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Abstract. Because virtual computing platforms are dynamically changing, it is
difficult to build high-quality intrusion detection system. In this paper, we present
an automated approach to intrusions detection in order to maintain sufficient per-
formance and reduce dependence on execution environment. We discuss a hidden
Markov model strategy for abnormality detection using frequent system call se-
quences, letting us identify attacks and intrusions automatically and efficiently. We
also propose an automated mining algorithm, named AGAS, to generate frequent
system call sequences. In our approach, the detection performance is adaptively
tuned according to the execution state every period. To improve performance, the
period value is also under self-adjustment.
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1 INTRODUCTION

As computer systems play increasingly vital roles in modern society, network secu-
rity has become more and more remarkable. Intrusion detection system (IDS) is
one of the most critical technologies to help protect these systems. With respect to
the origin of analyzed data, there are two main approaches for intrusion detection:
Network-based IDS (NIDS) based on watching the network traffic flowing through
the systems to monitor, and Host-based IDS (HIDS) based on watching local activity
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on a host, like processes, network connections, system calls, logs, etc. Comparing
these two dominant IDS architectures, NIDS offers high attack resistance at the
cost of visibility, and HIDS offers high visibility but sacrifices attack resistance. To
avoid the disadvantages of the two types of IDS, many researchers have proposed
and implemented virtual machine (VM) technology to build intrusion detection sys-
tems which provide good visibility into the state of the monitored host, while still
providing strong isolation for the IDS.

While virtual machines provide significant flexibility for users and administrators
to create, destroy, migrate and modify guest machines with unprecedented ease, it
forces IDS to work in a dynamic computing environment, which gives rise to radi-
cally different solutions than are found in traditional computing environments [1].
This can present some unique challenges to detect intrusion. First, the semantic
gap between guest OS and underlying virtual machine monitor (VMM) brings forth
handicap to detect intrusion in high level; second, the virtual machines that run
various services could potentially hurt system security of computing environment
themselves; finally, traditional IDS relies on the execution environment, in parti-
cular, on the operation system running. In VM-based virtual computing platform,
the execution environment is dynamically changing, and it is impossible for IDS to
detect malicious attacks with sufficient performance.

In VM-based virtual computing environments, VMM is a layer of software run-
ning on the hardware platform and VM runs as a user process on the host. Both
the guest OS and guest applications are inside this single host process. Thus, it
is obvious that privileged processes should be a good level to focus on because the
exploitation of vulnerabilities in privileged processes can give confident evidence to
indentify intruders in virtual computing environments. A natural observable view
on processes in VM-based virtual computing environment would be based on sys-
tem calls, because guest OS processes access system resources and peripheral device
through the use of system calls. To narrow the semantic gap and reduce the de-
pendence on execution environment, in particular on the operation system running,
various data mining and machine learning techniques have been used in intrusion
detection to discover abnormalities in the behavior of privileged processes. Such
research projects include Mining Audit Data for Automated Models for Intrusion
Detection (MAMAD ID) [2], Intrusion Detection System using System Calls [3],
Minnesota Intrusion Detection System (MINDS) [4], HMM-based Intrusion Detec-
tion System [5] etc.

However, the performance of data mining-based intrusion detection greatly relies
on the quality of training data and the detection models. As virtual computing
environment keeps on changing, it is too difficult to collect training data covering
all kinds of security vulnerabilities and attacks in real time. Moreover, system
parameters of data mining-based IDS should be adjusted continually in order to
maintain the performance since fixed detection model is not suitable for the dynamic
environment. Zhenwei Yu et al design an Automatically Tuning Intrusion Detection
System (ATIDS) and point out that tuning intrusion detection model on-the-fly
with the verified data can achieve performance improvement [6], but the tuning
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procedure is a complex process which will radically aggravate the burden on the
system operators.

Our work is inspired by intrusion tolerance (IT), an immune approach in sys-
tem security emerged and gained impressive momentum recently, which is instead
of trying to prevent every single intrusion but tolerated: the system has the means
to prevent the intrusion from generating a system failure. Our work is also con-
cerned with IT to construct security VM-based dynamic computing environment.
In this paper, we present an automated approach to intrusions detection in order to
maintain sufficient performance and reduce dependence on execution environment.
We discuss a hidden Markov model strategy for abnormality detection using fre-
quent system call sequences, letting us identify attacks and intrusions automatically
and efficiently. We also propose an automated mining algorithm, named AGAS,
to generate frequent system call sequences. In our approach, the detection perfor-
mance is adaptively tuned according to the execution state every period. To improve
performance, the period value is also under self-adjustment.

This article is structured as follows: Section 2 surveys related work; Section 3
introduces how to automatically discover abnormalities in system call sequences;
Section 4 describes the dynamic techniques of intrusion detection in VM-based vir-
tual computing environments, Section 5 presents the implementation results, and
Section 6 details the proposal.

2 RELATED WORK

With the development of virtualization technology, virtual machines are widely
used to improve the security of a computing system against attacks to its services.
X. X. Jiang et al. present a new approach to apply intrusion detection techniques to
virtual machine based systems, and keep the intrusion detection system out of reach
from intruders [7]. Tal Garfinkel at al. have implemented a HIDS prototype in virtu-
alization environment, named Livewire, which can get the state information of other
VMs from VMM and interpret the hardware-level information with OS semantic by
using the OS interface library [8]. Revirt and Subvirt propose an intermediate layer
between the monitor and the host system to analyze intrusion actions by capturing
the data through the syslog process of the virtual machine and sending them back
to the host system for recording and later analysis [9, 10]. The virtualization over-
head of Revirt is up to 58% for kernel-build, the time overhead of Revirt is at most
8%; but its vulnerability is no-deterministic because it depends on a time-of-check
to time-of-use race condition. Lares addresses the problem of secure active moni-
toring in virtualized systems and presents a hybrid model that gives security tools
the ability to do active monitoring while still benefits from the increased security of
an isolated virtual machine [11]. M. Sharif et al. propose a general-purpose frame-
work, secure In-VM Monitoring (SIM), to enable security monitoring applications
to be placed back in the untrusted guest VM for efficiency without sacrificing the
security guarantees provided by running them outside of the VM [12]. What’s more,
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VMM also becomes a popular platform for building Honeypot and Honeyfarm to
capture and detect intrusion [13, 14, 15]. For example, [13] introduces Collapsar,
which has a virtualization-incurred overhead of about 50% and performance over-
head incurred by the traffic redirection and dispatching mechanisms of about 275%
in TCP throughput.

In contrast to pursuing the nearly impossibility of a perfect barrier, many re-
searchers are working on intrusion tolerance instead of intrusion prevention [16, 17].
For example, Matthews et al. utilized data protection and recovery to tolerant in-
trusion, they also presented an architecture in which personal data is protected in
a file server virtual machine and in which trusted checkpoints of virtual machine
appliances house system data and enable rapid recovery from attack [18]. In [19],
a novel intrusion architecture which applies VM-based and OOB network to support
reliable control even though the primary network is under severe attack is described
and implemented. XenFIT and XenRIM are designed to monitor fire alarms on
intrusion in real-time manner in Xen-based virtual computing environment, which
are not required to create and update the database like in the legacy methods [20,
21]. In [22], authors present an architecture for intrusion tolerance using virtual
machines that benefits from a shared memory to simplify the consensus protocol,
named SMIT (Shared Memory based Intrusion Tolerance), which demonstrates that
the safe component only needs to provide a simple shared memory abstraction to
reach the computational reduction.

To improve and balance detection rate and false rate, Sabhnani et al. build
an intrusion system using pattern recognizing and machine learning algorithms on
KDDCup99 dataset [23], but their system is based on the performance of different
subclassifier on the dataset. Wenke Lee et al. propose a data mining method as high-
efficient intrusion detection which can detect new attacks as soon as possible [2, 24],
but their system is tightly related with the high-quality training dataset. Zhenwei Yu
et al. present an automatically tuning intrusion detection system [6]; their system
achieves about 30% performance but has about 10% false predictions. In [25],
a control-theoretic HMM model for intrusion detection using distributed multiple
nodes is presented, which reduces the frequency of false positives, but this model
lacks automated response and has high computation complexity. Jiankun Hu et al.
also propose a simple data preprocessing approach to speed up a HMM training for
system-call-based anomaly intrusion detection, which reduces training time by up
to 50% with unnoticeable intrusion detection performance degradation, compared
to a conventional batch HMM training scheme [26].

3 DISCOVERING ABNORMITY IN SYSTEM CALL SEQUENCES

3.1 Overview

The technique of virtual memory introspection was introduced by Bryan D. Payne
et al. They design the XenAccess architecture and present the XenAccess moni-
toring library to provide virtual memory introspection and virtual disk monitoring
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capabilities based on six high-level requirements [27]. Monitoring virtual memory
with XenAccess requires no changes to the VMM, VM and OS. Using introspection,
XenAccess can view the memory of another VM access with the target to infer OS
data at an abstract level.

Attacks, especially those that attempt to compromise a computer system using
the system call interface, are an increasingly important threat to virtual computing
environment. Using virtual memory introspection provided by XenAccess, monitor-
ing system call at the abstract level becomes feasible and more convenient, which
can detect and control guest applications by checking them at runtime. Monitor-
ing system calls of guest VM and specifying the program’s normal behavior is an
effective approach for stopping a large class of malicious attacks [28]. Essentially,
it is helpful to convert a potentially successful attack into a fail-stop failure of the
compromised process.

3.2 HMM for Profiling System Calls

The Hidden Markov Model (HMM) is a powerful statistical tool for modeling ge-
nerative sequences that can be characterized by an underlying process generating
an observable sequence [29]. Because system call track is a group of time-varying dis-
crete time sequence data, we use the HMM to describe the statistical rules among
local system calls in the process of system operation. In early studies some re-
searchers reported preliminary evidence that short sequences of system calls can be
used to discriminate several types of intrusions. The method presented here pro-
longs those studies to long sequences of system call in order to improve the accuracy
of intrusion detection.

HMM is a special type of Bayesian Network. The formal definition of a HMM
is as follows:

λ = (S, V, A, B, π., (1)

where S is the state set, and V is the observation set. Suppose n is the total number
of states, and m is the maximum number of observed sequence:

S = (s1, s2, . . . , sn., (2)

V = (v1, v2, . . . , vm). (3)

A is the state transition probability matrix, storing the probability of state j fol-
lowing state i.

A = [aij]n×n, aij = p(step t at sj |step (t− 1) at si). (4)

B is the observation probability array, storing the probability of observation k from
state i.

B = {bi(k)}, bi(k) = p(vk|si). (5)
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π is the initial probability array, storing the probability of state i at first step.

π = {πi}, πi = p(si at initial step). (6)

For HMM model λ = (S, V, A, B, π), the system call sequences are compared
to the observation V , the observed sequences will be either normal or attack. Our
way is to profile system calls by means of establishment of HMM model for them.
Comparing to traditional HMM model, the modification in HMM of our profiling
is as follows: Firstly, the state space is limited in 3 states in order to improve
performance; secondly, the length of observation sequence is changeable instead
of fixed length in traditional HMM; thirdly, computation on πi is predigested for
efficiency.

1. State space, S = (Normal,Attack, Intrusion) or S = (0, 1, 2), represents that
the system call sequence has the following three states:

• Normal (N) state indicates a legal activity.

• Attack (A) state indicates an attack activity that is setting itself up. An at-
tack includes attempts to get privileged resources, enhance system vulnera-
bilities, accelerate memory usage, and gain remote login trust relation and
so on. Intrusion (I) state indicates an attack has achieved his goal and has
become a successful intrusion. A successful intrusion is always accompanied
by unusual resource usage, service failure and data leak etc.

2. V is the observed system call sequence, such as (open, read, mmap, mmap, open,
read, mmap). The maximum number of observations m is dependent on the
number of system calls, for example, in Xen3.1 there are 325 system calls, that
is m = 325.

Even if the raw system call sequence is widely used as evidence to detect intru-
sion, there are two inherent vulnerabilities for high-required intrusion detection.
At first, numerous sequences observed are not distinct enough, which has great
influence on the efficiency of intrusion detection; Secondly, it is difficult to search
for suitable length of system call sequence for intrusion detection. Short sequence
is always selected, but it is at the cost of detection rate. In order to improve the
accuracy and efficiency of intrusion detection, here we only take into account
the maximum frequent sequences of system call as V .

3. Given that n=3, matrix A is defined as: A = [ai,j]3×3 =







a0,0 a0,1 a0,2
a1,0 a1,1 a1,2
a2,0 a2,1 a2,2





.

Here ai,jis the transition probability of maximum frequent patterns amid differ-
ent states.

4. π = {π0, π1, π2} is the initial probability array for every state, and
∑2

0 πi = 1.
For raw system call sequences, under ideal circumstance the system calls are all
legal, that is π = {1, 0, 0}; but when V is matched with frequent sequences of
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system call, the initial probability depends on the training dataset. The πi is

computed as πi = p(i) = initial number of patterns in state i

total number of patterns (1 ≤ i ≤ 2), and

π0 = 1−
∑2

1 πi.

5. B = {bi(j)}, which is the probability distribution of frequent sequential patterns
in state i.

3.3 Computing p(O|λ)

An HMM-based approach correlates the system call observations and state transi-
tions to predict the most probable intrusion state sequence, which can be viewed
as that evaluating how well a HMM model predicts a given observation sequence.
The probability of the observation O for a specific state sequence Q is p(O|λ). In
this paper, we calculate p(O|λ) and analyse it to find out abnormity from activity
sequences. That is, after establishing accurate HMMs on normal behavior exactly,
if probability of observed behavior is smaller than a given threshold probability, we
should believe that this activity is a suspicious behavior.

An efficient computational algorithm called forward algorithm is reported to
compute p(O|λ), which has a relatively lower computational complexity. The for-

ward algorithm has three principal equations which are the initialization of what is
called forward variable α, an induction step, and the termination step. The forward
variable is defined as αt(i) = p(o1, o2, . . . , ot, qt = si|λ), and α is the probability of
the partial observation sequence o1, o2, . . . , ot(1 ≤ t ≤ T )and state siat time t.

The algorithm for this process is called the forward algorithm and is as fol-
lows [30]:

1. Initialization:

α1(i) = πibi(o1., 1 ≤ i ≤ n, (7)

2. Induction:

αt+1(j) = [
n
∑

i=1

αt(i)aij]bj(ot+1., 1 ≤ t ≤ T − 1, 1 ≤ j ≤ n, (8)

3. Termination:

p(O|λ. =
n
∑

i=1

αT (i). (9)

According to the state space S = (Normal,Attack, Intrusion) and the forward

algorithm defined above, the trellis of p(O|λ) computing process for our HMM is as
shown in Figure 1. It is apparent that by caching α values the forward algorithm re-
duces computational complexity involved to O(n2T ). In our Hidden Markov Model,
n = 3, thus computing p(O|λ) has a linearity complexity of calculations involved to
O(T ).
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Fig. 1. Computing process for our HMM

3.4 Mining Frequent Sequences of System Calls

In normal circumstances with the increase of length of the observation sequences,
the emergence probability of observation sequences, p(O|λ), is getting smaller and
smaller. So it is very difficult to determine whether or not an observation sequence
is a normal sequence only by measuring the probability of p(O|λ). That is, the
decision process is greatly related to the length of observation sequences. To reduce
this dependence, we introduce sequence data mining technique as an assistant artifice
to discover abnormality from normal activities. Here we present an improved mining
algorithm, named AGAS (algorithm of Automatically Generating Attack Sequence),
to find the attack frequent sequences of system call. Rather than focusing on building
a highly effective initial detection model, AGAS is proposed to describe a tuning
mechanism when it is exposed to the dynamically changing environment.

Suppose O is the whole track of an inner process or a running program in
VM-based virtual computing systems; this sequence of system calls observed can
be described as O = 〈sc1, sc2, . . . , sci, . . .〉, which conforms to the given order con-
straints, and encodes an interesting fact that system call sci occurs after sci−1 and
before sci+1. Any subsequence compressed, SC = 〈sc1, sc2, . . . , scL〉 and L is the
length of SC, is the candidate sequence pattern which can be utilized to discover
abnormality. If a subsequence is superior to a certain requirement, it can be specified
as a rule to discriminate suspicious act from normal activity; this kind of sequence
is consequently called frequent sequence.

In conventional way, frequent sequence is distinguished by a probability named
support, that is, a sequence is frequent only if its appearance frequency is superior to
the threshold probability. Here, a novel threshold probability to frequent sequence
is defined as follows:

(L)
sup =

length(SC)× p(SC)

length(O)
, (10)

and p(SC) =
∏L

i=1 p(sci|sci−1 . . . sc1., p(sci) is the objective probability.
In order to find the potential attacks and the relationships among sequences of

system calls, we associate graph with frequent sequences to depict the ways in which
an attack can force the computing environment into an unsafe state. The formal
definition of system call sequence graph is as follows:

G = (V, E, P ). (11)
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Fig. 2. Graph of sequences of system calls

V is the nodes set of graph representing the observation set of system calls,
E = 〈sci, scj〉 is the edges set of graph. Every system call sci is a node in the graph,
each edge 〈sci, scj〉 describes the relationship between two nodes, and an execution
is defined as a finite sequence of system calls 〈sc1, sc2, . . . , scL〉. P is the set of
probabilities, transition probability pij denotes the probability of transition from
system call sj to si which is also defined as the reciprocal of the number of successors
of the system call sj. There are three types of system call sequences including
serial sequence, parallel sequence and hybrid sequence which can be structured into
G = (V, E, P ) as shown in Figure 2.

According to the graphic definition, AGAS algorithm is specified as follows:

Input:

• V = 〈sc1, sc2, . . . , sci, . . . scm〉 – Set of system calls

• P ⊆ V × V → [0, 1] – Transition matrix of system calls

• V0 ⊆ V – Set of initial system calls from XenAccess

Output: Attack execution 〈sc1, sc2, . . . , scL〉

Algorithm AGAS: Step 1: Construct initial vector

Let v = (v1, v2, . . . , vi, . . . , vm) be an m-dimensional vector which represents
the initial state of observation sequence of system call.

vi(1 ≤ i ≤ m) =

{

1 vi ∈ V0

0 vi /∈ V0
. (12)

Step 2: Compute reachable probability

Vaibhav Mehta et al. give a method to rank states in an attack graph. They
define a transition probability from one state to another state [31]. We use
that in our algorithm. Let r(m) be an m-dimensional vector which represents
the reachable probabilities for all system calls in a random simulation run of
length up to m.

r(m) =
m
∑

k=0

P kv (13)
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The reachable probability is computed as follows:

for (k = 1; k ≤ m; k++)
{
compute r(k) according to formula (12)(13);
compute sup(k) according to formula (10);
if (r(k) ≥ sup(k) and r(k+1) < sup(k+1))
return (k);
}

Step 3: Output attack sequence

SC = ∅

for (l = 1; l ≤ k; l++)
{
SC = SC ∪ scl;
}
output (SC);

There are numerous reasons for our preference for AGAS algorithm, and I shall
explore only a few of the most important ones here. One chief reason is that this
algorithm is extremely simple and fast which greatly reduces the computing com-
plexity. This algorithm is also very suitable to generate frequent sequence in virtual
machine with a storage complexity of O(n2), since there is not enough space to store
temp candidate sequence. Next, traditional mining algorithm using multiple scans is
not appropriate because system call sequence is a one-time operation. Besides, bot-
tlenecks of traditional candidate-based algorithms get great influence on efficiency.
But attack recognition is a real time processing, traditional algorithms are strongly
advised to be discarded because of latency. All in all, taking into account the metrics
mentioned above, we chose this probability computing-based algorithm.

3.5 Intrusion Detecting Algorithm

Paulo Veŕıssimo et al. represent a well-defined relationship between attack, vulner-
ability, and intrusion which is called AVI composite fault model [32]. This model
represents a fundamental sequence: attack →vulnerability→intrusion→failure. The
AVI sequence can recursively occur in a coherent chain of events generated by the
intruders. In AVI mode, vulnerabilities are defined as the primordial faults existing
inside the components, essentially requirements, specification, design or configura-
tion faults, and attacks are defined as interaction faults that maliciously attempt
to activate one or more of those vulnerabilities. The event of a successful attack
activating a specified vulnerability is called an intrusion.

According to AVI model, the state space S = (Normal,Attack, . . . , Intrusion)
is proposed as mentioned above. Thus, we can discover abnormalities from normal
activities that these abnormalities are also considered as attacks, and then distin-
guish intrusions from abnormalities. We briefly describe the method for discovering
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attacks and intrusions. The first step is to determine the set of frequent sequences
SCand their maximal lengths k that are from the observed system call sequences.
Next, the forward algorithm computes the emergence probability that SC is input
as observation set. In this step, the forward algorithm would circularly compute
p(O|λ) until the length of observation sequence is up to k. The algorithm of detect-
ing attacks and intrusions is given as follows which reports “attack” or “intrusion”
for a given system call sequence.

Input:

• V = 〈sc1, sc2, . . . , sci, . . . , scm〉 – Set of system calls

• P ⊆ V × V → [0, 1] – Transition matrix of system calls

• V0 ⊆ V – Set of initial system calls from XenAccess

Output: Running execution 〈sc1, sc2, . . . , scL〉

Detection algorithm det ect A I():
AGAS (V, P, V0); // Generate frequent sequence
attack(SC); // flag SC as attack sequence
for (l = 1; l ≤ length(SC) = k; l++)
{
compute p(O|λ) using forward algorithm;
if (p(O|λ. ≤ ξ) // ξ is the user-specified threshold
intrusion(SC); // flag SC as intrusion sequence
exit;
}

4 DYNAMIC ALGORITHM FOR INTRUSION DETECTION

In virtual computing environment, creating, migrating, updating and destroying
a VM is as easy as processing a file. The fast and unpredictable changes occurring
with VMs exacerbate intrusion detection tasks and significantly multiply the impact
of malicious attacks. Rarely do traditional detection algorithms dynamically and
automatically deal with these rapid changes. In order to ensure the security of
dynamical computing environment, we design a novel detection algorithm based on
backtracking to discover intrusions in virtual computing platform.

4.1 Tracing Changes in Virtual Machines

While the set of VMs is dynamically changing, intrusion detection engineer would
like to know at any time which a VM has been altered or whether VM has been
created etc. The changes occurring with VMM and VM running on it can be viewed
as a dynamic graph that is undergoing a sequence of updates. Let the dynamical
graph be described as DG = (U ′, E ′) with |U ′| = n and |E ′| = e. U ′ is a running
unit in virtual computing environment, such as VMM, VMs or applications, etc.
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E ′ representing the edges of graph is the set of relationship among running units.
Especially, the vertices representing VMM are called root in that every running unit
is directly or indirectly related to the VMM in virtual computing system.

In this paper, we take VM as a dependent unit. Consequently, creating VM is
an operation that inserts vertices of the graph, destroying VM is an operation that
deletes vertices of the graph, migrating VM is an operation that changes vertices and
edges of the graph, updating VM is an operation that updates attributes associated
with vertices or edges of the graph.

Henzinger et al. introduce a data structure called ET trees to work on dynamic
forests whose vertices are associated with weighted or unweighted keys [33, 34]. They
also design the first fully dynamic algorithms to combine graph decomposition with
randomization which supports in O(logn) time to update and query. It provides
three query functions:

• Connected(u1, u2): returns whether vertices u1 and u2 are in the same tree.

• Size(u): returns the number of vertices in the tree that contains u.

• Minkey(u): returns a key of minimum weight in the tree that contains u; if keys
are unweighted, an arbitrary key is returned.

We adapt ET trees to construct our dynamic graph. An Euler tour of a tree
is a maximal closed work over the graph obtained by replacing each edge by two
directed edges with opposite direction. The work traverses each edge only once, that
is, if the tree has n vertices, the Euler tour has length of 2(n− 1). An Euler tree is
a balanced dynamic binary tree over some Euler tour around the tree and leaves of
the balanced binary tree are the nodes of the Euler tour.

Suppose ET = (U,E) is the Euler tree architecture for VMM and VM running
on it. U representing the nodes of tree is the unit set of VMM and guest VMs, each
element of U is a running unit in virtual computing environment. E representing
the edges of tree is the set of communication relationship between VMM and VM,
or between VM and VM. There are two types of edges in ET : the first is the edge
between VMM and guest VM, the other is the edge between guest VM and guest
VM that there is an inherent relation between them in a specified malicious activity;
for example, a VM may act as a puppet machine controlled by another VM to carry
out DDos attack.

In order to minimize the amount of recomputation required by intrusion detec-
tion after each change, the dynamical ET should support several queries.

The basic query is ET membership: While the graph is dynamically changing,
intrusion detection engineer would like to know which ET tree contains a given
node. The goal of this query is to check whether or not a VM is destroyed or a new
VM is created. We use Member(u) to represent this basic query.

The second query is ET connectivity: while the graph is dynamically changing,
intrusion detection engineer would like to know whether two given nodes u1 and u2

are in the same tree. The goal of this query is to check whether or not a VM is
migrated. We use Connect(u1, u2) to represent this connectivity query.
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The third query is ET update: If the node is accompanied by additional values,
intrusion detection engineer also would like to know whether or not this information
is changed when the graph is dynamically changing. The goal of this query is to
check whether or not the state of a VM is updated. We use Updatekey(u) to represent
this update query.

4.2 Constructing ET Trees

In this subsection, we present the process that we use to construct the ET trees
from a fully dynamic graph. The whole process includes four stages.

Initially, cluster the dynamic graph into dynamic forests. In this stage, the
architecture graph is partitioned into a collection of associated trees, such that each
change involves only a small number of such tress. The goal of partition is to
minimize the cost of maintaining the dynamic graph. For a given DG = (U ′, E ′),
clustering is used to partition the edge set E ′ into different collections, so that each
subtree has the same vertex set U ′ and maintains a subset information about the
edges. Next, walk over the substree and replace all edges of subtree with directed
edges by Euler tour. Then, build up a dynamic balanced binary tree over the Euler
tour given above around the subtree. Thus, the leaves of the balanced binary tree are
the nodes of the Euler tour of the second stage. Finally, repeat the operation of the
second and third stage until all subtrees produced in the first stage are exhausted.

4.3 Query Algorithms

After constructing ET trees, the edges of DG are partitioned into h levels and
∪hEi = E ′, and for i 6= j, Ei∪Ej = ∅. For each i, we keep a Euler treeETi = (Ui, Ei)
as a spanning tree which is on level i.

Query Connect(u1, u2):

In connectivity query, the deletions-only connectivity algorithm is efficient for
all operations used in our algorithm. Thus, we choose Connected(u1, u2) men-
tioned above, whose main ideal is using a function Replace(e, h) to argue that
if a replacement edge exists, it will be found. The algorithm is described as
follows.

// u1 and u2 are in the same ET tree
while (ETi is not exhausted)
{
compute Connected(u1, u2) in ETi;
if (Connected(u1, u2) = true)
return true and exit from the algorithm;
}
// u1 and u2 are in the same graph
while (ETi is not exhausted)
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{
compute Connected(root, u1) in ETi;
while (ETj 6= ETi)
{
compute Connected(root, u2) in ETj;
if (

∏2
x=1 Connected(root, ux) = true)

return true and exit from the two while loop;
}
}

Query Member(u):

We will consider two operations: vertices insertion and deletion. When a VM
is created, we maintain the dynamic graph by inserting vertices and edges into
ET trees. The insertion is adding a vertex u to Ul and adding edge 〈root, u〉
into DG and ETh. When a VM is destroyed, we maintain the dynamic graph
by deleting the corresponded node and the edges.

We can use Size(u) to discover whether or not a node is in the graph. The
algorithm is extremely simple, and it is described as follows.

while (ETi is not visited)
{
compute Size(u) in ETi;
if (Size(u) > 0)
return true and exit from the algorithm;
}
return false;

Query Updatekey(u):

To discover whether or not the state of a node is changed, the dynamic graph
maintains additional values. The additional details are specified by security re-
lated attributes of the attacker and the VM-based computer system, such as
trust relation between VMs, model of the intruder, application actions, comput-
ing system topology etc. The algorithm Updatekey(u) is described as follows.

while (Connect(root, u) = true)
{
compute Minkey(u) in ETi;
while (ETj 6= ETi)
{
compute Minkey(u) in ETj;
}
if (the two Minkey(u) is equal)
return false and exit from the algorithm;
}
return true;
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4.4 Dynamic Intrusion Detection Algorithm

The basic idea of dynamically detecting intrusion is to define a period δ and monitor
the dynamic changes of virtual computing environment periodically using the three
query algorithms mentioned above. During this period δ, det ect A I() is used to
detect attacks and intrusions. If there are changes, reconstruct the dynamic graph
and ET trees. Then, backtrack to the root vertex of changed ET trees and detect
intrusions by det ect A I() corresponding to various changes. The dynamic intrusion
detection algorithm is specified as follows.

Step 1: Initialization

Firstly, construct the dynamic graph DG for a given virtual computing environ-
ment and compute the ET trees for this DG described above. Initially, the set
of ET trees has the same root vertices since there is only one.

Next, define the period δ. The period δ should be larger than minimal limitation
since the AGAS and p(O|λ) computation are atomic operations which cannot
be interrupted. Moreover, the time gap between query process and detection
process is also an important factor affecting the period time. Thus, δ ≥ tAGAS+
tp(O|λ) + |tquery − tdet ect A I |.

Step 2: Monitor changes of virtual computing environment and adjust value of δ
according to the dynamic state.

If a period is not over, detect attacks and intrusions using det ect A I(. algorithm
during this period δ. If a period is over and no changes occur, increase δ. If
a period is over and changes occur, decrease δ and go to step 3.

Step 3: Reconstruct ET trees changed and update the dynamic graph DG.

In the case of insertion, add a vertices u to Ul and adding edge 〈root, u〉 into
ETh and update DG.

In the case of deletion, find the ETi containing the specified vertices u, then
delete vertices u and delete edges which connected with u in ETi. Finally,
update DG.

In the case of migration, find the ETi containing the emigrated vertices u1 and
ETj containing the immigrated vertices u2. Then delete u1 and the related edges
from ETi, and insert vertex u2 and an edge 〈root, u2〉 into ETj as a leaf node.

Step 4: If δ is higher than the minimal time gap, repeat to execute from step 2
every period δ.

5 IMPLEMENTATION AND EXPERIMENTAL RESULTS

As an experiment, we set up a prototype implementation of our automated ap-
proach to dynamic intrusion detection and give the experimental results. We first
give an overview of the implementation presenting system architecture and core
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system components of our prototype system, then describe performance evaluation
on detecting intrusion. For comparison, we also describe the experimental results
with respect to how to achieve performance improvement. Finally, we quantify the
virtualization overhead and performance impact of our approach compared to static
methods.

5.1 Implementation Overview
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Fig. 3. Prototype system architecture
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Fig. 4. Dynamic intrusion detection

IDS is a monitoring system which reports alarms to the system operator when
there are abnormalities. Our prototype relies on the fact that an application deviates
from its normal behavior during execution when intruders achieve their goals suc-
cessfully. Figure 3 depicts the system architecture of our prototype, which is running
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on Fedora 8, programmed by C/C++, storing data in database MySql, constructing
model using HMM Toolbox of UBC. The Monitor requests to view a kernel symbol
and XenAccess introspects the semantic model of an application’s behavior in terms
of sequences of system calls. XenAccess finds the virtual address for the kernel
symbol in system.map and returns a pointer and offset for the data page to monitor
with read/write privileges. The System Call Handler is developed to capture and
monitor system calls. We include the automated approach to intrusion detection
in dynamic environment in Figure 4, which is the component Dynamic ID in our
prototype.

When implementing the experiment, Monitor in Dom0 executes monitoring
tasks though two approaches. One approach monitors guest VM though XenAc-

cess, which introspects system.map, more implementation detail can be seen in [27].
The other approach monitors guest VM by hunting system calls of guest OS. For
detailed programming, system calls are handled by sysenter including sysenter CS,
sysenter ESP and sysenter EIP. Firstly, sysenter EIP is caught, and the value of
sysenter EIP is replaced by another false value. Then, guest OS triggers a page
fault, which is hunted as an event by Xen. Next, Xen compares the virtual address
of page fault event and the false value mentioned before. If these two values are
the same, the operation of guest OS is certified as a system call. Finally, we get
some key values in Dom0, such as process id, Eax etc. According to this approach,
Monitor can handle every system call of guest OS.

Dynamically detecting and responding process works as follows: Firstly, Com-
puter Immune Systems (CIS) Data sets of University of New Mexico (UNM) are
used as our training data to construct HMM statistic models though HMM Toolbox,
since it is difficult to collect real-life datasets due to various limitations [35]. In
CIS Data sets, some of the normal data are synthetic and some are live. Synthetic
traces are collected in production environments by running a prepared script, live
normal data are traces of programs collected during normal usage of a production
computer system [36]. For example, the sendmail program data includes a total of
85 tracks, in which the normal tracks are 79 and the attack tracks are 6 containing
sccp attacks and decode attack. Secondly, dynamic graph is constructed and ET
tree is computed according to initial state of the computing system in DG trigger.
For every vertex of ET trees build an AGAS engine and a HMM check engine to
classify attacks an intrusions using algorithm det ect A I(.. The maximal frequent
sequences of system calls generated by AGAS engine are the input observations of
HMM check engine. When programming, dynamic graph is stored as adjacency ma-
trix and ET trees are stored in heap for performance. Thirdly, the period listening
process executes queries to track changes of virtual computing environment. While
the execution environment is dynamically changing, the dynamic graph is tuned pe-
riodically. Consequently, the structures of AGAS engines and HMM check engines
are also adjusted. In this stage, we only adjust the changed vertices and the edges in
ET trees it related for minimal overhead. Two implemented problems are focused:
Signal is used to trigger periodical tuning and features of HMM are extracted and
transformed as relational data for quick searching.
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In our experiments, the experimental hardware platform of prototype includes
two computers: one is running 3 guest VMs; the other is a backup machine for
migration. Xen 3.2 and Fedora Core 8 have been preinstalled on each machine.
During the execution, the guest VMs can migrate from one computer to another.
Based on this hardware platform, the proposed algorithm is quite critical for the
efficiency of intrusion detection since we wish to maximize both speed and detection
capabilities. Therefore, we require that HMM patterns match exactly. To achieve
this goal, we construct the hidden Markov model in various sequence lengths of
system call off-line from training data sets. We implement this model based on
system call sequences whose length is six according to Forrest’s research. The HMM
size generated is presented in Table 1.

A careful look at the HMM of system call sequences generated shows that there is
redundancy between short sequences and long sequences. Therefore, it is necessary
to eliminate this redundancy for improving the matching efficiency. It is difficult to
find which method is the best way since the elimination process is accompanied by
loss of accuracy; but it seems that the long sequences are better to represent the
program action. Thus, we prune HMM of short sequences if they are subsequence
of long sequences. An example of redundancy rate is presented in Figure 5 when
the length of system call sequences is eight.

Program Process number System call number HMM size (L = 6)

MIT lpr 2 703 2 926 304 170

UNM lpr 4 298 2 027 468 178

named 27 9 230 572 17

xlock 72 16 937 816 20

login 12 8 894 6

ps 24 6 144 9

inetd 3 541 2

stide 13 726 15 618 237 613

sendmail 71 760 44 500 219 861

Table 1. HMM size generated

5.2 Algorithm Efficiency

In the first experiment, we evaluate efficiency of algorithm det ect A I() with detec-

tion rate (DR) and false positive rate (FR) on several typical intrusion behaviors.
DR = Number of intrusions identified/Total number of anomalous system events,
which is the correct rate of intrusions identified. FR = Number of normal events
misidentified as intrusions/Total number of intrusions identified, which is the error
rate of normal data identified as anomalous.

We compare the proposed algorithm det ect A I() with traditional intrusion de-
tection algorithm using HMM [5], HMM combined with sliding window [37], au-
tomated intrusion detection method [6] and intrusion detection approach though
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Fig. 5. HMM redundancy rate when sequence length is 8

Livewire [8]. According to research in [2, 3, 35], we set sequence length of system
call as 6 and also adopt 6 as sliding window size. As a rough estimate, on condition
of HMM probability threshold ξ = 0.001, the average detection rate of algorithm
det ect A I() on these 9 data sets is about 96.3%, the average false positive rate is
below 0.15%. The maximal detection rate is up to 97% on sendmail program and
the minimal detection rate is a little more than 94% on xlock program. Compared
with other related approaches mentioned above, algorithm det ect A I() has higher
detection rate and almost the similar false positive rate on lpr and ps program. It
has lower false positive rate and similar detection rate on named, xlock, login and
inetd program. Especially, it has not only higher detection rate but also lower false
positive rate on sendmail program. The stide program is not shown here because
its detection rate is higher but its false positive rate is also higher and it is difficult
to define whether it is good or not. Figures 6 and 7 give the relationships between
probability threshold and efficiency. In Figure 6, the y-axis presents the detection
rate on sendmail program, the x-axis describes the HMM probability threshold of ξ
ranging from 1e−10 to 0.01. In Figure 7, the y-axis presents the false positive rate
on sendmail program, the x-axis describes the HMM probability threshold of ξ rang-
ing from 1e−10 to 0.01. Note that the false positive rate of det ect A I() is much
smaller in Figure 7 as ξ ≥ 0.001. In many cases, it is benefit for users to verify
malicious system call sequences from huge amount of system processes.

In the next experiment, we test dynamic capability of our approach by creating,
destroying a guest VM and migrating a guest application. We set up a HTTP server
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Fig. 6. Comparison of detection rate on Sendmail

(Apache Http Server) in a guest VM and a client VM to request a specified file to test
our algorithm considering parameter on file size. This specified file is continuously
written to increase the size. To make the observation convenient, we send http
request 10 000 times. Figure 8 describes the comparison on dynamic det ect A I()
and HMM detection method when migrating a guest application of a VM. With
increasing document length, the request times per second decrease. The file size
is from 1KB to 1 024KB, the migrating process is executed when file size is larger
than 128K. If a file is too small, it is too difficult to observe the changing state.
Figure 9 describes the creation and destruct response times per second. In Figure 9,
we cannot compare dynamic det ect A I() and HMM detection approach in that the
response times is zero. For a created VM or a destroyed VM, HMM method cannot
run automatically until operated by security administrator.

5.3 Performance

The additional overhead, which is the ratio of time consumption using assigned
approach and time consumption in normal computing environment, of our approach
includes two aspects: the monitor overhead using virtual memory introspection and
periodical refresh overhead of dynamic structure. As an example, t1 is the time
of constructing a graph, t2 is the total time of constructing a dynamic graph with
periodically tuning structure; then the refresh overhead of dynamic structure is
t2/t1 × 100%.
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Fig. 9. Response times when creating and destroying

Using XenAccess, the average time to complete the specified function in a target
domain is about 52 microseconds by virtual address memory access, the average
time for monitor to read memory is about 2.4 microseconds when data size is 2 000
bytes. The time of refreshing dynamic structure is tightly related to the changing
size. If only one vertex in an ET tree is changed, the time on refreshing ET tree and
dynamic graph is about 0.8 microseconds; but the total time is not a simple plus, it
greatly depends on the structure of dynamic graph. As a rough test, the additional
writing time is about more than 35%. If the dynamic graph is drastically changing,
that is if the period δ is much larger than the gap between two changes, the overhead
is very high, up to 440%. Fortunately, the proposed tuning mechanism of period δ
can reduce this kind of overhead to some degree. With this tuning mechanism, the
maximal overhead is about 240%.

6 CONCLUSION

Because virtual machine-based computing environments are continuously changing,
it is difficult to build high-quality intrusion detection systems. In this paper, we pro-
pose an automated approach to intrusions detection in order to maintain sufficient
performance and reduce dependence on execution environment. We present a dy-
namic graph structure to monitor the dynamic changing of computing environment.
Based on this structure, we discuss a hidden Markov model strategy for abnormal-
ity detection using frequent system call sequences, letting us identify attacks and
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intrusions automatically and efficiently. We also propose an automated mining al-
gorithm, named AGAS, to generate frequent system call sequences. Rather than
setting a user-defined threshold on mining frequent sequences, AGAS algorithm
utilizes related probabilities to identify frequent sequences. In our approach, the
detection performance is adaptively tuned according to the execution state every
period. To improve performance, the period value is also under self-adjustment.
Our experimental results show that the proposed algorithm and method are effec-
tive compared to traditional HMM-based intrusion detection approach.

Compared to traditional intrusion detection method based on HMM, dynamic
det ect A I() is more adaptive and effective. The advantages of our approach include:

1. High automatic and safety: AGAS algorithm supports self-generation on fre-
quent sequences without human interference. The output of AGAS algorithm
is the input of HMM checker, which avoids interference from attackers.

2. High performance: The experimental results on different data sets show that
our approach has higher detection rate or lower false positive rate, especially on
sendmail dataset.

3. Real-time: The system monitor adjusts the system architecture every period
using dynamic graph, which assures the detection engineer achieves the real-
time information.

The self-tuning of period value is also a benefit to enhance the real-time ability.

We plan to extend this approach to build a real-time intrusion detection sys-
tem on Xen-based virtual computing environment. We have further noticed that if
system behavior changes drastically, the overhead of dynamic graph might be in-
creased and the benefit of our approach will be diminished. We will focus on this
topic. Another direction is to combine our approach with the flexibility of virtual
machine to build intrusion tolerance system (ITS) to tolerate rather than prevent
intrusion.
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