolution. But the infeasible solutions
with larger constraint violations and smaller rank values are not concerned. In fact,
these solutions may be valuable for finding the true Pareto front. So we design two
new infeasible particle preservation strategies in Section 3.

Particle swarm optimization (PSO) [12, 13] is a relatively recent heuristic in-
spired by the choreography of a bird flock. PSO seems suitable for the multi-
objective optimization mainly because of the high speed of convergence that the al-
gorithm presents for single-objective optimization. However, such convergence speed
may be harmful in the context of multi-objective optimization, because a PSO-based
algorithm may converge to a false Pareto front. In order to overcome this drawback,
some PSO algorithms incorporate a mutation operator which can enriches the ex-
ploratory capabilities of algorithms [14, 15].

In recent years, the field of MOPSO has been steadily gaining attention from re-
search community [16–19]. While PSO is rarely considered in constrained
MOPs [20].

In this paper, we develop a hybrid particle swam evolutionary algorithm to
solve constrained MOPs. The proposed algorithm is able to find a diverse and well-
distributed nearly optimal Pareto front for every test fuction. In order to overcome
the drawbacks mentioned above, firstly, some infeasible solutions with smaller rank
values and constraints are preserved during optimization which can avoid premature
convergence. Secondly, in order to make the Pareto-optimal solutions competitive
in terms of diversity and distribution, a new crowding distance function is proposed
for two-objective optimization problems. In this section, the particles located in the
sparse region of the objective space and near to the boundary of the Pareto front are
assigned larger distance function values. Thirdly, although the mutation operator
in PSO is not new, we design a new mutation operator which includes two steps.
The first step: in the original PSO, every particle learns from its own pbest and
gbest. However, it can not learn from other particles, in order to make full use of
the beneficial information of other particles, we design a mutation operator based
on the concept of total force. The force is computed first, which leans toward the
particle of small constraint violation or small objective function value. Then it is
used as a mutation direction, searching along this direction, better particles will
be found. The second step: in order to avoid particles searching along one fixed
direction, we select some particles generated by the first step to undergo the second
mutation, which can guarantee the convergence of our algorithm. A hybrid particle
swam evolutionary algorithm for constrained MOPs is proposed. The numerical
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simulations for five constrained MOPs are made. The performances of the proposed
algorithm are compared with that of NSGAII and MOPSO. The results indicate that
the proposed algorithm has better performances for the test functions, especially for
the problems with two or more disconnected feasible regions.

2 PRELIMINARIES

2.1 Particle Swarm Optimization

PSO has been developed by Kennedy and Eberhart [12, 13]. The original PSO
formulae are:

Vi(t+ 1) = ωVi(t) + c1rand1(pbesti(t)− xi(t)) + c2rand2(gbest(t)− xi(t)) (2)

xi(t+ 1) = xi(t) + Vi(t+ 1), i = 1, 2, . . . , popsize. (3)

In essence, the trajectory of each particle is updated according to its own best
position pbest , and the best position of the whole swarm denoted as gbest. Vi =
(Vi1, Vi2, . . . , Vin) represents the velocity of the ith particle, and the ith particle is
denoted as a n-dimensional vector xi = (xi1, xi2, . . . xin), namely the position of the
ith particle is xi, and every particle represents a potential solution. rand1 and rand2
are two random values obeying uniform distribution in [0, 1]. c1 is the cognition
weight and c2 is the social weight. popsize is the size of the swarm.

2.2 Constrained MOPs

Definition 1. For the multi-objective optimization, a vector µ = (µ1, µ2, . . . , µn)
is said to dominate a vector ν = (ν1, ν1, . . . , νn) (denoted as µ ≺ ν) if: ∀i ∈
{1, 2, . . . , m}, fi(µ) < fi(ν)∧∃j ∈ {1, 2, . . . , m}, fj(µ) < fj(ν). A solution x ∈ S
is called a Pareto-optimal solution for problem (1), if Φ(x) = 0 and ∼ ∃−→x ∈ S
such that Φ(−→x ) = 0 and ~x ≺ x. All Pareto-optimal solutions constitute the Pareto-
optimal set. The corresponding set in the objective space is called Pareto front.

3 THE PRESERVATION STRATEGIES OF THE PARTICLES

From above, in [9, 10, 11] each feasible solution has a better rank than infeasible one,
and in MOPSO [20], when two particles are compared, constrained Pareto domi-
nance is directly used to decide which one is the winner. Obviously, these algorithms
have one common drawback: the feasible ones are better than the infeasible ones.
This will result in premature convergence, especially for the problems with two or
more disconnected feasible regions. In order to overcome the problems mentioned
above, we propose two strategies for keeping some infeasible solutions which act as
bridges to connect the feasible regions.
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3.1 The New Comparison Strategy in Particle Swarm Optimization

In order to keep some particles with smaller constraint violations, a new comparison
strategy is proposed. Firstly, a threshold value is proposed: ψ = 1

T

∑popsize
i=1 Φ(xi)/

popsize, T is a parameter, which decreases from 0.4-0.8 with the increasing of the
generation number. In every generation, if the constraint violation of a particle is
less than the threshold value, the particle is acceptable, else it is unacceptable. The
comparison strategy is described as follows:

1. If two particles are feasible solutions, we select the one with the smaller rank
values.

2. If two particles are infeasible, we select the one with the smaller constraint
violation.

3. If one is feasible and the other is infeasible, if the constraint violation of the
infeasible one is smaller than the threshold value and it is not dominated by the
feasible one, we select the infeasible one.

3.2 Infeasible Elitist Preservation Strategy

In order to keep some particles with smaller rank values, some infeasible solutions
beside the feasible ones should be kept to act as a bridge connecting two or more
feasible regions during optimization. The procedure of the process of keeping and
updating infeasible elitists is given by Algorithm 1. Let R denotes the Pareto-
optimal set found so far, IR denotes the infeasible elitist set, and SI denotes the size
of the infeasible elitist set. SR denotes the size of R.

Algorithm 1. Step 1: For every infeasible particle in the swarm, if it is not do-
minated by any other particle in the set R, add it to IR.

Step 2: Remove particles in IR which are dominated by any other member of R.

Step 3: If the size of the IR exceeds the given maximum number SI, then do:

1. select SI particles in IR with smaller rank values when t < tmean.

2. select SI particles in IR with smaller constraint violations when t > tmean.

The rank value of xi is equal to the number of the solutions that dominate it.
t is the current generation number and tmean = tmax

2
, tmax is the maximum generation

number. At the early stage of evolution(t < tmean) we need to enlarge the search
domain in order to keep the diversity of the swarm. So the particles of smaller rank
values are kept, which will make the swarm converge to the true Pareto front, and
at the later stage of evolution (t > tmean), in order to guarantee the convergence of
the swarm, the particles of smaller constraint violations are kept.
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4 A NOVEL CROWDING DISTANCE FUNCTION

In multi-objective optimization, we have to find a set of solutions which is high
competitive in terms of convergence, distribution, and diverse. In section 3, the
infeasible elitist preservation strategy and the new comparison strategy make the
algorithm have better convergence but can not guarantee the diversity and distri-
bution of Pareto-front. In [7, 20], crowded-comparison operator is adopted which
guides the search toward a sparse region of Pareto front, but it does not pay more
attention to the crowded regions near to the boundary of Pareto front. However, the
boundary points (they are also called reference points) can guarantee the diversity
of the Pareto-front, some particles located near to the boundary of the Pareto front
are of important information. In this part, for the two-objective optimization, we
design a novel crowding distance function denoted as crowd(x), which assigns larger
function values not only for the solutions located in a sparse region, but also for the
solutions located in a crowded region near to the boundary of the Pareto front.

The procedure is given by Algorithm 2. Suppose that the current Pareto front
is composed of N points, denoted as M = {u1, u2, . . . , uN}, and the corresponding
points in the decision space are denoted as x1, x2, . . . , xN , let ub, uc be two refer-
ence points of the Pareto front (can be seen from Figure 1), and the corresponding
points in the decision space be xb, xc. xb = argmin{f2(x1), f2(x2), . . . , f2(xN)},
xc = argmin{f1(x1), f1(x2), . . . , f1(xN)}.

Algorithm 2. Step 1: Calculate the Euclidean distance between every point in
the Pareto front and ub, find region M1 which is near to the boundary of the
Pareto front:

Di1 = dist(ui, ub), i = 1, 2, . . . , N

D1 =
N
∑

i=1

Di1
1

N

M1 = {uj | dist(uj, ub) ≤ 0.5D1, 1 ≤ j ≤ N, uj 6= ub}.

Step 2: Calculate the Euclidean distance between every point in the setM/M1 and
uc, find region M2 which is near to the reference point:

Di2 = dist(ui, uc), ui ∈M/M1

D2 =
|M/M1|
∑

i=1

Di2
1

|M/M1|

M2 = {uj |dist(uj , uc) ≤ 0.5D2, uj ∈M/M1, uj 6= uc}
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Step 3: Calculate the crowding distance of every point in the Pareto front:

crowd(xi) =



























crowd1(xi) ·
dist(ub,uc)
dist(ub,ui)

, ui ∈M1

crowd1(xi) ·
dist(ub,uc)
dist(uc,ui)

, ui ∈M2

crowd1(xi) ·
dist(ub,uc)

min{amin ,bmin}
, ui = ub or ui = uc

crowd1(xi), else

(4)

where amin = min{dist(ub, ui)|ui ∈ M1}, bmin = min{dist(ub, ui)|ui ∈ M2},
crowd1 = D1+D2

2
, D1, D2 are two nearest distances between point ui and the

other points in the Pareto front.

1
M

2
M

b
ui

u

c
u

1
f

2
f

Fig. 1. Crowding distance calculation

In doing so, when the Pareto optimal solutions exceed the given number, we keep
these particles with larger crowding distance function values, namely the particles
located in the sparse region of the objective or near to the boundary of the Pareto
font are preserved. So finally, we will get a widely spread and uniformly distributed
Pareto front.

5 USE OF A NOVEL MUTATION OPERATOR

In PSO, the search scheme is singleness: every particle is updated only according to
its own best position as well as the best particle in the swarm. So it often results in
two outcomes:

1. the loss of diversity required to maintain a diverse pareto front;

2. premature convergence if the swarm is trapped into a local optima.

The infeasible elitist preservation strategy can overcome the premature convergence
in some extent, but it is not enough. This motivated the development of a mutation
operator that tries to explore all particles at the beginning of the search. In this
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section, a novel mutation operator with two phases is proposed. The aim of the
first phase is to make full use of all particles in the swarm, and define a mutation
direction. Searching along this direction, better new particles will be found. In order
to make particles search different regions, which can guarantee the convergence of
the algorithm, the second phase of mutation is proposed.

More details are described as follows:

1. The first phase of mutation: We can image that there is a force between any
two particles in the search space, particle x has a force to y (y is the selected
particle according to the mutation probability pm1) which is defined as (5). For
a swarm including y, swarm pop has a total force to y which is the sum of
forces of each particle in pop to y, it can be defined by F (y) and calculated by
F (y) =

∑

xi∈pop,xi 6=y

Fi(xi, y). The mutation to y is a random variation along the

direction F (y)
‖F (y)‖

, its offspring is defined as fy1 = y + λ · F (y)
‖F (y)‖

. λ ∈ (0, 1) is the

step size when y searches along the direction F (y)
‖F (y)‖

.

Fi(xi) =
xi − y

‖xi − y‖
·
C − IF (xi)

rank(xi)
(5)

1
x

2
x

y

Fig. 2. The total force imposed on y

IF (xi) is the constraint violation function, IF (xi) =
∑s+p

j=1 max(0, gj(xi)), xi 6=
y, i = 1, 2, . . . , popsize, popsize is the size of the swarm. rank(xi) is the rank
value of xi in the current swarm. C is a big constant, let C = 10 000. This can
be graphically illustrated by Figure 2.

From Figure 2 and Equation (5), we can see that the total force imposed on y
leans to the particle with lower constraint violation or smaller rank value. So
searching along this direction, better particles may be found.

2. The second phase of mutation: In order to avoid particles searching along
one fixed direction, for some offspring of the first mutation, the second phase
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of mutation is performed: for fy1 (fy1 is selected according to the second
mutation probability pm2, we divide the ith interval [li, ui] into n subinter-
vals [̟i

1, ̟
i
2], . . . , [̟

ni−1
i , ̟ni

i ], where |̟i
j − ̟i

j−1| < ε, j = 2, . . . ni, randomly
generate a number δ ∈ (0, 1); if δ < pm2, then randomly select one ̟i

j in

{̟i
1, ̟

i
2, . . . , ̟

i
ni
} as the value of the ith dimension.

6 THE PROPOSED ALGORITHM

Algorithm 3 (Hybrid particle swarm evolutionary algorithm: HPSEA).

Step 1: Choose the proper parameters, given swarm size popsize, randomly gene-
rate initial swarm pop(0) including every particle’s position and velocity, find
the Pareto optimal solutions in the current swarm and copy them to R. Let
t = 0.

Step 2: Preserve infeasible elitist set IR according to Section 3.

Step 3: For every particle, let pbesti = xi, i = 1, 2, . . . , popsize.

Step 4: Select the best position of the swarm as gbest, gbest is randomly selected
from set R.

Step 5: For every particle in the swarm, do:

1. If rand(0, 1) < pc, pc = 0.2 + e−(
t

tmax
+1), pbesti is selected randomly from

the set IR, else pbesti is unchangeable.

2. The position and velocity of xi are updated according to (2), (3). The new
swarm is denoted as pop(t+ 1).

Step 6: For every particle in pop(t + 1), use mutation operator in Section 5 and
get the swarm pop(t+ 1).

Step 7: Maintain the particles in pop(t+1) within the search space: when a decision
vector goes beyond its boundaries, then the decision vector takes the value of
its corresponding boundary.

Step 8: Update the set R with all particles in pop(t+1), the update means adding
all Pareto optimal solutions in pop(t+1) into R, and delete the dominated ones
in it.

If the size ofR is full, the predetermined number of particles with larger crowding
distance function values are preserved.

Step 9: Update the infeasible elitist set IR with all particles in pop(t+1) according
to the infeasible elitist preservation strategy in Section 3.2.

Step 10: For every particle xi, update its pbesti according to the new comparison
strategy in 3.1.

Step 11: If the maximum number of the cycles has been reached, stop, output the
solutions in the set R as the Pareto optimal solutions, else go to step 4.
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In step 5, when rand(0, 1) < pc, we choose the pbest from the set IR; in doing

so, a particle’s potential search space will be enlarged, where pc = 0.2 + e−(
t

tmax
+1)

means the value is dynamically changed with the current generation number t. It
means at the beginning of the search, in order to enlarge the potential search space
and keep diversity of the swarm, a larger number of infeasible solutions are selected
while at the later stage of evolution, in order to guarantee the convergence of the
swarm, a smaller number of infeasible solutions are kept. So the infeasible elitists
must be in a proper proportion, in this paper pc ∈ [0.335, 0.561].

7 THE PROPOSED ALGORITHM

7.1 Test Functions

There are five test problems from the literature in our experiments. The F1 ∼ F4

are chosen from [9], F5 is chosen from [7]. The above test problems provide difficulty
to an algorithm in the vicinity of the Pareto front; difficulties also come from the
infeasible search regions in the entire search space.

F1 :



















min f1(x) = x1
min f2(x) = c(x) exp(−f1(x)/c(x))
s.t. g1(x) = f2(x)− 0.858 exp(−0.541f1(x)) ≥ 0
s.t. g2(x) = f2(x)− 0.728 exp(−0.295f1(x)) ≥ 0

x = (x1, x2, . . . , x5), 0 ≤ x1 ≤ 1, −5 ≤ xi ≤ 5, i = 2, 3, 4, 5.

F2 ∼ F4 :























min f1(x) = x1
min f2(x) = c(x)(1− f1(x)

c(x)
)

s.t. g1(x) = cos(θ)(f2(x)− e)− sin(θ)f1(x) ≥
a| sin(bπ(sin(θ)(f2(x)− e) + cos(θ)f1(x))

c)|d

x = (x1, x2, . . . , x5), 0 ≤ x1 ≤ 1, −5 ≤ xi ≤ 5, i = 2, 3, 4, 5, parameter settings are
described in Table 1. For F1 ∼ F4, c(x) = 41 +

∑5
i=2(x

2
i − 10 cos(2πxi)).

Problem θ a b c d e

F2 −0.2π 0.2 10 1 6 1
F3 −0.2π 0.75 10 1 0.5 1
F4 −0.05π 40 5 1 6 0

Table 1. Parameter settings in F2 ∼ F4

F5 :



















min f1(x) = x1
min f2(x) = (1 + x2)/x1
s.t. g1(x) = x2 + 9x1 ≥ 6
s.t. g2(x) = −x2 + 9x1 ≥ 1

x1 ∈ [0.1, 1.0], x2 ∈ [0, 5].
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7.2 Parameter Values

Each simulation run was carried out using the following parameters: swarm size:
100; infeasible elitist size: 20; size of R: 100; mutation probability pm1 : 0.6, pm2 =
0.3; maximum number of generations tmax : 200, c1 = c2 = 0.8; ωmax = 1.0, ωmin =
0.4.

7.3 Performance Measures

In the following of this section let A, B represent two sets of Pareto optimal solutions
in the decision space, and PA, PB denote the corresponding Pareto solution sets in
the objective space. We propose three metrics to measure the quality, distribution,
and diverse of the Pareto front. The first metric known as Q-measure [21] is used to
compare the quality of solutions found by the two algorithms. The second known
as S-measure [22] is used to evaluate the uniformity of the Pareto optimal solutions.
The third known as the FS-measure [23] is used to measure the size of the space
covered by the Pareto front found by an algorithm.

Metric 1 (Q-measure). Let Φ be the nondominated solution set of A∪B, let Ψ =

Φ ∩ A, Θ = Φ ∩ B, the metric is defined by M1(A,B) = |Ψ|
|Φ|

, M1(B,A) =
|Θ|
|Φ|

. The

solution set PA has better convergence to the true Pareto front than the solution
set PB, if and only if M1(A,B) > M1(B,A) or M1(A,B) > 0.5.

Metric 2 (Metric two (S-measure)). S = [ 1
nPF

∑nPF

i=1 (d
′

i−d
′)2]1/2, d′ = 1

nPF

∑nPF

i=1 d
′

i,

where nPF is the number of the solutions in the known Pareto front, d
′

i is the distance
(in the objective space) between the number i and its nearest member in the known
Pareto front. The smaller the value of S-measure, the more uniformity the Pareto
front found by the algorithm will be.

Metric 3 (Metric three (FS-measure)).

FS =
√

∑m
i=1min(x0,x1)∈A×A{(fi(x0)− fi(x1))2}, the larger the value of FS is, the

better diverse of solutions on the Pareto front will be.

7.4 Simulation Results and Comparisons

The proposed algorithm has been run on each test problem for 10 times indepen-
dently. On each run, outcome of the simulation is the Pareto front found by the pro-
posed algorithm (HPSEA). Figures 3–7. summarize the statistical performances of
the different algorithms HPSEA, multi-objective PSO with constraints [20] (MPSO),
and NSGAII with constraint Pareto dominance [7] (CNSGAII). In this section, “1”
denotes HPSEA, “2” denotes CNSGAII, “3” denotes MPSO.
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Fig. 3. Statistical performance on F1

A. F1

Since a part of the constrained boundary constitutes the Pareto optimal region,
a spread in Pareto optimal solutions require decision variables to satisfy the
inequality constraints. Thus, it may be difficult to find a number of solutions on
a nonlinear constraint boundary. It can be observed from Figure 3 that most of
the algorithms are able to find at least part of the true Pareto front. Figure 3
shows that HPSEA is able to evolve a diverse set of solutions due to the high
value of FS-measure. We can see that the Pareto front found by CNSGAII is
more uniform than those found by HPSEA and MPSO due to the low value
of S-measure; but, it can be seen that in most runs, among the union of the
solutions found by HPSEA and CNSGAII, the nondominated solutions found
by HPSEA exceed 0.5, so the solutions found by HPSEA have better convergence
to the true Pareto front than CNSGAII. Furthermore, the MPSO is unable to
find a diverse and well distributed optimal Pareto front due to the high value
of S-measure and a low value of FS-measure. Generally, the HPSEA shows
competitve performance in terms of convergence and diversity.
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Fig. 4. Statistical performance on F2

B. F2

The nature of the constraint boundary of F2 makes the Pareto optimal region
discontinuous, having a number of disconnected continuous regions. The task of
an optimization algorithm would be to find as many such disconnected regions
as possible. It can be seen from Figure 4 that HPSEA and CNSGAII are able
to find at least part of the true Pareto front, but MPSO can not find a few
part of the true Pareto front. It can be observed that HPSEA is able to find
a diverse and nearly Pareto optimal front due to the high value of Q-measure
and FS-measure. We can also see that the Pareto front found by CNSGAII is
more uniform than HPSEA due to the low value of S-measure, but CNSGAII
can only find a small part of the true Pareto front. This is because HPSEA
adopts two phases infeasible elitist preservation strategies which can maintain
diversity of the swarm during optimization, and finally get the true Pareto front.

C. F3

The problems have different form of complexity by increasing the value of pa-
rameter a, which has an effect of making the transition from continuous to
discontinuous far away from the Pareto optimal region, since an algorithm has
to travel through a long narrow feasible tunnel in search of the lone Pareto-
optimal solutions at the end of the tunnel. Because the problem is more difficult
compared to the previous problems, none of the algorithms can find the true
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Fig. 5. Statistical performance on F3

Pareto-front. Although MPSO maintains a better spread of solutions in terms
of the high value of FS-measure in Figure 5, HPSEA is able to come closer to the
true Pareto-front due to the high value of Q-measure. Algorithms which tend
to converge anywhere in the Pareo front first and then work on finding a spread
of solutions will end up finding solutions. HPSEA shows a similar behavior in
this problem.

D. F4

In this problem, the infeasibility in the objective search space can also come
along the Pareto optimal region. In order to find such disconnected regions, an
algorithm has to maintain adequate diversity. It can be observed from Figure 6
that all of the three algorithms can find a large part of the Pareto front. We can
also see that the Pareto front found by HPSEA is more uniform than those found
by the other two algorithms in terms of the low S-measure. From Figure 6, we
know that the in most runs, solutions found by HPSEA have better convergence
to the Pareto front than those by CNSGAII and MPSO due to the large value
of Q-measure. From Figure 6, we see that MPSO maintains a better diverse
Pareto front in terms of the high value of FS-measure. Thus, HPSEA shows
competitive performance in terms of convergence and uniformity, MPSO shows
competitive performance in terms of diversity.
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E. F5

For the problem F5, HPSEA have better convergence to the true Pareto front
due to the high value of Q-measure. The Pareto front found by NSGAII is
more uniform due to the low value of S-measure and MPSO finds a wider spread
Pareto front due to the higher value of FS-measure.

Finally, we can conclude that for F1, F2, HPSEA performs best in terms of
convergence and diversity, and for F3, F4, HPSEA performs best in terms of con-
vergence and uniformity. For F5, IPSEA performs best in terms of convergence,
MPSO performs best in terms of diversity and CNSGAII performs best in terms of
uniformity.

8 CONCLUSIONS

In this paper, a hybrid particle swarm evolutionary algorithm for constrained MOPs
is proposed. It can effectively handle constrained multi-objective optimization prob-
lems. It can generate wide spread and uniformly distributed solutions along the
entire Pareto front no matter what the shape of the Pareto front is. Moreover, the
Pareto front generated by the proposed algorithm is more close to the true Pareto
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front. Compared to the other algorithms, the proposed algorithm is superior to
these algorithms.
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