
Computing and Informatics, Vol. 31, 2012, 485–505

DESCRIBING THE FPGA-BASED HARDWARE
ARCHITECTURE OF SYSTEMIC COMPUTATION
(HAOS)

Christos Sakellariou, Peter J. Bentley

Department of Computer Science

University College of London

Malet Place

WC1E 6BT London, United Kingdom

e-mail: {c.sakellariou, p.bentley}@cs.ucl.ac.uk

Abstract. This paper presents HAoS, the first hardware architecture of the bio-
inspired computational paradigm known as Systemic Computation (SC). SC was
designed to support the modelling of biological processes inherently by defining
a massively parallel non-conventional computer architecture and a model of natural
behaviour. In this work we describe a novel custom digital design, which addresses
the SC architecture parallelism requirement by exploiting the inbuilt parallelism
of a Field Programmable Gate Array (FPGA) and by using the highly efficient
matching capability of a Ternary Content Addressable Memory (TCAM). Basic
processing capabilities are embedded in HAoS in order to minimize time-demanding
data transfers. Its custom instruction set can be expanded based on user require-
ments, since the optional use of a CPU provides high-level processing support if
required. We demonstrate a functional simulation-verified prototype, which takes
into consideration programmability and scalability, and review various communi-

cation interfaces between HAoS and the CPU. Analysis shows that the proposed
architecture provides an effective solution in terms of efficiency versus flexibility
trade-off and can potentially outperform prior implementations.

Keywords: Systemic computation, FPGA, parallel architecture, non-conventional
computer architecture, content addressable memory, natural computation, CPU-
FPFA communication

Mathematics Subject Classification 2010: 93C62, 68U99, 92-08

486 C. Sakellariou, P. J. Bentley

1 INTRODUCTION

Conventional silicon-based technologies are about to reach their limits. With the
laws of physics now constraining our ability to further increase the clock speed,
computer architectures are becoming increasingly parallel and distributed. How-
ever, there are few generic architectures specifically designed to support bio-inspired
algorithms and models of natural systems. To address this, researchers have drawn
inspiration from nature to found new computational paradigms. Such a newly-
conceived paradigm is Systemic Computation (SC). SC is designed to be a model of
natural behaviour and, at the same time, a model of computation. It incorporates
natural characteristics and defines a massively parallel computer architecture that
may model natural systems efficiently [1, 2].

There are three SC implementations to date. The first two attempts simulate
a systemic computer, using conventional CPUs, and provide a satisfactory proof-
of-concept but suffer from poor performance [1, 2]. The latest attempt successfully
maps a part of the model on the parallel resources of a GPU and achieves perfor-
mance gains up to the order of hundreds [3]. Clearly, the full potential of SC cannot
be exploited using conventional hardware.

Thus, in this paper, which is an extended version of [4], an FPGA-based ap-
proach is proposed to implement the systemic computer. Section 2 outlines SC and
prior implementations. Section 3 summarises our novel custom digital design. In
Section 4 we demonstrate the verification and evaluation methodology for HAoS.
Section 5 discusses the possible ways of implementing the communication interface
between HAoS and the CPU. Finally, Section 6 concludes the paper.

2 SYSTEMIC COMPUTATION

2.1 Overview

Systemic computation adopts a holistic analysis approach of systems embracing the
significant importance of the interactions of their fundamental elements and their
environment. Its intention is to resemble natural computation, in order to simulate
biological processes effectively, by following a set of simple conventions [1]:

1. everything is a system,

2. systems may comprise or share other nested systems,

3. systems can be transformed but never destroyed or created from nothing,

4. interaction between systems may cause transformation of those systems accord-
ing to a contextual system,

5. all systems can potentially act as context and interact in some context,

6. the transformation of systems is constrained by the scope of systems, and finally

7. computation is transformation.

Describing the FPGA-Based HAoS 487

The interaction of two systems can be described by the systems themselves
and a third “contextual” system (which is referred to as context) which denotes
how/if the interacting systems are transformed after their interaction. The notions
of schemata and transformation function are used in [1] to describe the interaction.
Each system comprises of three parts, two schemata and one transformation function
(see Figure 1). The function consists of an instruction from the SC instruction
set (more advanced SC implementations may allow a transformation function to
comprise multiple instructions). Both systems may change after an interaction,
which implies circular causality (each system may affect the other). The scope here,
as in nature, is an important factor. The scope of a system defines the neighbourhood
(which can be other than spatial) in which the system can interact with other
systems in a certain way, denoted by the context. Systems are represented as binary
strings.

0aab baa0

(a)

System

schemata1 transformation function schemata 2
(b)

00110aab baa00011

Fig. 1. SC notation and systems representation: a) Graphical representation of a system
in SC. b) The three elements of a system. (Reproduced with permission from [1]).

Pairs of systems always interact with a context; these systems constitute a valid
triplet. The schemata of the context provide templates for the operand systems to
match in order to interact, provided that all three systems belong in the same scope.
Thus all computations in SC involve:

• finding valid triplets (context and two matching systems in a shared scope) and

• updating the two systems according to the transformation function in the con-
text.

Full details on SC are provided in [1, 2].

2.2 Prior SC Implementations

In [1], Bentley, along with introducing SC, provided a corresponding virtual com-
puter architecture and its first implementation. This prototype included a basic
instruction set, an assembly language, a compiler and resulting machine code. How-
ever the implementation was merely a simulation of a systemic computer, although
it was a satisfactory proof-of-concept.

The second implementation (SCoPE) [2] provides a complete SC platform (lan-
guage, compiler, virtual machine and visualization tools) which is also an SC si-
mulation, but it is based on a high-level SC language. It is fully programmable
and more flexible than the original one. The transformation function set, the string

488 C. Sakellariou, P. J. Bentley

length and the alphabet can be customized by the user for each model simulation
in SCoPE. This flexibility comes in expense of execution speed.

In [3], another PC-based implementation is presented, utilizing the inherent
parallelism of graphics processors (GPUs) with considerable gains in terms of speed
compared to previous attempts. The performance improvement is justified since this
is the first implementation with a hardware constituent (GPU cores) and the first
step towards a real systemic computer. GPUs are well suited for applications with
numerous threads running in parallel over a set of shared data. In [3], the shared
data are the systems.

3 THE PROPOSED SC HARDWARE ARCHITECTURE

HAoS attempts to satisfy the basic SC requirements, taking into consideration the
requirements of a practical implementation: programmability, design friendliness,
technology maturity, I/O functionality efficiency, advanced processing features, com-
piler support and scalability.

HAoS targets an FPGA as this option appears to be the optimal implementa-
tion platform among others based on a detailed review and analysis of the litera-
ture and available hardware platforms [5]. The conventional underlying architec-
ture of a multi-core processor [6] is capable of just simulating SC, as mentioned
in Section 2.2. Conventional network-based platforms (like computer clusters [7],
peer-to-peer networks [8] and wireless sensors networks [9]) also rely on the same
underlying architecture. However, a network can present characteristics like decen-
tralized and distributed computation and parallelism while simulating asynchrony,
self-organization and partial fault-tolerance. Thus, a network with FPGAs as basic
building blocks could satisfy a large number of SC requirements by presenting these
natural characteristics. Unconventional material (like DNA [10] or quantum [11])
platforms can also provide such characteristics but they are not mature enough yet
to provide a practical implementation.

The SC concept dictates that any three systems are eligible to form a valid
triplet. A fully parallel implementation would generate a valid triplet of systems, in
a random manner, for all contexts, in all scopes during an iteration of an SC pro-
gram, while all interactions would happen instantaneously, provided that adequate
parallel processing resources were available. Resource limitations forbid a practical
implementation of this approach on an FPGA. It is apparent that the main two tasks
that would ideally be executed in parallel are valid triplet generation and system
transformation (the actual data processing).

While one of the assumptions of the SC paradigm is that systems have “local
knowledge”, storing the system bit representation and the scopes it belongs to in
local registers was not adopted but instead, the binary contents of the systems and
their scopes are stored in system RAM. This approach was preferred because local
knowledge is a feature that cannot be accurately mapped on on-chip logic. The
contents of a system could potentially be stored on registers which do not reside on

Describing the FPGA-Based HAoS 489

the same area of the chip instead of using a RAM. The use of a RAM in this design
is justified by the fact that RAM storage volumes are greater than those provided by
registers in modern FPGAs and since no further fabric would need to be consumed
for address decoding logic.

Moreover, only a finite number of systems can be stored on a single RAM,
which defines a neighbourhood for its systems, while the total number of systems
can be spread over multiple RAMs. As a result, a potential failure in one of the
RAMs would leave the rest of systems of the program unaffected, providing a limited
level of fault-tolerance for the single-FPGA HAoS prototype. The level of fault-
tolerance of our single-FPGA configuration can be improved in the application-
level, as shown in [12], by combining redundancy (duplicating system instances)
with self-maintenance (using self-repairing systems). A multi-FPGA configuration
could further improve fault-tolerance by adding redundancy in the hardware-level
to address faults that cannot be handled by the application (as a hardware failure
of the resources used to store the global scopetable).

One of the main limitations of the software-based implementations was the way
valid triplets were generated. The common strategy was to randomly select three
systems (one of which acted as context) in a scope and check triplet validity after
matching the operand systems with the schemata of the context. A common practice
to accelerate this task was to use priority queues that either gave priority to systems
that had recently interacted [1] or had not recently interacted [2]. In [3], the GPU
handles this task in parallel resulting in great performance gains.

The present design addresses the valid triplet generation by exploiting the in-
herent parallelism of a Ternary Content Addressable Memory (TCAM). While tra-
ditionally used Random Access Memories (RAMs), when provided with an address
return the data stored in this address, CAMs compare their input data with the data
which they store and provide all matching addresses in parallel. Moreover, TCAMs
have the ability to perform ternary comparisons, meaning that both the input and
stored data can include “don’t care” bits. This functionality enables a guaranteed
match of systems to the schemata of the given context, provided there are such
systems in the scope of the context.

HAoS also uses a pseudo-random number generator to randomly identify valid
triplets but this operation is not biased by previous interactions. All matching sys-
tems have the same interaction probability while, as explained above, the use of
the TCAM ensures maximum matching efficiency. While future work will target
parallel processing capabilities, true parallel interaction is not currently supported
by HAoS, since writing to the TCAM is limited to one system at a time in or-
der to improve its area and enable ternary comparisons (assuming that parallel
interactions would require simultaneous transformation the interacting systems).
A fully asynchronous design might enable the true implementation of the stochas-
tic property, but such an implementation would require that all systems, matching
and control circuitry and interconnections would be realized in combinational logic
which would pose a great area requirement and increase the possibility of timing
hazards.

490 C. Sakellariou, P. J. Bentley

3.1 The SC Architecture

HAoS consists of the SC core (CORE), the Control Unit (CU), the Functional Unit
(FU) and a set of configuration and data registers (REG BANK) for communication
with the optional CPU (see Figure 2).

CORE

CU
FU

REG BANK

CONF/DATA REGS

CONF/DATA
REGS

CONTROL
FSM PROCESSING

UNITS

CPU
INTERFACE

CONF/DATA
REGS

FPGA

EMBEDDED
CPU

EXTERNAL
CPU

Fig. 2. The SC hardware architecture

The CORE contains the optimized logic for the parallel schemata matching and
the memory elements. The CU handles the execution sequence of the SC program
and the communication with the optional external CPU. The REG BANK provides
a control and debug interface between the CPU and the local registers of the SC
sub-modules. The FU provides basic local processing functionality. A set of simple
instructions is supported to avoid expensive data transfers between the REG BANK
and the CPU.

The prototype implementation includes only one FU, but future implementa-
tions can take advantage of the plethora of DSP processing cores which are available
on the FPGA, and give the option to be used as a simple ALU each, to provide
multiple parallel processing resources. It is noted that only 16-bit signed integer
processing is currently supported by the HAoS prototype. The addition of a hard-
ware floating-point unit in future implementations is under investigation. However,
floating-point intermediate operations of high-level functions, if required, can be
executed from the optional CPU.

The CPU is provided to the system in order to make more complex high-level
functions available. This functionality was available only in SCoPE [2], since the
other implementations had a fixed instruction set. HAoS increases flexibility by
letting the user define new instructions, when this is necessary, in an unrestricted
way. The SC compiler, which preserves backwards compatibility with the compiler
presented in [1], is written in C and translates SC source code in SC assembly.

Describing the FPGA-Based HAoS 491

Apart from the extra usability, the CPU in the prototype design is used to load the
SC assembly code into the memory elements of the CORE during initialization or
in the case of a hardware reset. A possible enhancement is to provide the option
for assembly loading through an external memory card, thus making the CPU link
completely optional, depending on the high-level functionality requirements of the
user. As illustrated in Figure 2, the CPU may reside either on the FPGA, with the
form of a soft or hard IP embedded processor communicating with the design using
a shared internal FPGA bus, or be an external conventional processor connecting to
the design through a standard communication interface (see Section 5). It is noted
that the functional behaviour of the communication link is simulated in this work.
Since the main SC program runs on the FPGA, the CPU is used as a co-processor
in HAoS.

A further performance and flexibility boost can be achieved in the future if we
take advantage of the reconfigurability capabilities provided by the FPGA. A set
of user defined pre-synthesized hardware functions can be stored on an external
memory and dynamically loaded when needed. This technique could be applied for
applications that do not frequently change the function part of contexts as recon-
figurability speeds are quite low and would require the use of an embedded CPU to
handle the reconfiguration of a reserved area on the FPGA.

3.2 The Control Unit

The CU handles the flow of the user-defined SC program. As systems can never be
destroyed, the program runs indefinitely, although it halts when all systems become
stable and no further interaction is possible. The main control flow for each iteration
of the program can be seen in Figure 3.

Upon a hardware reset, the SC assembly code is loaded into the core. For
each iteration of the SC program, four consecutive steps are performed. A scope
is randomly selected, and then a valid triplet of systems is randomly chosen, the
selected systems are fetched from memory, they interact (the actual computation
is performed) and then the outcome of the interaction (the computation results) is
written back to memory (the random system selection logic is described in the next
section.) At the end of each iteration, the user is granted access to pause execution
in order to easily extract debug information. All the optimized low-level SC micro-
routines (for scope and memory manipulation) are available to the user, to ensure
maximum flexibility.

Various optimizations have been applied in order to improve performance. When
the selected context system gives a mismatch, meaning that any of its schemata does
not match a system in the scope, it is disabled and becomes an invalid context for
this scope to prevent future mismatches (see Section 3.3). Moreover, once a scope
is selected, if it contains fewer than three systems or no valid contexts, it also is
disabled and becomes an invalid scope until a new system is added to it. If all
scopes have been disabled, no further transactions can occur and the program halts.

492 C. Sakellariou, P. J. Bentley

Hardware
Reset

Select Context in Scope

Compare Schemata 1

Compare Schemata 2

All Systems
Stable?

Y

N

Context Found?

Y

N

Match?

Y

N

Match?

Y

N

CPU Access

Initialization

Load
Program

Compute
Infinite
Loop

Get Valid
Triplet

Store
Triplet

Transform

Write
Result

Select Valid
Scope

Halt

Fig. 3. SC Program control flow: HAoS enters an infinite computation loop after the SC
program is loaded, which involves finding valid triplets and transforming the selected
systems

3.3 The SC Core

The Core is mainly responsible for the efficiency of the design due to the way it
handles the task of schemata matching. Its main components are the TCAM, the
random selection logic, the system memories, the scopetable memories and the sys-
tem status registers, as can be seen in Figure 5.

HAoS supports three types of systems (see Figure 4):

• data systems, comprised of two (16-bit) schemata and a zero (32-bit) function
part,

• context systems, comprised of a (32-bit) function and two schemata templates
(used for matching with data systems and thus occupying the size of a whole
data system, 64-bits,each) and

• context adapter systems which have the same structure with context systems
(but each of their templates can match a data system or a context).

Since all the systems have the same size, each (effective) bit in a schema of a data
system is padded with three zero bits to form a 4-bit element (represented as “000b”
in Figure 4 a)).

The full contents of a system are stored in two separate RAMs, one of them
holds the binary part while the other stores the ternary part (the “don’t care” bits).

Describing the FPGA-Based HAoS 493

32bits
transformation function

16bits
schemata2

16bits
schemata1

32bits
transformation function

16bits
schemata2

16bits
schemata1

32bits
context (adapter) function

 System 1 Template System 2 Template

16 elements/effective bits
32 zero bits

transformation function

 Data System Template 1 Data System Template 2

000 b

4bits per
element

16 elements/effective bits

(a) A Data System

(b) A Context / Context Adapter System

Fig. 4. HAoS systems representation

Since the function part of a system is always binary, it is not stored in the ternary
RAM. The various system parts are located in the same address in all memories in
order to simplify the required address-decoding logic.

The global scopetable information is stored in three RAM-based structures.
One of them stores the systems that belong in each scope at the corresponding
to the scope address, the second stores the scopes that each system belongs to at
the corresponding to the system address while the third stores a mask for all the
invalid contexts in a scope. The first two structures, although effectively storing the
same information, provide parallel access to two different aspects of the scopetable
(systems in scope and parent scopes of a system).

SYSTEMS
IN SCOPE

SCOPETABLE

SCOPES
OF SYSTEM

MASK

BINARY
RAM

TERNARY
RAM

COUNTONES

LFSRDIVIDER

BITPOSSEL

RANDOM SELECTION LOGIC

M
U
X

SCH1

SCH2

ISDATA

ISCONTEXT

ISADAPTER

SYSTEM STATUS REGS

TCAM

VALID
SCOPES

SCOPES
WITH

CONTEXTS

CONTEXTS

L
O
G
I
C SCOPES

L
O
G
I
C

CONF/DATA
REGISTERS

INVALID
CONTEXTS
IN SCOPE

L
O
G
I
C

Fig. 5. The SC Core basic building blocks

494 C. Sakellariou, P. J. Bentley

The TCAM is loaded with the regions of the systems that may be compared
during initialization. For data systems, the function part is always zero, so only
the binary representation of their two schemata may be compared while for con-
text systems only their function part (which is double the size of a schema) may
be compared. This implies that context systems can interact with other con-
text systems or data systems, which greatly enhances functionality since it de-
notes that context adapting (where context systems can interact with other sys-
tems and be changed) is supported (a feature only supported previously in the
highly flexible SCoPE implementation). Context adapter systems may not in-
teract with other systems in HAoS. The restriction of comparing only parts of
a system is posed by the fact that the TCAM resource requirements scale ex-
ponentially with systems capacity (the maximum number of supported systems).
Thus, by minimizing the size of the TCAM, we maximize the capacity of the
prototype. However, as the systems capacity of a single FPGA device is finite,
in order to enable further scalability of the HAoS architecture, future work will
investigate the use of either a multi-FPGA configuration or a scalable external
TCAM.

The random selection logic (RSL) accepts a value presenting at bus as an input
and returns the address of a randomly selected set bit. It consists of a module that
counts the set bits of the bus (COUNTONES), a maximal-length Linear Feedback
Shift Register (LFSR) for pseudo-random number generation, a combinational di-
vider (which also performs integer division when required in the Transform state –
see Figure 3) and a module (BITPOSSEL) that given a bus and the rank of a set
bit of this bus (the position of the set bit with rank 2 is 3 in 01001101 – when rank
starts from 0 and position 0 is the rightmost one), it returns its position (combining
a parallel bit count approach with a branchless selection method). A random num-
ber, provided by the LFSR, is divided by the sum of the set bits of the bus. The
remainder of this division is used as the rank of the random set bit that is given to
BITPOSSEL in order to identify its position.

The function of the RSL (the result of the selection) is controlled by a multiplexer
(MUX) which feeds the RSL with one out of five possible input data paths (see
Figure 5). When we need to choose a system that matches the first schema of
the context, the input bus (SCH1) is generated by combining all the matching
systems (the output of the TCAM) with valid SYSTEMS IN SCOPE (which of
them are valid depends on the type of the context system). The same bus is used
for matching the second schema (SCH2) after masking out the selected system for
SCH1 (a system may not interact with itself). When a random scope is needed,
the input (SCOPES) is defined by scopes which include more than two systems
and at least one of their systems is a context (which is not disabled at that time).
Finally, when we need to randomly identify a context in a previously selected scope,
the input of the SRL (CONTEXTS) is defined by the valid contexts of the scope
(meaning that previously used contexts that resulted in a mismatch are masked
out). The fifth input of the MUX serves a low-level optimization for a scopetable
manipulation task.

Describing the FPGA-Based HAoS 495

3.4 HAoS Instruction Set

HAoS Instruction Set Architecture (ISA) provides an on-chip hardware-supported
RISC-like set of simple functions. Furthermore, in order to enhance flexibility, this
core instruction set can be further extended by both extra hardware-supported
application-specific instructions or software-implemented functions. It is impor-
tant to note that a HAoS instruction does not share the definition of an instruction
found in a conventional ISA but rather expresses the type of transformation that
systems undergo when they interact. These interactions happen in a random non-
sequential manner; the execution probability of each SC interaction depends solely
on the number and types of systems in the SC program.

The instructions are given by the transformation function (middle) part of a sys-
tem (see Figure 4). Their respective fields are explained in Table 1. In this first
prototype HAoS implementation, the transformation function is given by a 32-bit
field. The first (LSB) 22 bits give the function identifier, the next bit enables the
hardware-supported escaping functionality (to be explained later) which can be exe-
cuted in parallel with any instruction except the CAPTURE instructions (also to be
explained later), the next 8 bits are reserved to be used in a later implementation as
variable parts of the instruction while the MSB enables the NOT functionality which
reverses the matching requirement of an instruction (when enabled, the systems that
do not match the provided schemata are selected).

Bits Range Meaning

21:0 Function Identifier

22 If Set Then: system also escapes from parent scope

30:23 Reserved (variable part)

31 If Set Then: the matching requirement is reversed

Table 1. HAoS instruction fields

The prototype implementation of HAoS supports the instruction set given in
Table 2. It is noted that this is a draft instruction set, as more instructions will be
supported in the future. Table 2 comprises three sections: the SC Core hardware
instructions which are supported natively from HAoS Function Unit, SC Extra in-
structions, which are also implemented on-chip but can be application-specific or
realized outside the fixed FU (e.g. on a dynamically reconfigurable fabric or a set
of DSP blocks) and software-based instructions implemented on the (on-chip or
off-chip) CPU (these instructions are defined to have an opcode above a predeter-
mined threshold in order to simplify HAoS control logic). For each instruction, its
mnemonic (codename), opcode (in hexadecimal notation), a short description of the
interaction they represent based on the Context Adapter Flag (discussed below) and
its operation (their effect on the state, data and scope of the interacting systems) are
given in the respective columns of Table 2. The Multiply instruction, for example,
has MULT as a mnemonic, its opcode is 0x00000003 while schema 2 of system 1

496 C. Sakellariou, P. J. Bentley

(sys1.sch2) gets the product of the multiplication of the schemata 2 of both systems
(sys1.sch2 ∗ sys2.sch2) while schema 2 of system 2 is set to 1 (sys2.sch2 = 1).

Various systems parts are altered after an interaction according to the Operation
column. For some instructions there is the option to define a different type of
interaction depending on the type of the two interacting systems. This option is
controlled by the Context Adapter Flag (CAF). The CAF is a 2-bit field which
states the type (data or context) of the interacting systems. Each bit corresponds
to one of the system templates of a context adapter system (see Figure 4 b)). The
LSB corresponds to template 1 while the MSB corresponds to template 2. A set bit
in the CAF implies a context system template while a zero bit implies a data system
template. Thus, a context system is essentially a context adapter system with both
its system templates representing data systems (CAF = 00). When CAF is 01 or 10,
the context adapter system is in mixed mode with a data system interacting with
a context system and vice versa respectively, while when CAF is 11 two context
systems interact.

Two instructions are SC-specific and perform scopetable manipulation meaning
that they alter the relationship or membership [1] of one system to another. These
two instructions are ESCAPE and CAPTURE and are both optimized to be exe-
cuted natively in HAoS. ESCAPE moves the escaping system (which, by convention,
is the system that matches template 1) one level up in the membership hierarchy by
removing it from its parent scope (which is the active scope for the interaction) and
then inserts it to all the scopes that the parent scope belongs to (or parent scopes of
the parent scope or in short the grandparents). The grandparents are conveniently
provided in parallel (as a bus of length equal to the maximum number of scopes with
set bits at the positions of the grandparents), as a part of the scopetable (SCOPES
OF SYSTEM – see Figure 5). The ESCAPE task is further optimized by avoiding
looping through all the possible scopes to identify the grandparents but rather only
the positions of set bits are selected (using BITPOSSEL – see Section 3.3) resulting
in great performance gain. The CAPTURE instruction, as the name implies, is the
reverse ESCAPE task where the captured system is removed from its parent scope
and added in the scope of the capturing systems which are selected based on match-
ing template 2 of the CAPTURE system. A less efficient software implementation
of the scopetable manipulation tasks is also provided to the user as an option (see
Table 2).

4 TESTING AND EVALUATION

Before the final design is implemented and tested in silicon, it is possible to veri-
fy its functional behaviour and assess its performance by using standard industry
EDA tools. We intend to implement HAoS on the Xilinx ML605 evaluation board.
Our prototype architecture, which supports a maximum number of 64 systems,
is described in VHDL (7K lines of code) and synthesized targeting the on-board
Virtex-6 LX240T FPGA device by using the Xilinx ISE v13.1 design suite. The

Describing the FPGA-Based HAoS 497

Mnemonic Code(hex) Short Description
Context
Adapter
Flag

Operation

SC Core HW Functions

NOP 0000000F No Interaction – –

ESCAPE 0040000F
System escapes from parent
scope to all scopes the parent
scope belongs to

– Scopetable manipulation

ADD 00000001
Add schematas of interacting
systems

–
sys1.sch2 = sys1.sch2 + sys2.sch2;
sys2.sch2 = 0;

SUBTRACT 00000002
Subtract schematas of inter-
acting systems

–
sys1.sch2 = sys1.sch2 − sys2.sch2;
sys2.sch2 = 0;

MULT 00000003
Multiply schematas of inter-
acting systems

–
sys1.sch2 = sys1.sch2 ∗ sys2.sch2;
sys2.sch2 = 1;

DIV 00000004
Divide schematas of interact-
ing systems

–
sys1.sch2 = sys1.sch2/sys2.sch2;
sys2.sch2 = 1;

MOD 00000005
Modulo of schematas of inter-
acting systems

–
sys1.sch2 = sys1.sch2% sys2.sch2;
sys2.sch2 = 1;

ISZERO 00000006
Check if schemata of system
is zero

–
if sys1.sch2 = 0 ⇒
SET sys1.sch1[schematasize-1]

AND 00000007
AND schematas of interact-
ing systems

–
sys1.sch2 = sys1.sch2 AND sys2.sch2;
sys2.sch2 = sys1.sch2 AND sys2.sch2;

OR 00000008
OR schematas of interacting
systems

–
sys1.sch2 = sys1.sch2 OR sys2.sch2;
sys2.sch2 = sys1.sch2 OR sys2.sch2;

XOR 00000009
XOR schematas of interact-
ing systems

–
sys1.sch2 = sys1.sch2 XOR sys2.sch2;
sys2.sch2 = sys1.sch2 XOR sys2.sch2;

COPY 0000000A
Copy parts of
interacting systems

00 sys1.sch1 = sys2.sch1; sys1.sch2 = sys2.sch2;
01 sys1.function = (sys2.sch2,sys2.sch1);
10 sys1.function = (sys2.sch2,sys2.sch1);
11 sys1.function = sys2.function;

ZERO 0000000B
Zero parts of
interacting systems

00
sys1.sch1 = 0; sys1.sch2 = 0;
sys2.sch1 = 0; sys2.sch2 = 0;

01 sys1.sch1 = 0; sys1.sch2 = 0;
01 sys1.sch1 = 0; sys1.sch2 = 0;
01 sys1.function = 0; sys2.function = 0;

CAPTURE 0000000C
System is removed from
parent scope&captured
to capturing scope

– Scopetable manipulation

SC Extra HW Functions

ADDxc 00000011
Add schematas
& exchange

–
sys1.sch2 = sys1.sch2 + sys2.sch2;
sys2.sch2 = sys1.sch2;

ADDuc2 00000012
Add schematas but keep the
second unchanged

– sys1.sch2 = sys1.sch2 + sys2.sch2;

SC Example CPU Functions (Above SC SW THRESHOLD=512)

XESCAPE 00000200
Software emulation of
ESCAPE task

– Scopetable manipulation

XCAPTURE 00000201
Software emulation of
CAPTURE task

– Scopetable manipulation

PRINT 00000202 Print system to stdout – –

POWER 00000203 Exponentiation – sys1.sch2 = sys1.sch2sys2.sch2

ROOT 00000204 Arithmetic root – sys1.sch2 = sys2.sch2
√
sys1.sch2

KNAPSACK* 00000280
Knapsack Problem
Related Functions

– *(actual functions omitted)

Table 2. HAoS instruction set

498 C. Sakellariou, P. J. Bentley

verification environment is written in SystemVerilog (5K lines of code) and Mentor
Graphics QuestaSim is used for simulation. The simulation experiments are carried
on an Intel R©CoreTMi7 950 CPU with 4GB of RAM running on 32-bit Windows 7
Ultimate and an nVidia GTX 260 GPU (192 CUDA cores).

Xilinx design tools provide accurate area and timing implementation statistics.
Thus, we can present precise performance metrics (see Table 3) before downloading
our design on the FPGA. It is noted that the prototype design currently excludes
the CPU INTERFACE. The DSP block is used as a multiplier in the FU.

Used Available %

Occupied Slices 5 759 37 680 15

Slice LUTs 15 487 150 720 10

Slice Registers 6 019 301 440 1

I/O Blocks 143 600 23

RAMs 5 416 1

DSP Blocks 1 768 1

Table 3. HAoS implementation statistics on Virtex-6 LX240T FPGA

HAoS is divided into two clock domains: the REG BANK, which is connected to
the CPU interface (see Figure 2) and runs at a higher clock rate (90MHz) in order
to provide faster read/write operations to the CPU, while the rest of the design is
clocked at a (6 times) slower rate. Future efforts will include pipelining HAoS in
order to achieve higher operating frequencies.

In order to achieve system-level functional coverage closure, a series of 25 SC
programs were designed to test and stress the design in various ways. An indicative
set of the simulated SC test programs is given in Table 4. It is evident that basic
and advanced functionality is supported by HAoS.

The most interesting test case is the genetic algorithm (GA) optimization of
the binary knapsack problem (using the implementation approach in [3]) which
is reproduced and simulated as being executed in HAoS. In the general knapsack
problem, there are n types of items (1 to n). Each type i has an associated non-
negative value vi and weight wi. The maximum combined weight of items that
can fit in the knapsack is W . The binary (or 0-1) knapsack problem also poses
a restriction on the number x of copies of each type of object to zero or one. The
problem is mathematically formulated as

Maximize

n∑

i=1

vixi where

n∑

i=1

wixi 6 W and x ∈ {0, 1} .

In order to identify the solution for the knapsack problem, a set of systems are
initialized with random values. Each bit in each system represents if the correspond-
ing item will belong to the final solution. As the size of each schema is set to 16 bits
in this HAoS implementation, a total of 16 items can fit in the knapsack. Initiali-
zed systems are transforming through either binary mutation, uniform crossover or

Describing the FPGA-Based HAoS 499

Systems Description of the SC Test Program Functions Used

20 Additions in 4 different scopes ADD

20 Systems subtract-escape, multiplied&printed
SUBe, MULT,
PRINT

24
Systems subtract-escape and recaptured in their
initial scopes

SUBe, CAPTURE

37 Context adapter transforms context systems ADD, SUBe, COPY

41
Mixed-mode context adapter transforms contexts
to data systems

ADD, SUB, COPY

36 Data systems are transformed to context systems SUB, COPY, ZERO

33 Part of schemata 1 of a context is changed ADD, ZERO

12 Fibonacci numbers generator
ADDxce, COPY,
PRINT, CAPTURE

4 Optimized incrementing counter ADDuc

58
A 16-element binary knapsack problem solver
based on a genetic algorithm

BINARYMUTATE,
CROSSOVER,
INIT, OUTPUT

Table 4. A subset of the successfully simulated SC test programs

one point crossover (explained in [3]) and the one available final solution system is
updated in the end of each iteration if the derived solution yields a higher weight
than the one already stored.

Since [1, 3] and HAoS use the same SC source code, this test program (which
has not been optimized for HAoS) is used as a preliminary performance bench-
mark among the available SC implementations (timing metrics are approximated
for the CPU interface in this work). Experimental simulation results show that for
10 000 interactions in the 16-element knapsack problem with 58 systems, the original
implementation by [1] requires 33 241.2ms, the GPU-based solution in [3] requires
255.1ms, while HAoS needs just 55.7ms, outperforming [1] by a factor of 596 and [3]
by a factor of 4.6 (all results are based on the average of 10 repetitions of the ex-
periment). The expected solution is found by HAoS on average after 14.9ms while
the SC program is loaded in 2.67ms. Timing estimates of the CPU execution times
were acquired by taking the average execution time of each used function (using the
high resolution hardware timers of the CPU). These estimates were fed back to the
verification environment in order to achieve system-level timing. It was assumed
that the CPU interface (see Figure 2) can operate at the maximum supported fre-
quency (90MHz).The investigation of the most efficient and practical approach for
the implementation of the CPU interface is discussed in Section 5. Similar results
are anticipated for the other test programs.

It is also noted that HAoS outperforms prior implementations in terms of the
quality of the obtained results. As seen in Table 5, the correct solution for the
knapsack experiment is given for a weight of 79 and a profit of 124. Only HAoS
correctly estimates the expected solution given the restricted number of interactions.

500 C. Sakellariou, P. J. Bentley

Sequential GPU HAoS

msec (factor) 33 241.2 (x596) 255.1 (x4.6) 55.7 (x1)

Solution Found
w:73, p:87 w:75, p:69.7 w:78.7, p:123.5

(Weight : 79, Profit: 124)

Table 5. Performance comparison based on the knapsack SC program

This high level of efficiency is justified from the effective way of triplet matching
and the low-level optimizations of the Control Unit (mentioned in Section 3.2).

5 HAOS-CPU COMMUNICATION INVESTIGATION

As described above, the use of the CPU after the SC program is loaded is optional
for the HAoS prototype and depends on processing requirements. Since HAoS on-
chip processing capabilities are limited by the basic instruction set in Table 2, it
is safe to assume that the CPU may be useful for a wide range of practical user
applications. Thus, the implementation of the communication interface between
HAoS and the CPU is important in order to avoid having a communication overhead
as the performance bottleneck.

The main design requirements for the communication link are high through-
put, low latency and user-friendliness, meaning that it should be based on a widely
used interface in order to minimize user effort. Since the maximum supported clock
rate of our prototype is estimated at 90MHz on the CPU interface boundary (see
Figure 2), if we assume for simplicity that only single-byte data accesses are sup-
ported, a data rate requirement of 720Mbps is posed on the communication link in
order to have full utilization. We should further consider that the selected commu-
nication interface will determine the use of either an external more powerful CPU
(using a commonly used but quite slower communication protocol) or a less power-
ful embedded (on-chip or on-board) CPU (using a relatively faster local bus). For
a more realistic performance estimate, we should not only consider the maximum
performance potential of the hardware but we should combine this with the actual
response times caused by the software (operating system, drivers and user applica-
tion programming interface implementation). Another significant consideration is
that the HAoS-CPU communication will comprise quite small packets. Typically
these will be less than 10 bytes for control instructions (low-level accesses of HAoS
control registers which will be frequently used by the driver and also offered as
part of the API to the user to enhance accessibility) and considerably less than 100
bytes for data exchange (input and output arguments of the transform task, see
Figure 3). The availability of IP cores to support these interfaces and the effort
required for drivers development is also important. Finally, the selected interface
should be supported by the used FPGA development board (in our case, the Xilinx
ML605).

The external CPU option seems more appropriate since modern CPUs run more
than one order of magnitude faster than embedded ones (the Intel i7 range runs

Describing the FPGA-Based HAoS 501

typically at frequencies of 2-3GHz while the maximum frequency for a modern on-
chip CPU, e.g. the Xilinx MicroBlaze, is 100–300MHz [13]). The most commonly
used communication interfaces for modern computers are USB, PCI-Express and
Ethernet. All of them are mature technologies which are constantly revised to
support greater bandwidths. While Hi-Speed USB (or USB 2.0) is currently the most
widely adopted interface, it specifies a maximum bandwidth of 480 Mbits/s [14].
Its successor, SuperSpeed USB (or USB 3.0) specifies a maximum theoretical full-
duplex communication rate of 5Gbits/s [14]. PCI-Express, featuring a point-to-
point topology with separate full-duplex byte streams (1–32 lanes) connecting the
device to a root complex [15], has four revisions that gradually increase bandwidth
(the theoretical maximum per lane is [15]: 250MB/s for the older Gen1, 500MB/s
for the widely used Gen2, 1GB/s for the more recent Gen3 and 2GB/s for the
recently announced Gen4). Gigabit Ethernet is the last option supporting 1Gb/s
(higher bandwidths are also supported for specialized network devices).

The theoretical maximum bandwidth that the most recent versions of all the
aforementioned interfaces provide appears to be sufficient for the HAoS-CPU data
rate requirement. However, their sustained performance in a working system can be
considerably less due to various software and hardware sources of overhead. A quan-
titative example is given in [16], where a bus mastering design (implemented on
a Virtex-5 FPGA) over PCI Express is measured on a Windows system. Sustained
software performance is nearly 17 times slower than the theoretical maximum for
a PCI Express Gen1 x1 link, mainly due to the very slow interrupt response rate of
the operating system and the fact that transaction requests wait for transaction com-
pletions. Although techniques for minimizing those overheads (use of a linked list
or a circular buffer of transaction descriptors for interrupts and employing a par-
allel transaction handling state machine) are suggested in [16] and implemented
in [17, 18], there is still an inevitable deviation from the theoretical maximum.

While USB 2.0 would be the most convenient option from the viewpoint of the
user, it does not satisfy our bandwidth requirement. USB 3.0 provides adequate
bandwidth, but it has not yet been widely adopted, so FPGA development boards
with this feature are still rare and, moreover, a USB 3.0 device IP is not offered with
standard industrial design tools (while designing such a complex core would require
considerable effort). An implementation of the Gigabit Ethernet approach as a PC-
FPGA communication interface, sending UDP datagrams over IP, is given in [19]
and refined in [20]. The design leaves reliability to be implemented at the user level
but combines a Look Up Table (LUT), which stores all the static fields that need to
keep being resent during communication, with hardware-aware optimizations which
make it more attractive than alternative reliable, but more complex, full TCP/IP
implementations which require an embedded CPU [19].

However, even such a light-weight protocol suffers from a big overhead when
really small packets are frequently sent. These small packets carry HAoS control-
related information and may not be grouped together to form larger contiguous
blocks (in order to provide a more flexible API to the user). Even sending minimally-
sized raw Ethernet packets, considering that their minimum size is 64 bytes (account-

502 C. Sakellariou, P. J. Bentley

ing for header and framing bytes – preamble, start of frame, MAC destination and
source, ethertype, frame check sequence and interfame gap), results in more than
85% overhead for control packets (typically less than 10 bytes). While they are
slightly smaller, similar protocol overheads exist for the other external communi-
cations interfaces mentioned above. PCI Express Gen1 and Gen2 specify a 20%
overhead due to their 8 b/10 b symbol encoding scheme (used for clock recovery),
consume 20–28 bytes for their header and framing and also suffer from traffic, link
protocol and flow control protocol overheads [21]. Due to these overheads, latency is
increased while the actual throughput is decreased, thus negating the performance
advantage of external interfaces for typically-sized data traffic.

In order to minimize protocol overheads, the alternative is to use a local com-
munication interface, placing the CPU on-board. While FPGA development boards
that provide off-chip hard processor cores are not new, a recent trend (which is
not commercially available at the time of writing) attempts to overcome overheads
caused by off-chip communications by combining powerful hard CPUs and pro-
grammable logic on the same die [22]. The other option is to use an embedded soft
CPU. While this approach has minimal overheads, since all communications are
happening at wire speed, part of the available programmable resources is occupied
by the relatively low-performance soft processor. Advantages of this approach are
that the design tools provide full support on embedded design, the processor can be
customized to include only the features that are required (in order to optimize speed
and area) and that bare-metal applications are also supported, since an operating
system is optional, depending on user requirements.

Following the analysis above, the embedded soft CPU interface appears to be
one of the most dominant candidates for the implementation of the HAoS-CPU com-
munication link. It is noted that this is a recommendation, rather than a definite
conclusion (considering the requirements stated in the beginning of this section and
currently available technologies) and it depends on the processing requirements of
the user application and the flexibility of the provided API (control packets could be
potentially eliminated if all the software driver logic was mapped on hardware, effec-
tively eliminating the API since the user would be provided with just one function
(transform()) to interface to hardware). For applications that utilize heavy-weight
functions, the function processing time may overrule the communication overhead,
thus making an external CPU interface preferable. This can either be the lat-
est revision of PCI Express (due to the lower overhead and higher bandwidth), if
compatible hardware (motherboard, development board) is available or a custom
Ethernet-based interface implementing a custom light-weight protocol and a Net-
work Interface Card capable of supporting such a protocol or USB 3.0 (subject to
availability) or a future development board featuring a high-end processor. The two
options may further be combined in a “smart” system that offloads computation to
the appropriate CPU depending on the required processing workload.

In summary, the systemic computer is designed for highly parallel software,
that resembles natural systems, e.g. neural networks, genetic algorithms or models
of biological networks. For such a computer to be practical it must also support

Describing the FPGA-Based HAoS 503

sequential operations (e.g. longer mathematical expressions) and thus needs the
support of a conventional CPU. The analysis here shows that current communication
protocols are largely unsuitable for the task of linking an SC hardware architecture to
a CPU. There is a clear need for a more integrated solution for development purposes.
An FPGA board with a high-end on-board processor may be one such suitable option
in the future (extending the processing capabilities in [22]). For now an embedded
soft CPU provides the ability to prototype the HAoS-CPU interface. We anticipate
that this will eventually lead to an ASIC, combining HAoS and a hi-speed CPU
on-chip, which will minimise the bottlenecks caused by existing technologies.

6 CONCLUSIONS

In this paper, the first hardware architecture specifically designed to support Sys-
temic Computation – HAoS – is presented. The prototype is designed to balance effi-
ciency (taking advantage of the efficient parallel comparison capability of a TCAM)
and flexibility (combining embedded processing capabilities and a CPU). Various
possible communication interfaces for the HAoS-CPU link implementation are dis-
cussed, suggesting an on-chip bus to a soft embedded CPU as the optimal one for
prototyping, based on available technologies at the time of writing. Early results,
based on a 16-element binary knapsack problem solver using a genetic algorithm,
indicate that HAoS could outperform prior implementations in terms of quality of
the obtained results and performance (since it is able to solve the problem nearly
600 times faster than the sequential implementation and nearly 5 times faster than
the GPU implementation).

Acknowledgments

This work was supported by the EPSRC Doctoral Training Centre in VEIV (Uni-
versity College London, UK) and Toumaz UK Limited.

REFERENCES

[1] Bentley, P. J.: Systemic Computation: A Model of Interacting Systems With
Natural Characteristics. In: A. Adamatzky, C. Tueuscher and T. Asai (Eds.): Special

issue on Emergent Computation in International Journal on Parallel, Emergent and
Distributed Systems, IJPEDS, Taylor&Francis pub., Oxon, UK, Vol. 22, April 2007,
No. 2, pp. 103–121.

[2] Le Martelot, E.—Bentley, P. J.—Lotto, R.B.: A Systemic Computation
Platform for the Modelling and Analysis of Processes with Natural Characteristics.
In: Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2007,
ACM Press, 2007, pp. 2809–2816.

[3] Rouhipour, M.—Bentley, P. J.—Shayani, H.: Systemic Computation using
Graphics Processors. In: G. Tempesti, A. Tyrell and J. Miller (Eds.): Evolvable

504 C. Sakellariou, P. J. Bentley

Systems: From Biology to Hardware, LNCS, Springer, Heidelberg, Vol. 6274, 2010,

pp. 121–132.

[4] Sakellariou, C.—Bentley, P. J.: Introducing the FPGA-Based Hardware Ar-
chitecture of Systemic Computation (HAoS). In: Z. Kotásek, J. Bouda, I. Černá,
L. Sekanina, T. Vojnar and D. Antoš (Eds.): Mathematical and Engineering Methods
in Computer Science, MEMICS 2011, LNCS, Springer, Berlin/Heidelberg, Vol. 7119,

2012, pp. 179–190.

[5] Sakellariou, C.: Hardware-Based Systemic Computation. Thesis (MRes), Depart-
ment of Computer Science, University College London, 2010.

[6] Blake, G.—Dreslinski, R.G.—Mudge, T.: A Survey of Multicore Processors.
Signal Processing Magazine, IEEE, Vol. 26, 2009, pp. 26–37.

[7] Marcus, E.—Stern, H.: Blueprints for High Availability: Designing Resilient
Distributed Systems. John Wiley&Sons Inc., 2000.

[8] Milojicic, D. S.—Kalogeraki, V.—Lukose, R.—Nagaraja, K.—Pruy-

ne, J.—Richard, B.—Rollins, S.—Xu, Z.: Peer-to-Peer computing. Technical
Report HPL-2002-57, HP Labs, 2002.

[9] Akyildiz, I. F.—Vuran, M.C.: Wireless Sensor Networks. John Wiley&Sons Inc.,
2010.

[10] Adleman, L.M.: Computing with DNA. Scientific American, Vol. 279, 1998,
pp. 34–41.

[11] Kari, L.—Rozenberg, G.: The Many Facets of Natural Computing. Communica-
tions of the ACM, Vol. 51, 2008, No. 10, pp. 72–83.

[12] Le Martelot, E.—Bentley, P. J.—Lotto, R.B.: Crash-Proof Systemic Com-
puting: A Demonstration of Native Fault-Tolerance and Self-Maintenance. In: Pro-
ceedings of the Fourth IASTED International Conference on Advances in Computer

Science and Technology, ACST 2008, ACTA Press, 2008, pp. 49–55.

[13] MicroBlaze Soft Processor Core. Available on: http://www.xilinx.com/tools/

microblaze.htm, 2012.

[14] USB Implementers Forum Specifications. Available on: http://www.usb.org/

developers/docs/, 2012.

[15] PCI Special Interest Group. Available on: http://www.pcisig.com/, 2012.

[16] Bittner, R.: Bus Mastering PCI Express in an FPGA. In: Proceeding of the
ACM/SIGDA international symposium on field programmable gate arrays, ACM,
New York, 2009, pp. 273–276.

[17] Wiltgen, J.—Ayer, J.: Bus Master DMA Performance Demonstration Reference
Design for the Xilinx Endpoint PCI Express R© Solutions. Application Note 1052,
Xilinx, 2010.

[18] PCI Express High Performance Reference Design. Available on: http://www.

altera.com/support/refdesigns/ip/interface/ref-pciexpress-hp.html,
2012.

[19] Alachiotis, N.—Berger, S.A.—Stamatakis, A.: Efficient PC-FPGA Commu-
nication over Gigabit Ethernet. In: 10th International Conference on Computer and
Information Technology, Bradford, 2010, pp. 1727–1734.

Describing the FPGA-Based HAoS 505

[20] Alachiotis, N.—Berger, S.A.—Stamatakis, A.: A Versatile UDP/IP based

PC ↔ FPGA Communication Platform. The Exelixis Lab, Exelixis-RRDR-2010-4,
TU Munich, 2011.

[21] Goldhammer, A.—Ayer, J.: Understanding Performance of PCI Express Systems.

White Paper 350 (v1.1), Xilinx, 2008.

[22] Zynq-7000 Extensible Processing Platform Summary. User Guide 804 (v1.1), Xilinx,
2011.

Christos Sakellariou received his B. Sc. degree on Physics

from the Aristotle University (Greece), his M. Sc. degree on Mi-
croelectronics from University of Southampton and his M.Res.
degree from University College London (UCL). He currently
works towards an Engineering Doctorate degree in the Depart-
ment of Computer Science at UCL. His research interests include
the hardware acceleration of Natural Computing, parallel com-
puter architectures and low-latency embedded design.

Peter J. Bentley is an Honorary Reader and Senior College
Fellow at the Department of Computer Science, University Col-
lege London (UCL), Collaborating Professor at the Korean Ad-
vanced Institute for Science and Technology (KAIST), Visiting
Fellow at SIMTech, A*STAR, Singapore, a contributing editor
for WIRED UK, a consultant and a freelance writer. He has
published over 200 scientific papers and is editor of the books
“Evolutionary Design by Computers”, “Creative Evolutionary
Systems” and “On Growth, Form and Computers”, and author
of “The Ph.D. Application Handbook” and the popular science

books “Digital Biology”, “The Book of Numbers”, “The Undercover Scientist” and the
forthcoming “Digitized”.

