
Computing and Informatics, Vol. 29, 2010, 681–700

THE DESIGN AND ANALYSIS OF A MODIFIED WORK

FUNCTION ALGORITHM FOR SOLVING

THE ON-LINE K-SERVER PROBLEM

Alfonzo Baumgartner, Tomislav Rudec

Faculty of Electrical Engineering, University of Osijek

Kneza Trpimira 2b, 31000 Osijek, Croatia

e-mail: baumgart@etfos.hr, tomo@ffos.hr

Robert Manger

Department of Mathematics, University of Zagreb

Bijenička cesta 30, 10000 Zagreb, Croatia

e-mail: manger@math.hr

Manuscript received 2 February 2009; revised 27 May 2009
Communicated by Ralf Klasing

Abstract. In this paper we study a modified work function algorithm (WFA) for
solving the on-line k-server problem. Our modification is based on a moving window,
i.e. on an approximate work function that takes into account only a fixed number of
most recent on-line requests. We give a precise specification of the modified WFA,
investigate its competitiveness, and explain how it can be implemented efficiently
by network flows. We also present experiments that measure the performance and

computational complexity of the implemented algorithm. The results of the paper
can be summarized as follows: the modified WFA is not competitive, but according
to the experiments it still provides almost the same quality of serving as the original
WFA while running much faster.

Keywords: On-line problems, on-line algorithms, k-server problem, work func-
tion algorithm (WFA), moving windows, competitiveness, implementation, network
flows, experiments, performance, computational complexity

Mathematics Subject Classification 2000: 05C85, 68Q25, 90B10, 90B35,
90C27, 90C35

682 A. Baumgartner, T. Rudec, R. Manger

1 INTRODUCTION

This paper deals with the k-server problem [10], which belongs to a broader family of
on-line problems [7], and can also be regarded as a form of scheduling. In the k-server
problem one has to decide how k mobile servers should serve a sequence of on-line
requests. To solve the k-server problem, one needs a suitable on-line algorithm [7].
The goal of such an algorithm is not only to serve requests as they arrive, but also
to minimize the total cost of serving. A desirable property of an on-line algorithm
is its competitiveness [12]. Vaguely speaking, an algorithm is competitive if its
performance is only a bounded number of times worse than optimal.

There are various on-line algorithms for solving the k-server problem found
in literature. Among them, the best characteristics regarding competitiveness are
exhibited by the work function algorithm (WFA) [2, 9]. In spite of its importance and
interesting properties, the WFA is impractical due to its prohibitive computational
complexity.

In a recent paper [3] a simple modification of the WFA has been proposed,
which is based on a moving window. Such modified “lightweight” WFA seems to
be more suitable for practical purposes, since its computational complexity as well
as its quality of serving can hopefully be controlled by the window size. Namely,
with a small window the modified WFA is expected to run very quickly, while with
a reasonably large window it might achieve the same performance in terms of the
incurred total cost as the original WFA.

The aim of this paper is to provide a rigorous evaluation of the ideas from [3].
Thus the paper investigates various aspects of the proposed modified WFA, includ-
ing its competitiveness, efficient implementation, performance, and computational
complexity.

The paper is organized as follows. Section 2 lists all necessary preliminaries
about the k-server problem, the corresponding algorithms, the original WFA, and
competitiveness. Section 3 gives a precise specification of the modified WFA, and ex-
plains the motivation for introducing such an algorithm. Section 4 contains a proof
that, in contrast to the original WFA, the modified WFA is not competitive. Sec-
tion 5 describes an efficient implementation of the modified WFA, which is based
on reducing each step of the algorithm to a set of network flow problems. Section 6
reports on a series of experiments, where both the performance and computational
complexity of the implemented algorithm have been measured and compared vs. the
original WFA and some other algorithms. The final Section 7 gives a conclusion.

2 PRELIMINARIES

In the k-server problem [10] we have k servers each of which occupies a location
(point) in a fixed metric space M consisting of m locations. Repeatedly, a request ri
at some location x ∈ M appears. Each request must be served by a server before the
next request arrives. To serve a new request at x, an on-line algorithm must move
a server to x unless it already has a server at that location. The decision which

A Modified Work Function Algorithm 683

server to move may be based only on the already seen requests r1, r2, . . . , ri−1,
ri, thus it must be taken without any information about the future requests ri+1,
ri+2, . . .Whenever the algorithm moves a server from a location x to a location y,
it incurs a cost equal to the distance between x and y in M . The goal is not only
to serve requests, but also to minimize the total distance moved by all servers.

As a concrete instance of the k-server problem, let us consider the set M of
m = 5 Croatian cities shown in Figure 1 with distances given. Suppose that k = 3
different hail-defending rocket systems are initially located at Osijek, Zagreb and
Split. If the next hail alarm appears for instance in Karlovac, then our hail-defending
on-line algorithm has to decide which of the three rocket systems should be moved
to Karlovac. Seemingly the cheapest solution would be to move the nearest system
from Zagreb. But such a choice could be wrong if, for instance, all forthcoming
requests would appear in Zagreb, Karlovac and Osijek and none in Split.

t
tt

t
t

Zagreb

Osijek

Ka rlovac

Rijeka
Split

309

406

350

56
332

462

682

387

186

130

Fig. 1. A k-server problem instance

The simplest on-line algorithm for solving the k-server problem is the greedy

algorithm (GREEDY) [7]. It serves the current request in the cheapest possible
way, by ignoring history altogether. Thus GREEDY sends the nearest server to the
requested location.

A slightly more sophisticated solution is the balanced algorithm (BALAN-
CE) [10], which attempts to keep the total distance moved by various servers roughly
equal. Consequently, BALANCE employs the server whose cumulative distance
traveled so far plus the distance to the requested location is minimal.

The most celebrated solution to the k-server problem is the work function al-

gorithm (WFA) [2, 9]. To serve the request ri, the WFA switches from the current
server configuration S(i−1) to a new configuration S(i), obtained from S(i−1) by mov-
ing one server into the requested location (if necessary). Among k possibilities (any
of k servers could be moved) S(i) is chosen so that

F (S(i)) = COPT(S
(0), r1, r2, . . . , ri, S

(i)) + d(S(i−1), S(i)) (1)

684 A. Baumgartner, T. Rudec, R. Manger

becomes minimal. As we see, the objective function F (S(i)) is defined here as a sum
of two parts.

• The first part, usually called the work function, is the minimum total cost of
starting from S(0), serving in turn r1, r2, . . . , ri, and ending up in S(i).

• The second part is the distance traveled by a server to switch from S(i−1) to S(i).

Note that an on-line algorithm ALG can only approximate the performance of
the corresponding optimal off-line algorithm OPT, which knows the whole input
in advance and deals with input data as they arrive at minimum total cost. Such
desirable approximation property of ALG is formally described by the notion of
competitiveness. ALG is said to be competitive if its performance is estimated to
be only a bounded number of times worse than that of OPT on any input. More
precisely [12], let σ = (r1, r2, . . . , rn) be a sequence of requests. Denote withCALG(σ)
the total cost incurred by ALG on σ, and with COPT(σ) the minimum total cost on
σ. For a chosen constant α, we say that ALG is α-competitive if there exists another
constant β such that on every σ it holds:

CALG(σ) ≤ α · COPT(σ) + β.

There are many interesting results dealing with competitiveness. For instance,
it can be proved [10] that any hypothetical α-competitive algorithm for the k-server
problem must have α ≥ k. Also, it is easy to check [7] that both GREEDY and
BALANCE are not competitive, i.e. they have no bounded α. Finally, it has been
proved in [9] that the WFA is (2k − 1)-competitive.

The WFA can be regarded as the “most competitive” algorithm for the k-server
problem. Namely, its estimated value of α is several orders of magnitude lower
than for any other known algorithm of the same type [1]. It is widely believed
that the WFA is in fact k-competitive (thus achieving the best possible α), but this
hypothesis has not been proved except for some special cases [2].

3 THE MODIFIED WFA

As can be seen from (1), the original WFA is extremely complex and therefore not
suitable for practical purposes. Namely, each of its steps involves k demanding
optimization problem instances plus some additional arithmetics. Even worse, the
complexity of the ith step grows with i since each of the involved optima depends
on the whole list of requests r1, r2, . . . , ri−1, ri. Consequently, the original WFA
gradually slows down until it becomes intolerably slow.

The modification of the WFA from [3] has been proposed with the intention to
overcome the described drawbacks of the original algorithm. The modified WFA,
denoted more precisely as the w-WFA, is based on the idea that the sequence of
previous requests and configurations should be examined through a moving window
of size w. In its ith step the w-WFA acts as if ri−w+1, ri−w+2, . . . , ri−1, ri was the

A Modified Work Function Algorithm 685

whole sequence of previous requests, and as if S(i−w) was the initial configuration
of servers. In other words, the objective function F (), originally defined by (1), is
redefined in the following way:

F (S(i)) = COPT(S
(i−w), ri−w+1, ri−w+2, . . . , ri−1, ri, S

(i)) + d(S(i−1), S(i)). (2)

The main advantage of the w-WFA compared to the original WFA is much
lower and controllable computational complexity. Namely, each step of the w-WFA
has roughly the same complexity, and the algorithm does not slow down any more.
Moreover, the complexity of one step can be controlled by the window size w, i.e.
smaller w means faster response. On the other hand, one can hope that with a suf-
ficiently large w the w-WFA would still approximate the behavior of the original
WFA.

4 PROOF OF NON-COMPETITIVENESS

Now we will show that for a chosen w the w-WFA is not competitive, in spite of
its similarity to the original WFA. Since the 1-WFA is equivalent to GREEDY, and
GREEDY is known to be non-competitive, we can restrict to w ≥ 2. Also, we can
take k ≥ 2 since otherwise the algorithm has nothing to decide.

For a chosen w ≥ 2 and k ≥ 2 let us construct a metric space M consisting
of k + 1 locations. The first two locations x1 and x2 constitute a “distant island”.
The remaining k − 1 locations y1, y2, . . . , yk−1 constitute the “mainland”. Let the
distance between x1 and x2 be δ. Assume that for all i and j the distance between xi

and yj is ≥ ∆, where ∆ > wδ. Assume also that the distance between x1 and y1 is
exactly ∆. The situation is illustrated by Figure 2.

t t t t'
&

$
%

t t'
&

$
%

y1 y2 yj yk−1

x1 x2

∆ ≥ ∆

δ

mainland

island

Fig. 2. A suitably constructed metric space

686 A. Baumgartner, T. Rudec, R. Manger

The initial configuration of servers is such that one server resides at x2 and the
remaining servers occupy y1, y2, . . . , yk−1, respectively. The sequence of requests
r1, r2, . . . , rn, is given so that r1 appears at x1, r2 at x2, r3 again at x1, r4 again at
x2, . . . , etc. Thus the requests alternate at the island locations x1 and x2 and they
never occur on the mainland.

We claim that in the described situation the w-WFA serves requests in a “ping-
pong” fashion, by moving in each step the server already residing on the island, and
never employing any of the remaining servers from the mainland. Thus the service
offered by the w-WFA looks as described in Table 1.

request location server cost of
move serving

r1 x1 x2 → x1 δ

r2 x2 x1 → x2 δ

r3 x1 x2 → x1 δ

r4 x2 x1 → x2 δ

· · · · · · · · · · · ·

Table 1. Ping-pong serving

Now we explain in more detail why the w-WFA is forced to serve requests by
using only one server. Let us analyze the performance of the algorithm in the ith step
when the request ri appears, provided that all previous requests r1, r2, . . . , ri−1 have
already been served in the ping-pong fashion. We consider the following three cases:
i = 1, 2 ≤ i ≤ w, and i > w, respectively.

Case 1: i = 1. The first request r1 appears at the location x1. The algorithm
has to decide how to serve r1: either by moving the server from x2 to x1, or
by transporting any of the mainland servers to x1. For i = 1 both parts of the
objective function F () from (1) reduce to the distance that the chosen server
has to cross. Thus choosing the server that minimizes F () means choosing the
nearest server, and since δ < ∆ this is certainly the one already on the island.
Thus the ping-pong begins.

Case 2: 2 ≤ i ≤ w. For such value of i the objective function F () has its full
standard form (1). Since the previous requests have been served in the ping-
pong fashion, we are sure that the current server configuration S(i−1) involves
only one server on the island. The algorithm has to choose a new configuration
S(i) so that the value F (S(i)) from (1) is minimal. Let S̄(i) be the configuration
obtained from S(i−1) by resuming the ping-pong, i.e. by moving again the server
on the island. Since S̄(i) is gradually obtained from S(0) through a series of
i ping-pong moves and servings at total cost iδ, it follows that specially

COPT(S
(0), r1, r2, . . . , ri, S̄

(i)) ≤ iδ ≤ wδ.

A Modified Work Function Algorithm 687

On the other hand, obviously,

d(S(i−1), S̄(i)) = δ.

By combining the above two relations, we get

F (S̄(i)) ≤ (w + 1)δ < 2∆.

Let us now consider a configuration ̂S(i) obtained from S(i−1) by bringing a new
server from the mainland to the island. It obviously holds that:

d(S(i−1), ̂S(i)) ≥ ∆.

On the other hand, since ̂S(i) requires two servers on the island, the optimal way
of serving r1, r2, . . . , ri starting from S(0) and ending up in ̂S(i) should also at
some stage include pulling a server from the mainland. Consequently,

COPT(S
(0), r1, r2, . . . , ri, ̂S

(i)) ≥ ∆.

By putting the last two inequalities together, we get

F (̂S(i)) ≥ 2∆.

So we see that F (̂S(i)) is strictly larger than F (S̄(i)). Therefore the algorithm
can never use a configuration of the form ̂S(i), and the only thing it can do is to
choose S̄(i). Thus indeed, the ping-pong continues.

Case 3: i > w. For such value of i the objective function F () takes its redefined
form shown by (2). The algorithm does not remember the whole history any
more; it acts as if S(i−w) was the initial configuration and as if ri−w+1 was the
first request. Since all previous requests have been served in the ping-pong
fashion, it follows that the “initial” configuration S(i−w) again involves only one
server on the island (however, we cannot be sure if it resides at x1 or x2). The
same property also holds for the current configuration S(i−1). The algorithm
has to choose a new configuration S(i) so that the value of F (S(i)) from (2) is
minimal. Let again S̄(i) be the configuration obtained from S(i−1) by resuming
the ping-pong, and let ̂S(i) be any configuration obtained from S(i−1) by bringing
a new server from the mainland to the island. By similar reasoning as in the
previous case, we can show that F (S̄(i)) is < 2∆, while F (̂S(i)) must be ≥ 2∆.
Thus the algorithm is again forced to choose S̄(i), and the ping-pong resumes
even further.

After we have established that the w-WFA really serves requests strictly in the
ping-pong fashion as specified by Table 1, it is easy to calculate its total cost of
serving. Indeed, for a request sequence of length n, the total cost amounts to δn,
thus it increases linearly with n.

688 A. Baumgartner, T. Rudec, R. Manger

Next, we have to analyze performance of the optimal algorithm OPT on our
data. For a sufficiently large n, OPT serves the sequence r1, r2, . . . , rn in the
following way: it transports immediately in the first step an additional server from
the mainland to the island. More precisely, OPT moves the server from y1 to x1

at cost ∆. After that, OPT can serve the whole sequence of requests with no
additional server movements or costs. The initial effort of bringing the server from
the mainland to the island will pay off as soon as n > ∆/δ > w. The w-WFA is not
able to recognize the optimal solution since it “forgets” some history and acts as if
the sequence length n was always ≤ w.

Finally, let us combine all our estimates and complete the proof. Indeed, if the
w-WFA was α-competitive for some (finite) α, then the ratio between its cost and
the cost of OPT would be bounded and converging to α as n rises. However, we
see that the cost ratio is equal to (δn)/∆, i.e. it can be arbitrarily large if n is large
enough. Thus the w-WFA cannot be competitive.

5 IMPLEMENTATION BY NETWORK FLOWS

In order to implement the w-WFA, we start from the fact that the optimal off-line
algorithm OPT can be implemented relatively easily by network flow techniques [4].
Namely, according to [5], finding the optimal strategy to serve a sequence of requests
r1, r2, . . . , rn by k servers can be reduced to computing the minimal-cost maximal
flow on a suitably constructed network with 2n + k + 2 nodes. The details of this
construction are shown in Figure 3.

As we can see from Figure 3, the network corresponding to the off-line problem
consists of a source node, a sink node, and three additional layers of nodes. The

first layer represents the initial server configuration S(0), i.e. node s
(0)
j corresponds

to the initial location of the jth server. The remaining two layers represent the
whole sequence of requests, i.e. nodes rp and r′p both correspond to the location of

the pth request.

Some pairs of nodes are connected by arcs, as shown in Figure 3. Note that
an rp is connected only to the associated r′p. Also, a link between an r′p and an rq
exists only if q > p. All arcs are assumed to have unit capacity. The costs of arcs
leaving the source or entering the sink are 0. An arc connecting rp with r′p has the
cost −L, where L is a suitably chosen very large positive number. All other arc
costs are equal to distances between corresponding locations.

It is obvious that the maximal flow through the network shown in Figure 3 must
have the value k. Moreover, the maximal flow can be decomposed into k disjunct
unit flows from the source to the sink. Each unit flow determines the trajectory
of the corresponding server and the requests that are accomplished by that server.
If the chosen constant L is large enough, then the minimal-cost maximal flow will
be forced to use all arcs between rp and r′p, thus assuring that all requests will be
served at minimum cost.

A Modified Work Function Algorithm 689

t

t t t

t t t t

t t t t

t

�
�

�
�

�
�

�
�

�
��+

�
�

�
�
�

�
��

Q
Q
Q
Q
Q

Q
Q
Q
Q
QQs

�
�
�

�
�

�
��

A
A
A
A
A
A
AU

Q
Q
Q
Q
Q
Q

Q
Q
Q
QQs z

�
�

�
�

�
�

�
�

�
��+

�
�

�
�
�

�
��

A
A
A
A
A
A
AU j))

�
�

�
�

�
�

�
�

�
��+

A
A
A
A
A
A
AU

? ? ? ?�
�
�
�
�
�
��

��������������*

����������������������������:

�
�
�
�
�
�
�� *

�

HHHHHHHHHHHHHHj

@
@
@
@
@
@
@R ?

���������������
1- �

source

s
(0)
1 s

(0)
2 s

(0)
k

r1 r2 r3 rn

r′1 r′2 r′3

r′n

sink

Fig. 3. Finding the optimal solution to the off-line k-server problem

According to Definition (1), the ith step of the WFA consists of k optimization
problem instances, plus some simple arithmetics. So there is a possibility to imple-
ment the WFA by using the above mentioned network flow techniques. It is true,
however, that the optimization problems within the WFA are not quite equivalent
to off-line problems, namely there is an additional constraint regarding the final
configuration of servers. Still, the construction from [5] can be used after a slight
modification. More precisely, the ith step of the WFA can be reduced to k minimal-
cost maximal flow problems, each on a network with 2i + 2k nodes. One of the
involved networks is shown in Figure 4. Note that the network size rises with i.

As we can see from Figure 4, one of k networks used to implement the ith step
of the WFA is very similar to the previously described network used to find the
optimal solution of the off-line problem. The main difference is that the fourth layer
of nodes has been added, which is analogous to the first layer, and which specifies
the currently chosen version of the final server configuration S(i). Note that the
second and third layers now correspond only to requests r1, r2, . . . , ri−1. Still, since
the final configuration S(i) always covers the location of the last request ri, we are

690 A. Baumgartner, T. Rudec, R. Manger

t

t t t

t t t t

t t t t

t t t

t

�
�

�
�

�
�

�
�

�
��	

�
�
�
�
�
�
�
�
�
��

@
@
@

@
@
@
@
@
@

@@R
�
�

�
�

�
�
��

A
A
A
A
A
A
AU

Q
Q
Q
Q

Q
Q
Q
Q
Q
QQs z

�
�

�
�

�
�

�
�

�
��+

�
�

�
�

�
�
��

A
A
A
A
A
A
AU j))

�
�

�
�

�
�

�
�

�
��+

A
A
A
A
A
A
AU

? ? ? ?�
�
�
�

�
�
��

��������������*

����������������������������:

�
�
�
�

�
�
�� *

�

A
A
A
A
A
A
AU

Q
Q
Q
Q

Q
Q
Q
Q
Q
QQs -

�
�

�
�

�
�
��

A
A
A
A
A
A
AU z

�
�

�
�

�
�

�
�

�
��+

�
�

�
�

�
�
��

Q
Q
Q

Q
Q
Q
Q
Q
Q

QQs� 9

�
�
�

�
�
�
��

@
@
@
@

@
@
@
@
@
@@R

B
B
B
B
B
B
B
B
B
BBN

�
�

�
�

�
�

�
�

�
��	

R * *
� � �

	
ii

source

s
(0)
1 s

(0)
2

s
(0)
k

r1 r2 r3 ri−1

r′1 r′2 r′3
r′i−1

s
(i)
1

s
(i)
2

s
(i)
k

sink

Fig. 4. Solving one of k optimization problems within the ith step of the WFA

sure that ri will also be served with no additional cost. When we switch from one
particular version of S(i) to another, the structure of the whole network remains the
same, only the costs of arcs entering the fourth level must be adjusted in order to
reflect different final setting of servers.

As it has been explained in Section 3, the w-WFA is only a modified version of
the WFA, where the sequence of previous requests and configurations is examined
through a moving window of size w. Obviously, the w-WFA can be implemented by
network flow techniques in exactly the same way as the originalWFA. More precisely,

A Modified Work Function Algorithm 691

the ith step of the w-WFA can again be reduced to k minimal-cost maximal flow
problems, but now each of those problems is posed on a network built with 2w+2k
nodes, as shown in Figure 4. Note that the network size now does not change any
more with i.

To complete the proposed implementation of the w-WFA, it is necessary to
incorporate a suitable procedure for finding network flows. Our chosen procedure
for solving minimal-cost maximal flow problems follows the well known generic flow
augmentation method [4] with some adjustments. Thus we start with a flow that is
not of maximal value but has the minimal cost among those with that value. Then
in each iteration we augment the value of the current flow in such a way that it still
has the minimal cost among those with the same value. After a sufficient number
of iterations we obtain the minimal-cost maximal flow.

In our particular case the procedure can be started with the null flow. Namely,
since the involved networks are acyclic, the null flow obviously has the minimal cost
among those with value 0. In each iteration, augmentation is achieved by finding
a shortest path in the corresponding displacement network [4]. Since the maximal
flow has value k and each augmentation increments the flow value by one unit,
finding the minimal-cost maximal flow reduces to exactly k single-source shortest
path problems.

The last detail within our implementation of the w-WFA is the choice of an
appropriate algorithm for finding the shortest paths. It is well known that the fastest
among such algorithms is the one by Dijkstra [8]. However, Dijkstra’s algorithm
can be applied only to networks whose arc costs are nonnegative. At first sight, our
networks do not qualify since they contain negative costs −L. Still, it turns out
that Dijkstra’s algorithm can be used after a suitable transformation of arc costs,
as shown in [6].

In the remaining part of this section let us give some rough estimates of the
computational complexity. As we have just described, our implementation of the
original WFA is based on reducing the ith step of the WFA to k minimal-cost maxi-
mal flow problems, each on a network with 2i+2k nodes. Any of those minimal-cost
maximal flow problems is further reduced to k single-source shortest path problems
on networks with the same size. All path problems are finally solved by Dijkstra’s
algorithm. The w-WFA is implemented in the same way, except that the networks
involved in the ith step have size 2w + 2k.

It is well known that Dijkstra’s algorithm has at most a quadratic running time.
Since the ith step of the WFA consists of k2 applications of Dijkstra, and all those
applications are on networks of size 2i+2k, it follows that the ith step of the WFA has
computational complexity O(k2 · (i+ k)2). Similarly, the computational complexity
of the w-WFA is O(k2 · (w + k)2) per step.

The above estimates are in accordance with our expectations. Indeed, the com-
plexity of the ith step of the w-WFA does not rise with i as for the original WFA,
but it still exhibits a nonlinear dependency on k and w. Consequently, the w-WFA
is faster than the original WFA, but it is still rather complex compared to simple
heuristics such as GREEDY or BALANCE, whose steps can easily be implemented

692 A. Baumgartner, T. Rudec, R. Manger

in O(k) operations. Note that we deal here with worst-case estimates, which take
into account only input size, while ignoring actual input values such as actual dis-
tances among requested locations.

6 EXPERIMENTS AND THEIR RESULTS

In order to obtain experimental results, we have developed a C++ program that
implements the w-WFA for any given w. Implementation is based on network flows,
as described in the previous section. To allow comparison, we have also realized some
other on-line algorithms, such as GREEDY, BALANCE and the original WFA. In
addition, we have made a program that implements the optimal off-line algorithm
OPT. The source code of all programs is publicly available and can be downloaded
from the web address http://www.math.hr/~manger/ModifiedWFA.zip.

All programs were executed on a Linux cluster whose each node consists of
two 2.8GHz CPU-s with 2GB of memory. Only one cluster node was employed
to run one program. Thanks to using the MPI package [11], our programs were
able to distribute their workload among both CPU-s. Such limited form of paral-
lelism resulted in speeding-up all algorithms approximately by factor of two. Still,
relative speeds of different algorithms remained roughly the same as for sequential
computing.

In our experiments we tried to explore relative strengths and weaknesses of the
considered algorithms in a systematic way. We used problem instances that differ in
4 parameters: the total number of locations m, the number of servers k, the number
of consecutive requests n, and the type of distribution of requests among locations.
For each parameter we tried two clearly distinct values. In this way we obtained
altogether 2× 2× 2× 2 = 16 distinct problem instances.

The number of locations has been chosen as m = 25 or m = 15 112, the number
of servers as k = 3 or k = 10, while the number of consecutive requests has been
set to n = 100 or n = 300. The distribution of requests among locations can be
uniform or non-uniform. In each problem instance, the initial server configuration
has been specified by hand, while the sequence of requests with a desired length and
distribution has been generated automatically by an appropriate random number
generator.

The problem instances with m = 25 actually correspond to a set of Croatian
cities shown in Figure 5, while the instances with m = 15 112 use the map of Ger-
many presented by Figure 6. There is a slight difference in the way how costs of
moving among locations are determined in both maps. For Croatian cities, costs
have been defined as the shortest distances over the available roads and given to
algorithms through a pre-computed distance matrix. On the other hand, German
locations have been described by coordinates, so that costs can be computed by
algorithms themselves as Euclidean distances. Consequently, there is a slight com-
putational overhead when dealing with the map of Germany.

A Modified Work Function Algorithm 693

ČA

VŽ KCKR

KA

6015119

45
100

59
77

81
53
BJ

65101

ZG VT115

56

NASI

78

55
138 142

118

64

127

147

105
77

48

OS

VU

PŽ

SB

126

51
36

100

53
42150

130

165
153

RI
UM

PU

PZ

105

87
105

63 71

46

172

228

GO

ZD

GR

KN

ŠI

ST

55

115

185

61 59

73 50

88

86

DU

223

Fig. 5. Map of Croatia

Uniform distribution means that a new request can appear at any location within
the considered metric space with the same probability. Non-uniform distribution
means that some locations occur more frequently than the others. More precisely,
in our non-uniform problem instances each location has a weight and occurs with
the probability equal to its weight divided by the sum of all weights. Since locations
correspond to cities, their weights can be interpreted as numbers of inhabitants.
Thus a new request appears in a city with 50 000 people 5 times more often than in
a city with 10 000 people. Non-uniform distribution is more realistic, and it allows
algorithms to learn from history.

Experimenting enabled measuring the performance of the w-WFA, as well as its
computational complexity. To obtain the desired results, the implemented w-WFA
was tested on the described problem instances. More precisely, each instance was
solved many times with different window sizes w. In addition, each instance was
also solved by GREEDY, BALANCE, the original WFA and OPT. The perfor-
mance of any algorithm was measured in terms of the incurred total cost of serving,
while the computational complexity was estimated as the actual computing time in
milliseconds.

694 A. Baumgartner, T. Rudec, R. Manger

Fig. 6. Map of Germany

The results of our experiments are given in Tables 2-5. Tables 2 and 3 deal
with the problem instances based on the map of Croatia (m = 25), while Tables 4
and 5 contain the instances that use the map of Germany (m = 15 112). The in-
stances with shorter sequences of requests (n = 100) are represented by Tables 2
and 4, while longer sequences (n = 300) are put into Tables 3 and 5. In each
table, a row corresponds to a particular algorithm, and a column to a particular
problem instance. Each table entry records the performance (total cost) and com-
putational complexity (time in milliseconds) of the corresponding algorithm on the
corresponding instance.

The most important thing we can see from Tables 2–5 is that the w-WFA usually
achieves the same performance as the original WFA if w is large enough. This is

A Modified Work Function Algorithm 695

Instance: #01 #02 #03 #04
Map: Croatia Croatia Croatia Croatia
Locations: m = 25 m = 25 m = 25 m = 25
Requests: n = 100 n = 100 n = 100 n = 100
Distribution: non-uniform non-uniform uniform uniform

Servers: k = 3 k = 10 k = 3 k = 10

Total Time Total Time Total Time Total Time
Algorithm cost [ms] cost [ms] cost [ms] cost [ms]

OPT 2 132 31 707 46 11 431 46 3 215 31
BALANCE 3 279 0 713 0 15 487 0 5 106 0
GREEDY 10 767 0 1 748 0 12 981 0 4 357 15
2-WFA 10 767 15 1 748 79 12 856 16 4 369 235
5-WFA 4 298 16 1 056 78 12 736 47 4 230 359
10-WFA 3 463 16 1 056 125 13 489 62 4 233 610
20-WFA 3 463 47 1 056 250 13 556 204 4 740 1 234
50-WFA 3 463 234 989 843 13 405 1 046 4 772 4 391
Orig WFA 3 463 406 989 1 266 13 405 2 360 4 772 8 828

Table 2. Experimental results – map of Croatia, 100 requests

true even for the biggest problem instances. Thus the w-WFA with a sufficiently
large w can be considered equivalent to the WFA in terms of the incurred total cost.
After it has been reached for some w, this equivalence is further on retained for
larger w-s.

The second important fact visible from Tables 2–5 is that the w-WFA (or equiv-
alently the WFA) frequently achieves better performance than GREEDY or BA-
LANCE. In fact, the w-WFA is always better than GREEDY if the distribution
of requests is non-uniform. This phenomenon is easy to explain: non-uniform dis-
tribution means that history counts, so that an algorithm that learns from history
ought to be better than an algorithm that ignores history. In spite of its simplicity,
BALANCE turned out to be more successful than we expected. Still, the w-WFA
performs better than BALANCE for uniform distribution of requests.

The data on computing times shown in Tables 2–5 are more or less consistent
with the previously presented theoretical estimates of computational complexity.
Small anomalies and discrepancies can be attributed to peculiarities of the employed
cluster. By comparing Table 2 with Table 4 and Table 3 with Table 5, respectively,
we can see that orders of time magnitudes in corresponding columns are roughly
equal, which means that computational complexity indeed does not depend on the
size m of the metric space M . The times for the large map of Germany still tend to
be longer, but this can be explained by the previously mentioned overhead caused
by computing Euclidean distances.

By observing each table separately, we can notice that problem instances with
non-uniform distribution of requests allow smaller total costs and run faster than
corresponding instances with uniform distribution. Indeed, with non-uniform dis-

696 A. Baumgartner, T. Rudec, R. Manger

Instance: #05 #06 #07 #08
Map: Croatia Croatia Croatia Croatia
Locations: m = 25 m = 25 m = 25 m = 25
Requests: n = 300 n = 300 n = 300 n = 300
Distribution: non-uniform non-uniform uniform uniform

Servers: k = 3 k = 10 k = 3 k = 10

Total Time Total Time Total Time Total Time
Algorithm cost [ms] cost [ms] cost [ms] cost [ms]

OPT 5 847 1 125 895 1 265 35 138 1 140 8 792 1 265
BALANCE 9 440 0 1 531 0 51 546 0 15 405 0
GREEDY 30 836 0 2 985 0 42 789 0 12 164 0
2-WFA 25 706 31 2 985 219 41 969 63 12 433 766
5-WFA 11 857 47 1 227 125 43 032 109 12 562 1 140
10-WFA 10 923 47 1 227 219 41 496 234 11 575 1 860
20-WFA 10 923 156 1 227 453 41 131 625 11 863 3 984
50-WFA 10 891 922 1 229 1 859 41 131 3 875 11 517 15 750
100-WFA 10 891 3 843 1 229 7 500 41 131 16 844 11 805 60 047
150-WFA 10 891 9 641 1 229 30 391 41 131 42 344 11 805 211 266
Orig WFA 10 891 49 375 1 137 74 640 41 131 220 766 11 805 604 718

Table 3. Experimental results – map of Croatia, 300 requests

tribution it happens more often that a new request occurs at a location already
covered by a server – then no computing is necessary and the request is served with
no cost in time 0.

In accordance with the theoretical estimates, Tables 2–5 clearly demonstrate
that the w-WFA runs orders of magnitude faster than the original WFA. This is
true even for a fairly large window size w. Note that our tables contain cumulative
times needed to serve whole sequences of requests. Big differences in cumulative
values are obtained because the w-WFA needs approximately the same time for any
step, while the time taken by the original WFA rises with each consecutive step.

More detailed comparison of times needed by our algorithms step by step is given
in Figure 7. This figure corresponds to the problem instance #4 (map of Croatia,
m = 25, n = 100, uniform distribution, k = 10), and it compares the 50-WFA to
the original WFA. The times needed by both algorithms to serve each particular
request are presented. As mentioned before, the algorithms recognize situations
where a request occurs at a location already covered by a server – then the service
time is 0. Otherwise the time fits into one of two functions that are recognizable
from the plotted data. For the 50-WFA the corresponding function is bounded by
a constant, while for the original WFA the function rises very steeply.

Again in accordance with the theoretical estimates, Tables 2–5 also show that
the w-WFA cannot compete in speed with GREEDY or BALANCE. This is true
even for a very small window size w. In fact, GREEDY and BALANCE are so quick
that our system could not record their times accurately. On the other hand, the
time taken by the w-WFA is never negligible.

A Modified Work Function Algorithm 697

Instance: #09 #10 #11 #12
Map: Germany Germany Germany Germany
Locations: m = 15 112 m = 15 112 m = 15 112 m = 15 112
Requests: n = 100 n = 100 n = 100 n = 100
Distribution: non-uniform non-uniform uniform uniform

Servers: k = 3 k = 10 k = 3 k = 10

Total Time Total Time Total Time Total Time
Algorithm cost [ms] cost [ms] cost [ms] cost [ms]

OPT 53 191 32 30 526 47 414 887 31 221 545 32
BALANCE 91 663 0 34 360 0 572 443 0 351 198 0
GREEDY 99 647 0 76 346 0 437 427 0 270 291 0
2-WFA 99 647 0 76 346 125 437 427 31 269 076 453
5-WFA 99 647 15 36 200 62 446 443 47 263 406 640
10-WFA 76 085 16 36 200 110 451 764 78 268 282 1 047
20-WFA 76 085 16 36 200 203 451 764 235 260 681 2 141
50-WFA 76 085 109 36 200 640 451 764 1 156 260 681 7 344
Orig WFA 76 085 187 36 200 1 047 451 764 2 516 260 681 14 093

Table 4. Experimental results – map of Germany, 100 requests

7 CONCLUSIONS

In this paper we have presented a modified version of the work function algorithm
(WFA) for solving the on-line k-server problem. Our modification is based on a mov-
ing window with a fixed size. On the other hand, the original WFA can be inter-

0

50

100

150

200

250

300

350

400

450

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

n

t [
m

s]

50-WFA

WFA

Fig. 7. Detailed results – the original WFA vs. the 50-WFA, time per step

698 A. Baumgartner, T. Rudec, R. Manger

Instance: #13 #14 #15 #16
Map: Germany Germany Germany Germany
Locations: m = 15 112 m = 15 112 m = 15 112 m = 15 112
Requests: n = 300 n = 300 n = 300 n = 300
Distribution: non-uniform non-uniform uniform uniform

Servers: k = 3 k = 10 k = 3 k = 10

Total Time Total Time Total Time Total Time
Algorithm cost [ms] cost [ms] cost [ms] cost [ms]

OPT 144 673 1 140 70 052 1 297 1 268 760 1 140 630 284 1 266
BALANCE 203 983 0 100 191 0 1 857 679 0 990 979 0
GREEDY 744 734 0 85 458 0 1 456 535 0 750 735 0
2-WFA 601 824 32 85 458 219 1 443 328 63 750 735 1 344
5-WFA 227 855 31 85 458 312 1 464 790 141 744 422 2 000
10-WFA 227 855 47 78 705 406 1 457 765 281 745 682 3 281
20-WFA 227 855 140 78 705 844 1 466 849 719 754 858 7 047
50-WFA 229 819 860 78 705 3 485 1 466 849 4 609 736 152 28 625
100-WFA 227 539 3 765 78 705 13 078 1 466 849 19 516 734 856 103 953
150-WFA 227 539 10 672 79 091 47 093 1 466 849 50 125 734 856 362 094
Orig WFA 227 539 53 235 79 091 138 219 1 466 849 255 984 734 856 1 071 797

Table 5. Experimental results – map of Germany, 300 requests

preted as an extreme case of our modified WFA where the window size is infinite.
We have described how both versions of the WFA can be implemented by using
network flow techniques. Also, we have presented a series of experiments dealing
with performance and computational complexity of the implemented algorithms.

The presented experimental results have confirmed that the modified WFA can
really be regarded as a convenient “lightweight” version of the original WFA. Indeed,
with a reasonably large window, the modified WFA closely mimics the performance
of the original WFA, i.e. it achieves the same or almost the same incurred total
cost of serving. This assertion is true even for very large problem instances. At the
same time, the modified WFA runs dramatically faster than the original WFA, thus
becoming suitable for practical purposes.

The computational complexity of the modified WFA is still very large compared
to simple heuristics, such as the greedy or the balanced algorithm. However, this
additional computational effort can be tolerated since it assures better performance.
The advantages of the WFA vs. simple heuristics are more visible on problem in-
stances with non-uniform distribution of requests.

In this paper we have also shown that, in contrast to the original WFA, the
modified WFA is never competitive, no matter how large is the window that has
been chosen. Thus, by limiting the original infinite window to some finite size, we
certainly improve the algorithm speed, but we simultaneously lose the property of
competitiveness.

The fact that the modified WFA is not competitive is seemingly in contradiction
with the presented experimental results. However, one must take into account that

A Modified Work Function Algorithm 699

competitiveness is a very rigid and demanding theoretical criterion, which tends
to disqualify many otherwise good algorithms. The problem instance used in our
proof of non-competitiveness is of course extremely artificial. In fact, the presented
experiments show that in realistic situations the modified WFA still captures some
advantages of its competitive original, although not being competitive itself.

Our future plan is to develop an optimized and truly distributed network flow im-
plementation of the modified WFA. Since the networks in our network flow problems
have quite specific structure, it should be possible to design dedicated algorithms
for finding network flows that are more efficient than generic algorithms. Moreover,
by employing more processors it should be possible to further speed up the whole
computation in order to meet strict response time requirements that are sometimes
imposed by on-line problems.

REFERENCES

[1] Bartal, Y.—Grove, E.: The Harmonic k-Server Algorithm is Competitive. Jour-
nal of the ACM, Vol. 47, 2000, pp. 1–15.

[2] Bartal, Y.—Koutsoupias, E.: On the Competitive Ratio of the Work Function
Algorithm for the k-server Problem. Theoretical Computer Science, Vol. 324. 2004,
pp. 337-345.

[3] Baumgartner, A.—Manger, R.—Hocenski, Z.: Work Function Algorithm with
a Moving Window for Solving the On-Line k-Server Problem. Journal of Computing
and Information Technology, Vol. 15, 2007, pp. 325–330.

[4] Bazaraa, M. S.—Jarvis, J. J.—Sherali, H.D.: Linear Programming and Net-
work Flows. Third edition. Wiley-Interscience, New York, NY, 2004.

[5] Chrobak, M.—Karloff, H.—Payne T.H.—Vishwanathan, S.: New Re-
sults on Server Problems. SIAM Journal on Discrete Mathematics, Vol. 4, 1991,
pp. 172–181.

[6] Edmonds, J.—Karp, R.M.: Theoretical Improvements in Algorithmic Efficiency
for Network Flow Problems. Journal of the ACM, Vol. 19, 1972, pp. 248–264.

[7] Irani, S.—Karlin, A.R.: Online Computation. In: D. Hochbaum (Ed.): Approxi-
mation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston, MA,

1997, pp. 521–564.

[8] Jungnickel, D.: Graphs, Networks and Algorithms. Springer, Berlin, 2005.

[9] Koutsoupias, E.—Papadimitrou, C.: On the k-Server Conjecture. In:
F. T. Leighton and M. Goodrich (Eds.): Proceedings of the 26th Annual ACM Sym-
posium on Theory of Computing, Montreal, Quebec, Canada, May 23–25, 1994. ACM
Press, New York, NY, 1994, pp. 507–511.

[10] Manasse, M.—McGeoch, L.A.—Sleator, D.: Competitive Algorithms for
Server Problems. Journal of Algorithms, Vol. 11, 1990, pp. 208–230.

[11] Quinn, M. J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill,
New York, NY, 2003.

700 A. Baumgartner, T. Rudec, R. Manger

[12] Sleator, D.—Tarjan, R.E.: Amortized Efficiency of List Update and Paging

Rules. Communications of the ACM, Vol. 28, 1985, pp. 202–208.

Alfonzo Baumgartner is a research assistant and a Ph.D.
student at the Faculty of Electrical Engineering, Josip Juraj
Strossmayer University in Osijek, Croatia. His current research
interests include on-line problems, parallel algorithms applied
to combinatorial optimization problems, and other algorithms
which use efficient data structures. He has published 6 papers
in international scientific journals or conference proceedings.

Tomislav Rude
 received the M. Sc. degree in mathematics
from the University of Zagreb in 2001. Currently, he is a lecturer
at the Faculty of Electrical Engineering, Josip Juraj Strossmayer
University in Osijek. His research interests include combinatorial
optimization, analysis of algorithms, on-line computation, and
teaching of mathematics. He has published 4 scientific papers
in international journals or conference proceedings, and 6 pro-
fessional papers.

Robert Manger received the B. Sc. (1979), M. Sc. (1982), and
Ph.D. (1990) degrees in mathematics, all from the University of
Zagreb. For more than ten years he worked in industry, where
he obtained experience in programming, computing, and design-
ing information systems. He is presently a Professor at the De-
partment of Mathematics, University of Zagreb. His current
research interests include: combinatorial optimization, parallel
and distributed algorithms, and soft computing. He has pub-
lished 18 papers in international scientific journals, over 25 scien-
tific papers in conference proceedings, 10 professional papers,

and 4 course materials. He is a member of the Croatian Mathematical Society, Croatian
Society for Operations Research and IEEE Computer Society.

