
Computing and Informatics, Vol. 33, 2014, 259–280

A MAPREDUCE BASED DISTRIBUTED LSI
FOR SCALABLE INFORMATION RETRIEVAL

Yang Liu

School of Electrical Engineering and Information
Sichuan University, China
e-mail: yang.liu@scu.edu.cn

Maozhen Li

School of Engineering and Design, Brunel University
Uxbridge, UB8 3PH, UK
&
The Key Laboratory of Embedded Systems and Service Computing
Tongji University, China
e-mail: Maozhen.Li@brunel.ac.uk

Mukhtaj Khan

School of Engineering and Design, Brunel University,
Uxbridge, UB8 3PH, UK
e-mail: Mukhtaj.Khan@brunel.ac.uk

Man Qi

Department of Computing, Canterbury Christ Church University
Canterbury, Kent, CT1 1QU, UK
e-mail: man.qi@canterbury.ac.uk

Abstract. Latent Semantic Indexing (LSI) has been widely used in information
retrieval due to its efficiency in solving the problems of polysemy and synonymy.
However, LSI is notably a computationally intensive process because of the comput-

260 Y. Liu, M. Li, M. Khan, M. Qi

ing complexities of singular value decomposition and filtering operations involved in
the process. This paper presents MR-LSI, a MapReduce based distributed LSI algo-
rithm for scalable information retrieval. The performance of MR-LSI is first evalu-
ated in a small scale experimental cluster environment, and subsequently evaluated
in large scale simulation environments. By partitioning the dataset into smaller
subsets and optimizing the partitioned subsets across a cluster of computing nodes,
the overhead of the MR-LSI algorithm is reduced significantly while maintaining
a high level of accuracy in retrieving documents of user interest. A genetic algorithm
based load balancing scheme is designed to optimize the performance of MR-LSI in
heterogeneous computing environments in which the computing nodes have varied
resources.

Keywords: Information retrieval, latent semantic indexing, MapReduce, load ba-
lancing, genetic algorithms

1 INTRODUCTION

Latent Semantic Indexing (LSI) [6, 7, 8, 11, 22, 24, 29, 36] has been widely used in
information retrieval [9, 10, 12]. It is based on the concept that latent structures
exist among a number of documents. Building on Vector Space Model (VSM),
LSI generates a Term-Document (T-D) matrix. LSI employs a truncated Singular
Value Decomposition (SVD) [4, 17] to convert the keywords domain of the original
document corpus to a conceptual domain so that the latent semantic relationships
among the words and documents can be highlighted and the problems of polysemy
and synonymy can be solved. However, it has been widely recognized that LSI
suffers from scalability problems in processing massive document collections. The
reason is that SVD is computationally intensive due to its computing complexity
which can be represented by O(m×r2) where m is the number of documents and r is
the rank of T-D matrix [13, 26].

A number of approaches have been proposed in speeding up LSI process in
computation [3, 14, 16, 19, 21, 25]. However, the scalability of these approaches still
remains a challenging issue because of the lack of an effective load balancing scheme
in utilization of heterogeneous computing resources.

This paper presents MR-LSI, a distributed LSI for high performance and scal-
able information retrieval. MR-LSI improves current approaches by focusing on
three aspects. First, MR-LSI employs k-means to cluster documents into a num-
ber of subsets of documents to reduce the complexity of SVD in computation [18,
20, 37]. Second, MR-LSI builds on MapReduce [2, 5, 23, 33, 35] to distribute the
computation of LSI among a number of computers of which each computer only pro-
cesses a subset of documents. MapReduce has become a major enabling technology
in support of data intensive applications. MapReduce has built-in fault tolerance
and handles I/O operations effectively which reduces communication overhead sig-
nificantly. Finally, a resource aware load balancing scheme is designed to optimize

A MapReduce Based Distributed LSI for Scalable Information Retrieval 261

the performance of the MapReduce based MR-LSI in heterogeneous computing en-
vironments.

The performance of MR-LSI is first evaluated in a small scale experimental
MapReduce environment from the aspects of both accuracy and efficiency. Sub-
sequently, a MapReduce simulator is implemented to evaluate the effectiveness of
the resource aware MR-LSI algorithm in large scale simulated MapReduce environ-
ments. Both experimental and simulation results show the effectiveness of MR-LSI
in speeding up LSI computation while maintaining a high level of accuracy.

The rest of the paper is organized as follows. Section 2 discusses some related
work on LSI speedup in computation. Section 3 presents the design of the distributed
MR-LSI algorithm. Section 4 introduces a resource aware load balancing scheme for
optimizing the performance of MR-LSI in heterogeneous computing environments.
Section 5 evaluates the performance of MR-LSI in experimental MapReduce environ-
ments, and Section 6 evaluates the performance of MR-LSI in large scale simulated
MapReduce environments. Section 7 concludes the paper and points out some future
work.

2 RELATED WORK

The current research efforts in speeding up LSI computation generally fall into
two approaches. One approach combines LSI with clustering algorithms such as
k-means [30, 31] to cluster a set of documents into a number of smaller subsets
and process each subset of documents individually to reduce the complexity of SVD
in computation [3, 14, 16, 19]. One representative work of this approach is pre-
sented in [14] in which three clustering schemes are introduced, i.e. non-clustered
retrieval (NC), full clustered retrieval (FC) and partial clustered retrieval (PC). The
NC scheme employs a truncated SVD to pre-process the original data without any
clustering. The FC scheme fully clusters data with a k-means algorithm, and then
makes use of SVD to approximate the matrix of the document vectors in each clus-
ter. The PC scheme only works on a few clusters that are closely related to a given
query for high efficiency.

Another approach distributes the computation of LSI among a cluster of comput-
ers using the Message Passing Interface (MPI). For example, Seshadri and Iyer [28]
proposed a parallel SVD clustering algorithm using MPI. Documents are split into
a number of subsets of which each subset of the documents is clustered by a par-
ticipating computer. Experimental results have shown that the overhead in LSI
computation is significantly reduced using a number of processors.

Although the two aforementioned approaches are effective in a certain way in
speeding up LSI computation, a number of challenges still remain. For example, the
k-means approach does not consider the overhead incurred in clustering documents
which can be high when the size of document collection is large. The MPI approach
is restricted to homogeneous computing environments without any support for fault
tolerance. It should be noted that modern computing infrastructures are mainly

262 Y. Liu, M. Li, M. Khan, M. Qi

heterogeneous computing environments in which computing nodes have a variety
of resources in terms of processor speed, hard disk and network bandwidth. As
a result, distributing LSI computation in a heterogeneous computing environment
with MPI can cause severe unbalanced workload in computation which leads to poor
performance.

3 DESIGN AND IMPLEMENTATION

MR-LSI builds on MapReduce for distribution of LSI in computation. We first give
a brief description of the MapReduce programming model followed by a detailed
description of the MR-LSI algorithm.

3.1 MapReduce

MapReduce is a distributed programming model for data intensive tasks which has
become an enabling technology in support of data intensive applications. The basic
function of MapReduce model is to iterate over the input, compute key/value pairs
from each part of input, group all intermediate values by key, then iterate over
the resulting groups and finally reduce each group. The model efficiently supports
parallelism. Figure 1 presents an abstraction of a typical MapReduce framework.

Map is an initial transformation step, in which individual input records are
processed in parallel. The system shuffle and sort the map outputs and transfer them
to the reducers. Reduce is a summarization step, in which all associated records are
processed together by a single entity. Popular implementations of the MapReduce
model include Mars [15], Phoenix [32], Hadoop and Google’s implementation [1].
Among them, Hadoop has become the most popular one due to its open source
feature.

3.2 MR-LSI

MR-LSI employs k-means to group documents into a number of clusters of docu-
ments. To minimize the overhead of k-means in clustering documents, MR-LSI par-
titions the set of documents into a number of subsets of documents and distributes
these subsets of documents among a number of processors in a MapReduce Hadoop
environment. Each processor only clusters a portion of the documents and subse-
quently performs a truncated SVD operation on the generated document cluster.
The details on the design of MR-LSI are given below. Let

• D represent the set of p documents, D = {d1, d2, d3, . . . , dp}.
• P represent the set of m processors in a Hadoop cluster, P = {p1, p2, p3, . . . , pm}.

Each processor runs one map instance called mapper.

• M represent the set of m mappers running in the Hadoop cluster,

M = {map1,map2,map3, . . . ,mapm}.

A MapReduce Based Distributed LSI for Scalable Information Retrieval 263

Record

Record
Record

Record
Record

Record
Record
Record

Record

Record
Record
Record

Input Dataset

Split

Split

Split
Map
Task

Output
Result

Map
Task

Map
Task

Shuffle
&

Sort

Reduce
Task

Reduce
Task

Output
Result

ValueKey

Key

Key

Key

Value

Value

Value

Key

Key

Value

Value

Value

Value

Value

Key

Key

Key

Value

Value
Value
Value

Value
Value

Key

Key

Key

Key

Value
Value
Value
Value

	

Figure 1. The MapReduce model

In LSI, the set of D documents can be represented by a set of vectors denoted
by V , V = v1, v2, v3, . . . , vp. Each vector vi represents the frequencies of keywords
that appear in document di. The input of each mapper includes two parts. The first
part is a centroid set of C with k initial centroids which are randomly selected from
the vector set V , C = {ci ∈ V |c1, c2, c3, . . . , ck}. The second part of the input of
a mapper is a portion of V denoted by Vi. The vector set V is equally divided into
m portions according to the number of mappers. Thus Vi satisfies

⋃m
(i=1) Vi = V .

Each mapper mi runs on one processor pi calculating the Euclidean distances
between vij ∈ Vi and C which is denoted by dij, then

dij =‖ vij − cq ‖, j = 1, 2, . . . ,
p

m
, q = 1, 2, . . . , k.

Let dmin represent the shortest distance between vij and C, then dmin = min
(
di1,

di2, di3, . . . , di p
m

)
. Based on the shortest distance, the mapper selects the correspond-

ing ci and vij to generate a key-value pair as one output record. The output pairs
of all the mappers are fed into the reduce instance (called reducer). The reducer
groups the values with the same key ci into a set of clusters denoted by Clusteri,
Clusteri = v′1, v

′
2, v
′
3, . . . , v

′
ai, where i = 1, 2, 3, . . . , k and

∑k
i=1 ai = p.

For each Clusteri, the reducer calculates a new centroid denoted by c′i, c
′
i =∑ai

j=1
v′j

ai
. The reducer outputs a set of centroids denoted by C ′, C ′ = c′1, c

′
2, c
′
3, . . . , c

′
k

which will be fed into the mappers for computing another set of centroids C ′′ until
the values of the centroids in set C ′ are the same as those in C ′′, then the reducer
outputs the Clusteri. Each of the k jobs runs a mapper performing a truncated SVD

264 Y. Liu, M. Li, M. Khan, M. Qi

operation in Clusteri. In each Clusteri, the vectors v′ai form a T-D matrix A, where
A = UΣV T . After performing a truncated SVD operation, the matrix A can be
represented by an approximate matrix Ak, where Ak = UkΣkVk, k is the rank of the
matrix.

In LSI, for a submitted query q, it is processed using Equation (1).

q = qTUkΣ−1k . (1)

The similarities of the query to the documents can be measured by calculating
the cosine values of vector q and the vectors of matrix Vk using Equation (2).

cos θj =
qv ·Dj

‖ qv ‖2‖ Dj ‖2
, (2)

where j represents the jth document in the clustered document set.
If the value of cos θj is larger than a given threshold τ , then the document Dj will

be a target document. Therefore the set of target documents D can be represented
as D = dj| cos θj = cos(qv′Dj) ≥ τ . Finally, the reducer generates k clusters of
documents. For each cluster of documents, a truncated SVD operation is performed
and targeted documents are retrieved.

4 LOAD BALANCING

A remarkable characteristic of the MapReduce Hadoop framework is its support
for heterogeneous computing environments. Therefore computing nodes with varied
processing capabilities can be utilized to run MapReduce applications in parallel.
However, current implementation of Hadoop only employs first-in-first-out (FIFO)
and fair scheduling without support for load balancing taking into consideration the
varied resources of computers. A genetic algorithm based load balancing scheme
is designed to optimize the performance of MR-LSI in heterogeneous computing
environments.

To solve an optimization problem, genetic algorithm solutions need to be re-
presented as chromosomes encoded as a set of strings which are normally binary
strings. However, a binary representation is not feasible as the number of mappers
in a Hadoop cluster environment is normally large which will result in long binary
strings. We employ a decimal string to represent a chromosome in which the data
chunk assigned to a mapper is represented as a gene.

In Hadoop, the total time (T) of a mapper in processing a data chunk consists
of the following four parts:

• Data copying time (tc) in copying a data chunk from Hadoop distributed file
system to local hard disk. It depends on the available network bandwidth and
the writing speed of hard disk.

• Processor running time (tp) in processing a data chunk.

A MapReduce Based Distributed LSI for Scalable Information Retrieval 265

• Intermediate data merging time (tm) in combining the output files of the mapper
into one file for reduce operations.

• Buffer spilling time (tb) in emptying filled buffers.

T = tc + tp + tm + tb. (3)

Let

• Dm be the size of the data chunk.

• Hd be the writing speed of hard disk in MB/second.

• Bw be the network bandwidth in MB/second.

• Pr be the speed of the processor running the mapper process in MB/second.

• Bf be the size of the buffer of the mapper.

• Ra be the ratio of the size of the intermediate data to the size of the data chunk.

• Nf be the number of frequencies in processing intermediate data.

• Nb be the number of times that buffer is filled up.

• Vb be the volume of data processed by the processor when the buffer is filled up.

• s be the sort factor of Hadoop.

We have

tc =
Dm

min(Hd′ , Bw)
. (4)

Here tc depends on the available resources of hard disk and network bandwidth.
The slower one of the two factors will be the bottleneck in copying data chunks from
Hadoop distributed file system to the local hard disk of the mapper.

tp =
Dm

Pr

. (5)

When a buffer is filling, the processor keeps writing intermediate data into the buffer
and in the mean time the spilling process keeps writing the sorted data from the
buffer to hard disk. Therefore the filling speed of a buffer can be represented by
Pr × Ra − Hd. Thus the time to fill up a buffer can be computed by

Bf

(Pr×Ra−Hd)
.

As a result, for a buffer to be filled up, the processor will generate a volume of
intermediate data with the size of Vb which can be computed using Equation (6).

Vb = Pr ×Ra ×
Bf

Pr ×Ra −Hd

. (6)

The total amount of intermediate data generated from the original data chunk
with a size of Dm is Dm×Ra. Therefore the number of times for a buffer to be filled
up can be computed using Equation (7).

Nb =
Dm ×Ra

Vb
. (7)

266 Y. Liu, M. Li, M. Khan, M. Qi

The time for a buffer to be spilled once is
Bf

Hd
, therefore the time for a buffer to

be spilled for Nb times is
Nb×Bf

Hd
. Then we have

tb =
Nb ×Bf

Hd

. (8)

The frequencies in processing intermediate data Nf can be computed using
Equation (9).

Nf =
⌊
Nb

s

⌋
− 1. (9)

When the merging occurs once, the whole volume of intermediate data will be
written into the hard disk causing an overhead of Dm×Ra

Hd
. Thus if the merging

occurs Nf times, the time consumed by hard disk IO operations can be represented

by
Dm×Ra×Nf

Hd
. We have

tm =
Dm ×Ra ×Nf

Hd

. (10)

The total time Ttotal to process data chunks in one processing wave in MapReduce
Hadoop is the maximum time consumed by k participating mappers, where

Ttotal = max(T1, T2, T3, . . . , Tk). (11)

According to divisible load theory, to achieve a minimum Ttotal, it is expected
that all the mappers to complete data processing at the same time:

T1 = T2 = T3 = . . . = Tk. (12)

Let

• Ti be the processing time for the ith mapper.

• T̄ be the average time of the k mappers in data processing, T̄ =
∑k

i=1
Ti

k
.

Based on Equations (11) and (12), the fitness function is to measure the distance
between Ti and T̄ . Therefore, the fitness function can be defined using Equation (13)
which is used by the genetic algorithm in finding an optimal or a near optimal
solution in determining the size for a data chunk.

f(T) =

√√√√ k∑
i=1

(T̄ − Ti)2. (13)

5 EXPERIMENTAL RESULTS

To evaluate the performances of MR-LSI we set up a small scale Hadoop cluster
consisting of four computer nodes. Table 1 shows the configurations of the Hadoop
cluster.

A MapReduce Based Distributed LSI for Scalable Information Retrieval 267

Number of Hadoop nodes: 4

Nodes’ specifications: Three Datanodes: CPU Q6600@2.4 G, RAM
3 GB and running OS Fedora 11. One Name-
node: CPU C2D7750@2.26 G, RAM 2 GB and
running OS Fedora 12.

Number of mappers per node: 2

Number of reducer: 1

Network bandwidth: 1 000 Gbps

Table 1. The experimental environment

To evaluate the performances of MR-LSI, 1 000 papers were collected from the
IEEE Xplore data source. For each paper selected, a T-D matrix will be constructed.
In the tests, we also designed two strategies for clustering documents which is si-
milar to the clustered strategies proposed in [14]. One strategy is Closest Distance
Searching (CDS) and the other one is All Distances Searching (ADS). CDS calculates
the distances between a query q and the centroid of each sub-cluster. The closest
sub-cluster to the query q will have the highest probability in containing the target
documents. A truncated SVD will only be performed on the closest sub-cluster.
ADS calculates the distance between a query and the centroid of each sub-cluster,
and a truncated SVD will be performed on all the sub-clusters.

MR-LSI was evaluated from the aspects of precision and recall in comparison
with standalone LSI, standalone LSI combined with k-means using the CDS strategy,
and standalone LSI combined with k-means using the ADS strategy. From the
results presented in Figure 2 and Figure 3, we can observe that the performance
of MR-LSI is close to that of the standalone LSI. It is worth pointing out that the
CDS strategy only works on the closest sub-cluster of documents related to a query.
Compared with other algorithms, CDS retrieves a smaller number of documents
which result in lower performance in recall.

We conducted a number of tests to evaluate the overhead of MR-LSI in compu-
tation. The number of documents to be retrieved varied from 100 to 1 000. However,
the size of the dataset was not large. From Figure 4 and Figure 5, we can observe
that MR-LSI consumed more time than other algorithms in processing the dataset.
This is mainly due to the overhead generated by the Hadoop framework which is
effective in processing large scale data. Both the ADS and the CDS strategies per-
form faster than the standalone LSI indicating the effectiveness of a combination of
LSI with k-means.

We also conducted a number of additional tests to further evaluate the overhead
of MR-LSI in processing a large collection of documents. We increased the size of
the document collection from 5 KB to 20 MB and compared the overhead of MR-LSI
with that of the CDS strategy as it is faster than both the standalone LSI and the
ADS strategy. From the results plotted in Figure 6, we can observe that when the
data size is less than 1.25 MB, the overhead of CDS is stable. However, the overhead
of CDS starts growing when the size of dataset is larger than 2.5 MB. When the size

268 Y. Liu, M. Li, M. Khan, M. Qi

0

5

10

15

20

25

30

35

40

45

100 200 300 400 500 600 700 800 900 1000

P
re

ci
si

o
n

 (
%

)

Number of papers

Standalone LSI MR!LSI ADS CDS

Figure 2. The precision of MR-LSI

of data reaches 10 MB, the overhead of CDS increases sharply. Compared with CDS,
the overhead of MR-LSI is highly stable with an increasing size of dataset; this shows
its better scalability than the CDS strategy.

6 SIMULATION RESULTS

To further evaluate the effectiveness of MR-LSI in large scale MapReduce environ-
ments, we have implemented HSim [39], a MapReduce Hadoop simulator using the
Java programming language. In this section, we assess the performance of the MR-
LSI in simulation environments. Using HSim, we simulated a number of Hadoop
environments and evaluated the performance of MR-LSI from the aspects of scal-
ability, the effectiveness in load balancing and the overhead of the load balancing
scheme.

To study the impacts of Hadoop parameters on the performance of MR-LSI,
we simulated a cluster with the configurations as shown in Table 2. Each node had
a processor with 4 cores. The number of mappers is equal to the number of processor
cores. We run two mappers on a single processor with two cores. The speeds of the
processors were simulated in terms of the volume of data in MB processed per second.
In the following sections, we show the impacts of a number of Hadoop parameters
on the performance of MR-LSI.

6.1 Scalability

From Figure 7, we observe that the overhead of MR-LSI in computation is reduced
with an increasing number of mappers showing a high scalability of the MR-LSI

A MapReduce Based Distributed LSI for Scalable Information Retrieval 269

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900 1000

R
ec

al
l
(%

)

Number of papers

Standalone LSI MR!LSI ADS CDS

Figure 3. The recall of MR-LSI

Number of simulated nodes: 250

Data size: 100 000 MB

CPU processing speed: Up to 0.65 MB/s

Hard drive reading speed: 80 MB/s

Hard drive writing speed: 40 MB/s

Memory reading speed: 6 000 MB/s

Memory writing speed: 5 000 MB/s

Network bandwidth: 1 Gbps

Number of mappers: 4 per node

Number of reducers: 1 or more

Table 2. The simulated environment

algorithm. It is worth noting that the number of reducers on a computing node does
not contribute much to the overhead of MR-LSI due to the fact that the overhead
of MR-LSI is mainly caused by the mappers involved.

6.2 Sort Factor

In Hadoop, the parameter of sort factor controls the maximum number of data
streams to be merged in one wave when sorting files. Therefore, the value of sort
factor affects the IO performance of MR-LSI. From Figure 8, we can observe that
the case of using sort factor 100 gives a better performance than sort factor 10.
When the value of sort factor is changed from 10 to 100, the number of spilled files
will be increased which reduces the overhead in merging.

270 Y. Liu, M. Li, M. Khan, M. Qi

0

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600 700 800 900 1000

O
v
e
rh
e
a
d
(m

s)

Number of papers

Standalone LSI ADS CDS

Figure 4. The overhead of standalone LSI, ADS and CDS in computation

6.3 Buffer Size

The buffer size in Hadoop contributes to IO performance, and it affects the per-
formance of a processor. The default value of a buffer size is 100 MB. We tested
the performance of MR-LSI with a data size of 1 000 MB. As shown in Figure 9,
the mappers generate a small number of spilled files when using a large size buffer

108000

110000

112000

114000

116000

118000

120000

122000

100 200 300 400 500 600 700 800 900 1000

O
v
e
rh
e
a
d

 (
m
s)

Number of papers

Figure 5. The overhead of MR-LSI

A MapReduce Based Distributed LSI for Scalable Information Retrieval 271

0

50000

100000

150000

200000

250000

5 150 300 625 1250 2500 5000 10000 15000 20000

O
v

er
h

ea
d

 (
m

s)

Data size (KB)

CDS MR LSI

Figure 6. Comparing the overhead of MR-LSI with CDS

0

500

1000

1500

2000

2500

100 200 300 400 500 600 700 800 900 1000

M
ap

p
er

o

v
er

h
ea

d
 (

s)

Number of mappers

1 Reducer per node 2 Reducer per node

Figure 7. Scalability of MR-LSI

which reduces the overhead in merging. Furthermore, a large buffer size can keep
the processor working without any blocking for a long period of time.

6.4 Chunk Size

Each mapper processes a data chunk at a time. Thus the size of data chunks
highly affects the number of processing waves of mappers. From Figure 10, we
can observe that using a large size for data chunks reduces the overhead of map-

272 Y. Liu, M. Li, M. Khan, M. Qi

0

1000

2000

3000

4000

5000

6000

7000

8000

100 200 300 400 500 600 700 800 900 1000

O
v

er
h

ea
d

 (
s)

Number of mappers

Sort Factor 100 Sort Factor 10

Figure 8. The impact of sort factor

0

1000

2000

3000

4000

5000

6000

100 200 300 400 500 600 700 800 900 1000

O
v

er
h

ea
d

 (
s)

Number of mappers

Memory Buffer 100MB Memory Buffer 1000 MB

Figure 9. The impact of buffer size

pers in processing, and also reduces the total overhead of the process as shown
in Figure 11. However, both of the two chunk sizes produce the same perfor-
mance when the number of mappers increases to 800 and 900, respectively. In
the case of chunk size 64 MB, to process 100 000 MB data, using 800 mappers needs⌈
100 000MB
800×64MB

⌉
= 2 waves to finish the job. In the case of chunk size 100 MB, using 800

mappers needs
⌈
100 000MB
800×64MB

⌉
= 2 waves to finish the job. Similarly, using 900 mappers

needs 2 waves to process the 100 000 MB data in both cases. When the number of

A MapReduce Based Distributed LSI for Scalable Information Retrieval 273

mappers reaches 1 000, the performance of the two cases with different data sizes
varies.

0

500

1000

1500

2000

2500

100 200 300 400 500 600 700 800 900 1000

M
ap

p
er

o

v
er

h
ea

d
 (

s)

Numbero f mappers

Chunk size 64MB Chunk size 100MB

Figure 10. The impact of data chunk size on the mappers in MR-LSI

0

1000

2000

3000

4000

5000

6000

100 200 300 400 500 600 700 800 900 1000

T
o

ta
l

 o
v

er
h

ea
d

 (
s)

Number of mappers

Chunk size 100MB Chunk size 64MB

Figure 11. The impact of data chunk size on MR-LSI

6.5 Number of Reducers

Figure 12 shows that increasing the number of reducers enhances the performance
of MR-LSI when the number of reducers small. When more reducers are used

274 Y. Liu, M. Li, M. Khan, M. Qi

more resources will need to be consumed due to Hadoop’s management work on
the reducers. In some cases multiple reducers need an additional job to collect and
merge the results of each reducer to form a final result. This can also cause large
overhead.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10 20 30 40 50 60 70 80 90 100

O
v

er
h

ea
d

 (
s)

Number of reducers

Figure 12. The impact of reducers

6.6 Load Balancing

Table 3 shows the configurations of the simulated Hadoop environments in evaluating
the effectiveness of the load balancing scheme of MR-LSI.

Number of simulated nodes: 20

Number of processors in each node: 1

Number of cores in each processor: 2

Size of data Test 1: 10 GB, Test 2: 10 GB to 100 GB

The processing speeds of processors: Depending on heterogeneities

Heterogeneities: From 0 to 2.28

Number of hard disk in each node: 1

Reading speed of Hard disk: 80 MB/s

Writing speed of Hard disk: 40 MB/s

Number of Map instances Each node contributes 2 Map instances

Number of Reduce instances 1

Sort factor: 100

Table 3. Hadoop simulation configuration

A MapReduce Based Distributed LSI for Scalable Information Retrieval 275

To evaluate the load balancing algorithm we simulate a cluster with 20 comput-
ers. Each computer has one processor with two cores. The number of mappers is
equal to the number of processor cores. Therefore we run two mappers on a sin-
gle processor with two cores. The speeds of the processors are generated based on
the heterogeneities of the Hadoop cluster. In the simulation environments the total
processing power of the cluster was P =

∑n
i=1 pi where n represents the number of

the processors employed in the cluster and pi represents the processing speed of the
ith processor. For a Hadoop cluster with a total computing capacity P , the levels of
heterogeneity of the Hadoop cluster can be defined using Equation (14).

Heterogeneity =

√√√√(k∑
i=1

(p̄− pi)2
)
. (14)

In the simulation, the value of heterogeneity was in the range of 0 and 2.28. The
hard disk reading and writing speeds were generated based on the real measurements
from the experiments conducted.

We first tested 10 GB data in the simulated cluster with different levels of hete-
rogeneity. From Figure 13, it can be observed that when the level of heterogeneity
is less than 1.08 which indicates a homogeneous environment, the load balancing
scheme does not make any difference to the performance of MR-LSI. However, the
load balancing scheme reduces the overhead of MR-LSI significantly with an increas-
ing level of heterogeneity.

	

0�

500�

1000�

1500�

2000�

2500�

3000�

0� 0.38� 0.48� 0.68� 0.88� 1.08� 1.28� 1.48� 1.68� 1.88� 2.08� 2.28�

O
ve

rh
ea

d
(s

)

Levels of heterogeneity

Without Load Balancing With Load Balancing

Figure 13. The performance of the load balancing scheme

The load balancing scheme builds on a genetic algorithm whose convergence
affects the efficiency of MR-LSI. To analyze the convergence of the genetic algorithm,
we varied the number of generations and measured the overhead of MR-LSI in

276 Y. Liu, M. Li, M. Khan, M. Qi

1

5
0

9
9

1
4

8

1
9

7

2
4

6

2
9

5

3
4

4

3
9

3

4
4

2

4
9

1

5
4

0

5
8

9

6
3

8

6
8

7

7
3

6

7
8

5

8
3

4

8
8

3

9
3

2

9
8

1

O
v

er
h

ea
d

 o
f

M
R

-L
S

I
(s

)

Number of generations

Figure 14. The convergence of the load balancing scheme

processing a 10 GB dataset in the simulated Hadoop environment. Figure 14 shows
that MR-LSI has a quick convergence process in reaching a stable performance.

7 CONCLUSION

In this paper we have presented MR-LSI for scalable information retrieval. MR-LSI
is effective when processing a large dataset due to high scalability of MapReduce
in support of data intensive applications. Both experimental and simulation results
have shown that the MR-LSI algorithm speeds up the computation process of SVD
while maintaining a high level of accuracy in information retrieval.

For future work, we are considering Amazon EC2 Cloud resources [38] for eval-
uating the performance of MR-LSI in large scale real Hadoop clusters.

Acknowledgement

This research is partially supported by the 973 project on Network Big Data Ana-
lytics No. 2014CB340404.

REFERENCES

[1] Aarnio, T.: Parallel Data Processing with Mapreduce. TKK T-110.5190,
Seminar on Internetworking, 2009. Availaible on: http://www.cse.tkk.fi/en/

publications/B/5/papers/Aarnio_final.pdf.

[2] Apache Hadoop! Availaible on: http://hadoop.apache.org/ [Accessed 20 July
2012].

A MapReduce Based Distributed LSI for Scalable Information Retrieval 277

[3] Bassu, D.—Behrens, C.: Distributed LSI: Scalable Concept-Based Information
Retrieval with High Semantic Resolution. In Proceedings of Text Mining 2003, work-
shop held in conjunction with the Third SIAM Int’l Conference on Data Mining.

[4] Berry, M. W.: Large Scale Singular Value Computations. International Journal
of Supercomputer Applications and High Performance Computing, Vol. 6, 1992,
pp. 13–49.

[5] Dean, J.—Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In Proc. of OSDI ’04: Sixth Symposium on Operating System Design and Im-
plementation, San Francisco, CA.

[6] Deerwester, S.—Dumais, S. T.—Furnas, G.: Indexing by Latent Semantic
Analysis. Journal of the American Society For Information Science, Vol. 41, 1990,
pp. 391–407.

[7] Ding, C.: A Similarity-Based Probability Model for Latent Semantic Indexing. In
Proc. of 22nd ACM SIGIR Conference 1999, pp. 59–65.

[8] Du, L.—Jin, H.—de Vel, O. Y.—Liu, N.: A Latent Semantic Indexing and
WordNet based Information Retrieval Model for Digital Forensics. In Proc. of Intel-
ligence and Security Informatics, ISI 2008, IEEE International Conference, Taipei,
pp. 70–75.

[9] Dumais, S.: LSI Meets TREC: A Status Report. In: D. Harman (Ed.): The
First Text Retrieval Conference (TREC1), NIST Special Publication 500-207, 1993,
pp. 137–152.

[10] Dumais, S.: Latent Semantic Indexing (LSI) and TREC-2. In: D. Harman (Ed.):
The Second Text Retrieval Conference (TREC2), NIST Special Publication 500-215,
1994, pp. 105–116.

[11] Dumais, S.: Using LSI for Information Filtering: TREC-3 Experiments. In: D. Har-
man (Ed.): The Third Text Retrieval Conference (TREC3), NIST Special Publica-
tion, 1995, pp. 219–230.

[12] Foltz, P.—Dumais, S.: Personalized Information Delivery: An Analysis of Infor-
mation Filtering Methods. Communications of the ACM, Vol. 35, 1992, pp. 51–60.

[13] Gao, J.—Zhang, J.: Sparsification Strategies in Latent Semantic Indexing. In Pro-
ceedings of the 2003 Text Mining Workshop, San Francisco, CA, 2003, pp. 93–103.

[14] Gao, J.—Zhang, J.: Clustered SVD Strategies in Latent Semantic Indexing. Infor-
mation Processing and Management, Vol. 41, 2005, pp. 1051–1063.

[15] He, B.—Fang, W.—Luo, Q.—Govindaraju, N. K.—Wang, T.: Mars: A Map-
Reduce Framework on Graphics Processors. In PACT ’08: Proceedings of the 17th

international Conference on Parallel Architectures and Compilation Techniques 2008,
pp. 260–269.

[16] Hotho, A.—Maedche, A.—Staab, S.: Text Clustering Based on Good Aggre-
gations. In Proc. of the 2001 IEEE International Conference on Data Mining, IEEE
Computer Society, San Jose, CA, pp. 607–608.

[17] Husbands, P.—Simon, H.—Ding, C.: On the Use of Singular Value Decomposi-
tion for Text Retrieval. In Computational Information Retrieval, Philadelphia, PA,
pp. 45–156.

278 Y. Liu, M. Li, M. Khan, M. Qi

[18] Jain, A. K.—Murty, M. N.—Flynn, P. J.: Data Clustering: A Review. ACM
Computing Surveys, Vol. 31, 1999, pp. 264–323.

[19] Jiménez, D.—Ferretti, E.—Vidal, V.—Rosso, P.—Enguix, C. F.: The In-
fluence of Semantics in IR Using LSI and K-Means Clustering Techniques. In Pro-
ceedings of the 1st International Symposium on Information and Communication
Technologies 2003.

[20] Karypis, M. S. G.—Kumar, V.: A Comparison of Document Clustering Tech-
niques. Technical Report 00-034, Department of Computer Science and Engineering,
University of Minnesota 2000.

[21] Koller, D.—Sahami, M.: Hierarchically Classifying Documents Using Very few
Words. In Proceedings of the Fourteenth International Conference on Machine Learn-
ing 1997.

[22] Kumar, C. A.—Srinivas, S.: Latent Semantic Indexing Using Eigenvalue Analysis
for Efficient Information Retrieval. International Journal of Applied Mathematics and
Computer Science, Vol. 16, 2006, pp. 551–558.

[23] Lammel, R.: Google’s MapReduce programming model – Revisited. Sci. Comput.
Program., Vol. 68, 2007, pp. 208–237.

[24] Majavu, W.—van Zyl, T.: Classification of Web Resident Sensor Resources Using
Latent Semantic Indexing and Ontologies. Proceedings of the IEEE International
Conference on Man, Systems and Cybernetics 2008.

[25] Oksa, G.—Becka, M.—Vajtersic, M.: Parallel SVD Computation in Updat-
ing Problems of Latent Semantic Indexing. In Proceedings of ALGORITMY 2002
Conference on Scientific Computing 2002, pp. 113–120.

[26] Park, H.—Elden, L.: Matrix Rank Reduction for Data Analysis and Feature
Extraction. Tech. Rep., Dept. Computer Science and Engineering, University of Min-
nesota 2003.

[27] Pavlo, A.—Paulson, E.—Rasin, A.—Abadi, D. J.—DeWitt, D. J.—
Madden, S.—Stonebraker, M.: A Comparison of Approaches to Large-Scale
Data Analysis. In: Proceedings of the 35th SIGMOD International Conference on
Management of Data, New York, NY, USA 2009.

[28] Seshadri, K.—Iye, K. V.: Parallelization of a Dynamic SVD Clustering Algorithm
and Its Application in Information Retrieval. Software: Practice and Experience,
Vol. 40, 2010, No. 10, 2010, pp. 883–896.

[29] Song, W.—Park, S.: Analysis of Web Clustering Based on Genetic Algorithm with
Latent Semantic Indexing Technology. In Proc. of Advanced Language Processing and
Web Information Technology 2007, pp. 21–26.

[30] Steinbach, M.—Karypis, G.—Kumar, V.: A Comparison of Document Cluster-
ing Techniques. KDD-2000 Workshop on Text Mining, Boston, MA, USA, 2000.

[31] Tarpey, T.—Flury, B.: Self-Consistency: A Fundamental Concept in Statistics.
Statistical Science, Vol. 11, 1996, pp. 229–243.

[32] Taura, K.—Kaneda, K.—Endo, T.—Yonezawa, A.: Phoenix: A Parallel Pro-
gramming Model for Accommodating Dynamically Joining/Leaving Resources. SIG-
PLAN Not., Vol. 38, 2003, pp. 216–229.

[33] Venner, J.: Pro Hadoop. 1st ed. Springer New York 2009.

A MapReduce Based Distributed LSI for Scalable Information Retrieval 279

[34] Wang, G.—Butt, A. R.—Pandey, P.—Gupta, K.: Using Realistic Simulation
for Performance Analysis of Mapreduce Setups. In LSAP ’09: Proceedings of the 1st

ACM Workshop on Large-Scale System and Application Performance.

[35] White, T.: Hadoop: The Definitive Guide. 2nd ed. CA: O’Reilly Media 2009.

[36] Yan, B.—Du, Y.—Li, Z.: The New Clustering Strategy and Algorithm Based on
Latent Semantic Indexing. In Proc. of Fourth International Conference on Natural
Computation (ICNC ’08), Vol. 1, pp. 486–490.

[37] Yates, R. D.—Neto, B. R.: Modern Information Retrieval. 1st ed. US: Addison-
Wesley, 1999.

[38] Amazon EC2 Cloud, Availaible on: http://aws.amazon.com/ec2/.

[39] Liu, Y.—Li, M.—Alham, N. K.—Hammoud, S.: HSim: A MapReduce Si-
mulator in Enabling Cloud Computing. Future Generation Computer Systems,
DOI:10.1016/j.future.2011.05.007 g.

[40] CAI web site. Availaible on: http://www.cai.sk.

[41] Akl, S. G.—Bruda, S. D.: Parallel Real-Time Optimization: Beyond Speedup.
Parallel Processing Letters, Vol. 9, 1999, No. 4, pp. 499–509.

[42] Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of Two Notions.
Cornell University Press, Ithaca, NZ 1962.

[43] Marek, W.—Truszczinski, M.: Relating Autoepistemic and Dolomit Logic. In:
R. Brachman and H. Levesque (Eds.): Principles of Knowledge Representation and
Reasoning, Proceedings of the First International Conference, KR ’89, Toronto 1989,
pp. 276–288.

Yang Liu is an Associated Professor in the School of Electrical
Engineering and Information, Sichuan University, China. He
received his Ph. D. in the School of Engineering and Design at
Brunel University, UK. His research interests include big data
analytics for smart grids, parallel computing technologies for
large scale power system analysis, data mining and information
retrieval.

Maozhen Li is a Professor in the School of Engineering and
Design at Brunel University, UK. He received the Ph. D. from
Institute of Software, Chinese Academy of Sciences in 1997. He
was a post-doctoral scholar in the School of Computer Science
and Informatics, Cardiff University, UK in 1999–2002. His re-
search interests are in the areas of high performance computing
(grid and cloud computing) and intelligent systems. He is on
the Editorial Boards of Computing and Informatics journal and
journal of Cloud Computing: Advances, Systems and Applica-
tions. He has over 100 research publications in these areas. He
is a Fellow of the British Computer Society.

280 Y. Liu, M. Li, M. Khan, M. Qi

Mukhtaj Khan received his M. Sc. in Mobile Computer Sys-
tem from Staffordshire University, UK in 2006. He is currently
a Ph. D. student in the School of Engineering and Design at
Brunel University, UK. The Ph. D. study is sponsored by Abdul
Wali Khan University Mardan, Pakistan. His research interests
are focused on high performance computing and intelligent sys-
tems and networks.

Man Qi is a Senior Lecturer in Department of Computing at
Canterbury Christ Church University, UK. Her research inter-
ests are in the areas of computer graphics, computer anima-
tion, multimedia and applications. She is a Fellow of the British
Computer Society and also a Fellow of the Higher Education
Academy.

